src/HOL/Tools/meson.ML
author paulson
Thu Sep 15 11:15:52 2005 +0200 (2005-09-15)
changeset 17404 d16c3a62c396
parent 16801 4bb13fa6ae72
child 17716 89932e53f31d
permissions -rw-r--r--
the experimental tagging system, and the usual tidying
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    ID:         $Id$
paulson@9840
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     4
    Copyright   1992  University of Cambridge
paulson@9840
     5
wenzelm@9869
     6
The MESON resolution proof procedure for HOL.
paulson@9840
     7
paulson@9840
     8
When making clauses, avoids using the rewriter -- instead uses RS recursively
paulson@9840
     9
paulson@9840
    10
NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
paulson@9840
    11
FUNCTION nodups -- if done to goal clauses too!
paulson@9840
    12
*)
paulson@9840
    13
paulson@15579
    14
signature BASIC_MESON =
paulson@15579
    15
sig
paulson@15579
    16
  val size_of_subgoals	: thm -> int
paulson@15998
    17
  val make_cnf		: thm list -> thm -> thm list
paulson@15579
    18
  val make_nnf		: thm -> thm
paulson@15579
    19
  val skolemize		: thm -> thm
paulson@15579
    20
  val make_clauses	: thm list -> thm list
paulson@15579
    21
  val make_horns	: thm list -> thm list
paulson@15579
    22
  val best_prolog_tac	: (thm -> int) -> thm list -> tactic
paulson@15579
    23
  val depth_prolog_tac	: thm list -> tactic
paulson@15579
    24
  val gocls		: thm list -> thm list
paulson@15579
    25
  val skolemize_prems_tac	: thm list -> int -> tactic
paulson@15579
    26
  val MESON		: (thm list -> tactic) -> int -> tactic
paulson@15579
    27
  val best_meson_tac	: (thm -> int) -> int -> tactic
paulson@15579
    28
  val safe_best_meson_tac	: int -> tactic
paulson@15579
    29
  val depth_meson_tac	: int -> tactic
paulson@15579
    30
  val prolog_step_tac'	: thm list -> int -> tactic
paulson@15579
    31
  val iter_deepen_prolog_tac	: thm list -> tactic
paulson@16563
    32
  val iter_deepen_meson_tac	: thm list -> int -> tactic
paulson@15579
    33
  val meson_tac		: int -> tactic
paulson@15579
    34
  val negate_head	: thm -> thm
paulson@15579
    35
  val select_literal	: int -> thm -> thm
paulson@15579
    36
  val skolemize_tac	: int -> tactic
paulson@15579
    37
  val make_clauses_tac	: int -> tactic
paulson@15579
    38
end
paulson@9840
    39
paulson@9840
    40
paulson@15579
    41
structure Meson =
paulson@15579
    42
struct
paulson@9840
    43
paulson@15579
    44
val not_conjD = thm "meson_not_conjD";
paulson@15579
    45
val not_disjD = thm "meson_not_disjD";
paulson@15579
    46
val not_notD = thm "meson_not_notD";
paulson@15579
    47
val not_allD = thm "meson_not_allD";
paulson@15579
    48
val not_exD = thm "meson_not_exD";
paulson@15579
    49
val imp_to_disjD = thm "meson_imp_to_disjD";
paulson@15579
    50
val not_impD = thm "meson_not_impD";
paulson@15579
    51
val iff_to_disjD = thm "meson_iff_to_disjD";
paulson@15579
    52
val not_iffD = thm "meson_not_iffD";
paulson@15579
    53
val conj_exD1 = thm "meson_conj_exD1";
paulson@15579
    54
val conj_exD2 = thm "meson_conj_exD2";
paulson@15579
    55
val disj_exD = thm "meson_disj_exD";
paulson@15579
    56
val disj_exD1 = thm "meson_disj_exD1";
paulson@15579
    57
val disj_exD2 = thm "meson_disj_exD2";
paulson@15579
    58
val disj_assoc = thm "meson_disj_assoc";
paulson@15579
    59
val disj_comm = thm "meson_disj_comm";
paulson@15579
    60
val disj_FalseD1 = thm "meson_disj_FalseD1";
paulson@15579
    61
val disj_FalseD2 = thm "meson_disj_FalseD2";
paulson@9840
    62
paulson@16563
    63
val depth_limit = ref 2000;
paulson@9840
    64
paulson@15579
    65
(**** Operators for forward proof ****)
paulson@15579
    66
paulson@15579
    67
(*raises exception if no rules apply -- unlike RL*)
paulson@15579
    68
fun tryres (th, rl::rls) = (th RS rl handle THM _ => tryres(th,rls))
paulson@15579
    69
  | tryres (th, []) = raise THM("tryres", 0, [th]);
paulson@15579
    70
paulson@15579
    71
(*Permits forward proof from rules that discharge assumptions*)
paulson@15579
    72
fun forward_res nf st =
paulson@15579
    73
  case Seq.pull (ALLGOALS (METAHYPS (fn [prem] => rtac (nf prem) 1)) st)
paulson@15579
    74
  of SOME(th,_) => th
paulson@15579
    75
   | NONE => raise THM("forward_res", 0, [st]);
paulson@15579
    76
paulson@15579
    77
paulson@15579
    78
(*Are any of the constants in "bs" present in the term?*)
paulson@15579
    79
fun has_consts bs =
paulson@15579
    80
  let fun has (Const(a,_)) = a mem bs
paulson@15579
    81
	| has (Const ("Hilbert_Choice.Eps",_) $ _) = false
paulson@15579
    82
		     (*ignore constants within @-terms*)
paulson@15579
    83
	| has (f$u) = has f orelse has u
paulson@15579
    84
	| has (Abs(_,_,t)) = has t
paulson@15579
    85
	| has _ = false
paulson@15579
    86
  in  has  end;
paulson@9840
    87
paulson@15736
    88
(* for tracing: encloses each string element in brackets. *)
wenzelm@16801
    89
val concat_with_and = space_implode " & " o map (enclose "(" ")");
quigley@15679
    90
paulson@9840
    91
paulson@15579
    92
(**** Clause handling ****)
paulson@9840
    93
paulson@15579
    94
fun literals (Const("Trueprop",_) $ P) = literals P
paulson@15579
    95
  | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
paulson@15579
    96
  | literals (Const("Not",_) $ P) = [(false,P)]
paulson@15579
    97
  | literals P = [(true,P)];
paulson@9840
    98
paulson@15579
    99
(*number of literals in a term*)
paulson@15579
   100
val nliterals = length o literals;
paulson@9840
   101
paulson@15579
   102
(*to detect, and remove, tautologous clauses*)
paulson@15579
   103
fun taut_lits [] = false
paulson@15579
   104
  | taut_lits ((flg,t)::ts) = (not flg,t) mem ts orelse taut_lits ts;
paulson@9840
   105
paulson@15579
   106
(*Include False as a literal: an occurrence of ~False is a tautology*)
paulson@15579
   107
fun is_taut th = taut_lits ((true, HOLogic.false_const) ::
paulson@15579
   108
			    literals (prop_of th));
paulson@9840
   109
paulson@15579
   110
(*Generation of unique names -- maxidx cannot be relied upon to increase!
paulson@15579
   111
  Cannot rely on "variant", since variables might coincide when literals
paulson@15579
   112
  are joined to make a clause...
paulson@15579
   113
  19 chooses "U" as the first variable name*)
paulson@15579
   114
val name_ref = ref 19;
paulson@9840
   115
paulson@15579
   116
(*Replaces universally quantified variables by FREE variables -- because
paulson@15579
   117
  assumptions may not contain scheme variables.  Later, call "generalize". *)
paulson@15579
   118
fun freeze_spec th =
paulson@15579
   119
  let val sth = th RS spec
paulson@15579
   120
      val newname = (name_ref := !name_ref + 1;
paulson@15579
   121
		     radixstring(26, "A", !name_ref))
paulson@15579
   122
  in  read_instantiate [("x", newname)] sth  end;
paulson@9840
   123
paulson@15998
   124
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   125
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@15998
   126
  presumably to instantiate a Boolean variable.*)
paulson@15579
   127
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   128
paulson@15998
   129
(*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
paulson@15998
   130
  Detects tautologies early, with "seen" holding the other literals of a clause.
paulson@15998
   131
  Strips universal quantifiers and breaks up conjunctions.
paulson@15998
   132
  Eliminates existential quantifiers using skoths: Skolemization theorems.*)
paulson@15998
   133
fun cnf skoths (th,ths) =
paulson@15998
   134
  let fun cnf_aux seen (th,ths) =
paulson@15998
   135
        if taut_lits (literals(prop_of th) @ seen)  
paulson@15998
   136
	then ths     (*tautology ignored*)
paulson@15998
   137
	else if not (has_consts ["All","Ex","op &"] (prop_of th))  
paulson@15998
   138
	then th::ths (*no work to do, terminate*)
paulson@16588
   139
	else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
paulson@16588
   140
	    Const ("op &", _) => (*conjunction*)
paulson@16588
   141
		cnf_aux seen (th RS conjunct1,
paulson@16588
   142
			      cnf_aux seen (th RS conjunct2, ths))
paulson@16588
   143
	  | Const ("All", _) => (*universal quantifier*)
paulson@16588
   144
	        cnf_aux seen (freeze_spec th,  ths)
paulson@16588
   145
	  | Const ("Ex", _) => 
paulson@16588
   146
	      (*existential quantifier: Insert Skolem functions*)
paulson@15998
   147
	      cnf_aux seen (tryres (th,skoths), ths)
paulson@16588
   148
	  | Const ("op |", _) => (*disjunction*)
paulson@16588
   149
	      let val tac =
paulson@16588
   150
		  (METAHYPS (resop (cnf_nil seen)) 1) THEN
paulson@16588
   151
		   (fn st' => st' |>  
paulson@16588
   152
		      METAHYPS 
paulson@16588
   153
		        (resop (cnf_nil (literals (concl_of st') @ seen))) 1)
paulson@16588
   154
	      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
paulson@16588
   155
	  | _ => (*no work to do*) th::ths 
paulson@15998
   156
      and cnf_nil seen th = (cnf_aux seen (th,[]))
paulson@15998
   157
  in 
paulson@15998
   158
    name_ref := 19;  (*It's safe to reset this in a top-level call to cnf*)
paulson@15998
   159
    (cnf skoths (th RS conjunct1, cnf skoths (th RS conjunct2, ths))
paulson@15998
   160
     handle THM _ => (*not a conjunction*) cnf_aux [] (th, ths))
paulson@15998
   161
  end;
paulson@9840
   162
paulson@16012
   163
(*Convert all suitable free variables to schematic variables, 
paulson@16012
   164
  but don't discharge assumptions.*)
paulson@16173
   165
fun generalize th = Thm.varifyT (forall_elim_vars 0 (forall_intr_frees th));
paulson@16012
   166
paulson@16012
   167
fun make_cnf skoths th = map generalize (cnf skoths (th, []));
paulson@15998
   168
paulson@9840
   169
paulson@15579
   170
(**** Removal of duplicate literals ****)
paulson@9840
   171
paulson@15579
   172
(*Forward proof, passing extra assumptions as theorems to the tactic*)
paulson@15579
   173
fun forward_res2 nf hyps st =
paulson@15579
   174
  case Seq.pull
paulson@15579
   175
	(REPEAT
paulson@15579
   176
	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@15579
   177
	 st)
paulson@15579
   178
  of SOME(th,_) => th
paulson@15579
   179
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@9840
   180
paulson@15579
   181
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@15579
   182
  rls (initially []) accumulates assumptions of the form P==>False*)
paulson@15579
   183
fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
paulson@15579
   184
    handle THM _ => tryres(th,rls)
paulson@15579
   185
    handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
paulson@15579
   186
			   [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@15579
   187
    handle THM _ => th;
paulson@9840
   188
paulson@15579
   189
(*Remove duplicate literals, if there are any*)
paulson@15579
   190
fun nodups th =
paulson@15579
   191
    if null(findrep(literals(prop_of th))) then th
paulson@15579
   192
    else nodups_aux [] th;
paulson@9840
   193
paulson@9840
   194
paulson@15579
   195
(**** Generation of contrapositives ****)
paulson@9840
   196
paulson@15579
   197
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
paulson@15579
   198
fun assoc_right th = assoc_right (th RS disj_assoc)
paulson@15579
   199
	handle THM _ => th;
paulson@9840
   200
paulson@15579
   201
(*Must check for negative literal first!*)
paulson@15579
   202
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   203
paulson@15579
   204
(*For ordinary resolution. *)
paulson@15579
   205
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   206
paulson@15579
   207
(*Create a goal or support clause, conclusing False*)
paulson@15579
   208
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   209
    make_goal (tryres(th, clause_rules))
paulson@15579
   210
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   211
paulson@15579
   212
(*Sort clauses by number of literals*)
paulson@15579
   213
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   214
paulson@15579
   215
(*TAUTOLOGY CHECK SHOULD NOT BE NECESSARY!*)
paulson@16012
   216
fun sort_clauses ths =
paulson@16012
   217
    sort (make_ord fewerlits) (List.filter (not o is_taut) ths);
paulson@9840
   218
paulson@15581
   219
(*True if the given type contains bool anywhere*)
paulson@15581
   220
fun has_bool (Type("bool",_)) = true
paulson@15581
   221
  | has_bool (Type(_, Ts)) = exists has_bool Ts
paulson@15581
   222
  | has_bool _ = false;
paulson@15581
   223
  
paulson@15613
   224
(*Is the string the name of a connective? It doesn't matter if this list is
paulson@15613
   225
  incomplete, since when actually called, the only connectives likely to
paulson@15613
   226
  remain are & | Not.*)  
paulson@15613
   227
fun is_conn c = c mem_string
paulson@17404
   228
    ["Trueprop", "HOL.tag", "op &", "op |", "op -->", "op =", "Not", 
paulson@15613
   229
     "All", "Ex", "Ball", "Bex"];
paulson@15613
   230
paulson@15613
   231
(*True if the term contains a function where the type of any argument contains
paulson@15613
   232
  bool.*)
paulson@15613
   233
val has_bool_arg_const = 
paulson@15613
   234
    exists_Const
paulson@15613
   235
      (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
paulson@15908
   236
      
paulson@15908
   237
val has_meta_conn = 
paulson@15908
   238
    exists_Const (fn (c,_) => c mem_string ["==", "==>", "all", "Goal"]);
paulson@15613
   239
  
paulson@16588
   240
(*Raises an exception if any Vars in the theorem mention type bool; they
paulson@16588
   241
  could cause make_horn to loop! Also rejects functions whose arguments are 
paulson@16588
   242
  Booleans or other functions.*)
paulson@16588
   243
fun check_is_fol th = 
paulson@15613
   244
  let val {prop,...} = rep_thm th
paulson@15908
   245
  in if exists (has_bool o fastype_of) (term_vars prop)  orelse
paulson@16588
   246
        not (Term.is_first_order ["all","All","Ex"] prop) orelse
paulson@15908
   247
        has_bool_arg_const prop  orelse  
paulson@15908
   248
        has_meta_conn prop
paulson@16588
   249
  then raise THM ("check_is_fol", 0, [th]) else th
paulson@15613
   250
  end;
paulson@15581
   251
paulson@15579
   252
(*Create a meta-level Horn clause*)
paulson@15579
   253
fun make_horn crules th = make_horn crules (tryres(th,crules))
paulson@15579
   254
			  handle THM _ => th;
paulson@9840
   255
paulson@16563
   256
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   257
  is a HOL disjunction.*)
paulson@15579
   258
fun add_contras crules (th,hcs) =
paulson@15579
   259
  let fun rots (0,th) = hcs
paulson@15579
   260
	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
paulson@15579
   261
			rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   262
  in case nliterals(prop_of th) of
paulson@15579
   263
	1 => th::hcs
paulson@15579
   264
      | n => rots(n, assoc_right th)
paulson@15579
   265
  end;
paulson@9840
   266
paulson@15579
   267
(*Use "theorem naming" to label the clauses*)
paulson@15579
   268
fun name_thms label =
paulson@15579
   269
    let fun name1 (th, (k,ths)) =
paulson@15579
   270
	  (k-1, Thm.name_thm (label ^ string_of_int k, th) :: ths)
paulson@9840
   271
paulson@15579
   272
    in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
paulson@9840
   273
paulson@16563
   274
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   275
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   276
paulson@15579
   277
val neg_clauses = List.filter is_negative;
paulson@9840
   278
paulson@9840
   279
paulson@15579
   280
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   281
paulson@15579
   282
fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
paulson@15579
   283
	   As) = rhyps(phi, A::As)
paulson@15579
   284
  | rhyps (_, As) = As;
paulson@9840
   285
paulson@15579
   286
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   287
paulson@15579
   288
(*The stringtree detects repeated assumptions.*)
wenzelm@16801
   289
fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
paulson@9840
   290
paulson@15579
   291
(*detects repetitions in a list of terms*)
paulson@15579
   292
fun has_reps [] = false
paulson@15579
   293
  | has_reps [_] = false
paulson@15579
   294
  | has_reps [t,u] = (t aconv u)
paulson@15579
   295
  | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
paulson@15579
   296
		  handle INSERT => true;
paulson@9840
   297
paulson@15579
   298
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@15579
   299
fun TRYALL_eq_assume_tac 0 st = Seq.single st
paulson@15579
   300
  | TRYALL_eq_assume_tac i st =
paulson@15579
   301
       TRYALL_eq_assume_tac (i-1) (eq_assumption i st)
paulson@15579
   302
       handle THM _ => TRYALL_eq_assume_tac (i-1) st;
paulson@9840
   303
paulson@15579
   304
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   305
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   306
fun check_tac st =
paulson@15579
   307
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   308
  then  Seq.empty  else  Seq.single st;
paulson@9840
   309
paulson@9840
   310
paulson@15579
   311
(* net_resolve_tac actually made it slower... *)
paulson@15579
   312
fun prolog_step_tac horns i =
paulson@15579
   313
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@15579
   314
    TRYALL eq_assume_tac;
paulson@9840
   315
paulson@9840
   316
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
paulson@15579
   317
fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
paulson@15579
   318
paulson@15579
   319
fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
paulson@15579
   320
paulson@9840
   321
paulson@9840
   322
(*Negation Normal Form*)
paulson@9840
   323
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   324
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   325
paulson@15581
   326
fun make_nnf1 th = make_nnf1 (tryres(th, nnf_rls))
wenzelm@9869
   327
    handle THM _ =>
paulson@15581
   328
        forward_res make_nnf1
wenzelm@9869
   329
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@9840
   330
    handle THM _ => th;
paulson@9840
   331
paulson@17404
   332
(*The simplification removes defined quantifiers and occurrences of True and False, as well as tags applied to True and False.*)
paulson@17404
   333
val tag_True = thm "tag_True";
paulson@17404
   334
val tag_False = thm "tag_False";
paulson@17404
   335
val nnf_simps = [Ex1_def,Ball_def,Bex_def,tag_True,tag_False]
paulson@17404
   336
val nnf_ss = HOL_basic_ss addsimps nnf_simps@simp_thms;
paulson@15872
   337
paulson@15872
   338
fun make_nnf th = th |> simplify nnf_ss
paulson@16588
   339
                     |> check_is_fol |> make_nnf1
paulson@15581
   340
paulson@15965
   341
(*Pull existential quantifiers to front. This accomplishes Skolemization for
paulson@15965
   342
  clauses that arise from a subgoal.*)
wenzelm@9869
   343
fun skolemize th =
paulson@9840
   344
  if not (has_consts ["Ex"] (prop_of th)) then th
quigley@15773
   345
  else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
quigley@15679
   346
                              disj_exD, disj_exD1, disj_exD2])))
wenzelm@9869
   347
    handle THM _ =>
wenzelm@9869
   348
        skolemize (forward_res skolemize
wenzelm@9869
   349
                   (tryres (th, [conj_forward, disj_forward, all_forward])))
paulson@9840
   350
    handle THM _ => forward_res skolemize (th RS ex_forward);
paulson@9840
   351
paulson@9840
   352
paulson@9840
   353
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   354
  The resulting clauses are HOL disjunctions.*)
wenzelm@9869
   355
fun make_clauses ths =
paulson@15998
   356
    (sort_clauses (map (generalize o nodups) (foldr (cnf[]) [] ths)));
quigley@15773
   357
paulson@9840
   358
paulson@16563
   359
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   360
fun make_horns ths =
paulson@9840
   361
    name_thms "Horn#"
skalberg@15574
   362
      (gen_distinct Drule.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
paulson@9840
   363
paulson@9840
   364
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   365
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   366
wenzelm@9869
   367
fun best_prolog_tac sizef horns =
paulson@9840
   368
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   369
wenzelm@9869
   370
fun depth_prolog_tac horns =
paulson@9840
   371
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   372
paulson@9840
   373
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   374
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   375
paulson@15008
   376
fun skolemize_prems_tac prems =
paulson@9840
   377
    cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
paulson@9840
   378
    REPEAT o (etac exE);
paulson@9840
   379
paulson@16588
   380
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions*)
paulson@16588
   381
fun MESON cltac i st = 
paulson@16588
   382
  SELECT_GOAL
paulson@16588
   383
   (EVERY1 [rtac ccontr,
paulson@16588
   384
	    METAHYPS (fn negs =>
paulson@16588
   385
		      EVERY1 [skolemize_prems_tac negs,
paulson@16588
   386
			      METAHYPS (cltac o make_clauses)])]) i st
paulson@16588
   387
  handle THM _ => no_tac st;	(*probably from check_is_fol*)		      
paulson@9840
   388
paulson@9840
   389
(** Best-first search versions **)
paulson@9840
   390
paulson@16563
   391
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   392
fun best_meson_tac sizef =
wenzelm@9869
   393
  MESON (fn cls =>
paulson@9840
   394
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   395
                         (has_fewer_prems 1, sizef)
paulson@9840
   396
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   397
paulson@9840
   398
(*First, breaks the goal into independent units*)
paulson@9840
   399
val safe_best_meson_tac =
wenzelm@9869
   400
     SELECT_GOAL (TRY Safe_tac THEN
paulson@9840
   401
                  TRYALL (best_meson_tac size_of_subgoals));
paulson@9840
   402
paulson@9840
   403
(** Depth-first search version **)
paulson@9840
   404
paulson@9840
   405
val depth_meson_tac =
wenzelm@9869
   406
     MESON (fn cls => EVERY [resolve_tac (gocls cls) 1,
paulson@9840
   407
                             depth_prolog_tac (make_horns cls)]);
paulson@9840
   408
paulson@9840
   409
paulson@9840
   410
(** Iterative deepening version **)
paulson@9840
   411
paulson@9840
   412
(*This version does only one inference per call;
paulson@9840
   413
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   414
fun prolog_step_tac' horns =
paulson@9840
   415
    let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
paulson@9840
   416
            take_prefix Thm.no_prems horns
paulson@9840
   417
        val nrtac = net_resolve_tac horns
paulson@9840
   418
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   419
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   420
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   421
    end;
paulson@9840
   422
wenzelm@9869
   423
fun iter_deepen_prolog_tac horns =
paulson@9840
   424
    ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   425
paulson@16563
   426
fun iter_deepen_meson_tac ths =
wenzelm@9869
   427
  MESON (fn cls =>
paulson@16563
   428
           case (gocls (cls@ths)) of
paulson@16563
   429
           	[] => no_tac  (*no goal clauses*)
paulson@16563
   430
              | goes => 
paulson@16563
   431
		 (THEN_ITER_DEEPEN (resolve_tac goes 1)
paulson@16563
   432
				   (has_fewer_prems 1)
paulson@16563
   433
				   (prolog_step_tac' (make_horns (cls@ths)))));
paulson@9840
   434
paulson@16563
   435
fun meson_claset_tac ths cs =
paulson@16563
   436
  SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
wenzelm@9869
   437
paulson@16563
   438
val meson_tac = CLASET' (meson_claset_tac []);
wenzelm@9869
   439
wenzelm@9869
   440
paulson@14813
   441
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   442
paulson@15008
   443
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
paulson@15008
   444
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   445
paulson@14744
   446
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   447
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   448
  prevents a double negation.*)
paulson@14744
   449
val notEfalse = read_instantiate [("R","False")] notE;
paulson@14744
   450
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   451
paulson@15448
   452
fun negated_asm_of_head th = 
paulson@14744
   453
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   454
paulson@14744
   455
(*Converting one clause*)
paulson@15581
   456
fun make_meta_clause th = 
paulson@16588
   457
    negated_asm_of_head (make_horn resolution_clause_rules (check_is_fol th));
paulson@14744
   458
paulson@14744
   459
fun make_meta_clauses ths =
paulson@14744
   460
    name_thms "MClause#"
paulson@14744
   461
      (gen_distinct Drule.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   462
paulson@14744
   463
(*Permute a rule's premises to move the i-th premise to the last position.*)
paulson@14744
   464
fun make_last i th =
paulson@14744
   465
  let val n = nprems_of th 
paulson@14744
   466
  in  if 1 <= i andalso i <= n 
paulson@14744
   467
      then Thm.permute_prems (i-1) 1 th
paulson@15118
   468
      else raise THM("select_literal", i, [th])
paulson@14744
   469
  end;
paulson@14744
   470
paulson@14744
   471
(*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
paulson@14744
   472
  double-negations.*)
paulson@14744
   473
val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
paulson@14744
   474
paulson@14744
   475
(*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
paulson@14744
   476
fun select_literal i cl = negate_head (make_last i cl);
paulson@14744
   477
paulson@14813
   478
(*Top-level Skolemization. Allows part of the conversion to clauses to be
paulson@14813
   479
  expressed as a tactic (or Isar method).  Each assumption of the selected 
paulson@14813
   480
  goal is converted to NNF and then its existential quantifiers are pulled
paulson@14813
   481
  to the front. Finally, all existential quantifiers are eliminated, 
paulson@14813
   482
  leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
paulson@14813
   483
  might generate many subgoals.*)
paulson@14813
   484
val skolemize_tac = 
paulson@14813
   485
  SUBGOAL
paulson@14813
   486
    (fn (prop,_) =>
paulson@14813
   487
     let val ts = Logic.strip_assums_hyp prop
paulson@14813
   488
     in EVERY1 
paulson@14813
   489
	 [METAHYPS
quigley@15773
   490
	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
paulson@14813
   491
                         THEN REPEAT (etac exE 1))),
paulson@14813
   492
	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
paulson@14813
   493
     end);
paulson@14813
   494
paulson@15118
   495
(*Top-level conversion to meta-level clauses. Each clause has  
paulson@15118
   496
  leading !!-bound universal variables, to express generality. To get 
paulson@15118
   497
  disjunctions instead of meta-clauses, remove "make_meta_clauses" below.*)
paulson@15008
   498
val make_clauses_tac = 
paulson@15008
   499
  SUBGOAL
paulson@15008
   500
    (fn (prop,_) =>
paulson@15008
   501
     let val ts = Logic.strip_assums_hyp prop
paulson@15008
   502
     in EVERY1 
paulson@15008
   503
	 [METAHYPS
paulson@15008
   504
	    (fn hyps => 
paulson@15151
   505
              (Method.insert_tac
paulson@15118
   506
                (map forall_intr_vars 
paulson@15118
   507
                  (make_meta_clauses (make_clauses hyps))) 1)),
paulson@15008
   508
	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
paulson@15008
   509
     end);
paulson@16563
   510
     
paulson@16563
   511
     
paulson@16563
   512
(*** setup the special skoklemization methods ***)
wenzelm@9869
   513
paulson@16563
   514
(*No CHANGED_PROP here, since these always appear in the preamble*)
wenzelm@9869
   515
paulson@16563
   516
val skolemize_meth = Method.SIMPLE_METHOD' HEADGOAL skolemize_tac;
paulson@16563
   517
paulson@16563
   518
val make_clauses_meth = Method.SIMPLE_METHOD' HEADGOAL make_clauses_tac;
paulson@14890
   519
paulson@16563
   520
val skolemize_setup =
wenzelm@9869
   521
 [Method.add_methods
paulson@16563
   522
  [("skolemize", Method.no_args skolemize_meth, 
paulson@15008
   523
    "Skolemization into existential quantifiers"),
paulson@15008
   524
   ("make_clauses", Method.no_args make_clauses_meth, 
paulson@15118
   525
    "Conversion to !!-quantified meta-level clauses")]];
paulson@9840
   526
paulson@9840
   527
end;
wenzelm@9869
   528
paulson@15579
   529
structure BasicMeson: BASIC_MESON = Meson;
paulson@15579
   530
open BasicMeson;