src/HOL/Tools/res_axioms.ML
author paulson
Thu Sep 15 11:15:52 2005 +0200 (2005-09-15)
changeset 17404 d16c3a62c396
parent 17279 7cd0099ae9bc
child 17412 e26cb20ef0cc
permissions -rw-r--r--
the experimental tagging system, and the usual tidying
paulson@15347
     1
(*  Author: Jia Meng, Cambridge University Computer Laboratory
paulson@15347
     2
    ID: $Id$
paulson@15347
     3
    Copyright 2004 University of Cambridge
paulson@15347
     4
paulson@15347
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.    
paulson@15347
     6
*)
paulson@15347
     7
paulson@15997
     8
signature RES_AXIOMS =
paulson@15997
     9
  sig
paulson@15997
    10
  exception ELIMR2FOL of string
paulson@17404
    11
  val tagging_enabled : bool
paulson@15997
    12
  val elimRule_tac : thm -> Tactical.tactic
paulson@16012
    13
  val elimR2Fol : thm -> term
paulson@15997
    14
  val transform_elim : thm -> thm
quigley@16039
    15
  val clausify_axiom_pairs : (string*thm) -> (ResClause.clause*thm) list
paulson@15997
    16
  val cnf_axiom : (string * thm) -> thm list
paulson@15997
    17
  val meta_cnf_axiom : thm -> thm list
paulson@16012
    18
  val rm_Eps : (term * term) list -> thm list -> term list
paulson@15997
    19
  val claset_rules_of_thy : theory -> (string * thm) list
paulson@15997
    20
  val simpset_rules_of_thy : theory -> (string * thm) list
paulson@17404
    21
  val clausify_rules_pairs : (string*thm) list -> thm list -> (ResClause.clause*thm) list list * thm list
paulson@16563
    22
  val clause_setup : (theory -> theory) list
paulson@16563
    23
  val meson_method_setup : (theory -> theory) list
paulson@15997
    24
  end;
paulson@15347
    25
paulson@15997
    26
structure ResAxioms : RES_AXIOMS =
paulson@15997
    27
 
paulson@15997
    28
struct
paulson@15347
    29
paulson@17404
    30
val tagging_enabled = false (*compile_time option*)
paulson@17404
    31
paulson@15997
    32
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    33
paulson@15390
    34
(* a tactic used to prove an elim-rule. *)
paulson@16009
    35
fun elimRule_tac th =
paulson@16009
    36
    ((rtac impI 1) ORELSE (rtac notI 1)) THEN (etac th 1) THEN
paulson@16588
    37
    REPEAT(fast_tac HOL_cs 1);
paulson@15347
    38
paulson@15347
    39
exception ELIMR2FOL of string;
paulson@15347
    40
paulson@15390
    41
(* functions used to construct a formula *)
paulson@15390
    42
paulson@15347
    43
fun make_disjs [x] = x
paulson@15956
    44
  | make_disjs (x :: xs) = HOLogic.mk_disj(x, make_disjs xs)
paulson@15347
    45
paulson@15347
    46
fun make_conjs [x] = x
paulson@15956
    47
  | make_conjs (x :: xs) =  HOLogic.mk_conj(x, make_conjs xs)
paulson@15956
    48
paulson@15956
    49
fun add_EX tm [] = tm
paulson@15956
    50
  | add_EX tm ((x,xtp)::xs) = add_EX (HOLogic.exists_const xtp $ Abs(x,xtp,tm)) xs;
paulson@15347
    51
paulson@15347
    52
paulson@15347
    53
paulson@15956
    54
fun is_neg (Const("Trueprop",_) $ (Const("Not",_) $ Free(p,_))) (Const("Trueprop",_) $ Free(q,_)) = (p = q)
paulson@15371
    55
  | is_neg _ _ = false;
paulson@15371
    56
paulson@15347
    57
paulson@15347
    58
exception STRIP_CONCL;
paulson@15347
    59
paulson@15347
    60
paulson@15371
    61
fun strip_concl' prems bvs (Const ("==>",_) $ P $ Q) =
paulson@15956
    62
      let val P' = HOLogic.dest_Trueprop P
paulson@15956
    63
  	  val prems' = P'::prems
paulson@15956
    64
      in
paulson@15371
    65
	strip_concl' prems' bvs  Q
paulson@15956
    66
      end
paulson@15371
    67
  | strip_concl' prems bvs P = 
paulson@15956
    68
      let val P' = HOLogic.Not $ (HOLogic.dest_Trueprop P)
paulson@15956
    69
      in
paulson@15371
    70
	add_EX (make_conjs (P'::prems)) bvs
paulson@15956
    71
      end;
paulson@15371
    72
paulson@15371
    73
paulson@15371
    74
fun strip_concl prems bvs concl (Const ("all", _) $ Abs (x,xtp,body))  = strip_concl prems ((x,xtp)::bvs) concl body
paulson@15371
    75
  | strip_concl prems bvs concl (Const ("==>",_) $ P $ Q) =
paulson@15371
    76
    if (is_neg P concl) then (strip_concl' prems bvs Q)
paulson@15371
    77
    else
paulson@15956
    78
	(let val P' = HOLogic.dest_Trueprop P
paulson@15371
    79
	     val prems' = P'::prems
paulson@15371
    80
	 in
paulson@15371
    81
	     strip_concl prems' bvs  concl Q
paulson@15371
    82
	 end)
paulson@15371
    83
  | strip_concl prems bvs concl _ = add_EX (make_conjs prems) bvs;
paulson@15347
    84
 
paulson@15347
    85
paulson@15347
    86
paulson@15371
    87
fun trans_elim (main,others,concl) =
paulson@15371
    88
    let val others' = map (strip_concl [] [] concl) others
paulson@15347
    89
	val disjs = make_disjs others'
paulson@15347
    90
    in
paulson@15956
    91
	HOLogic.mk_imp (HOLogic.dest_Trueprop main, disjs)
paulson@15347
    92
    end;
paulson@15347
    93
paulson@15347
    94
paulson@15390
    95
(* aux function of elim2Fol, take away predicate variable. *)
paulson@15371
    96
fun elimR2Fol_aux prems concl = 
paulson@15347
    97
    let val nprems = length prems
paulson@15347
    98
	val main = hd prems
paulson@15347
    99
    in
paulson@15956
   100
	if (nprems = 1) then HOLogic.Not $ (HOLogic.dest_Trueprop main)
paulson@15371
   101
        else trans_elim (main, tl prems, concl)
paulson@15347
   102
    end;
paulson@15347
   103
paulson@15956
   104
    
paulson@16012
   105
(* convert an elim rule into an equivalent formula, of type term. *)
paulson@15347
   106
fun elimR2Fol elimR = 
paulson@15347
   107
    let val elimR' = Drule.freeze_all elimR
paulson@15347
   108
	val (prems,concl) = (prems_of elimR', concl_of elimR')
paulson@15347
   109
    in
paulson@15347
   110
	case concl of Const("Trueprop",_) $ Free(_,Type("bool",[])) 
paulson@15956
   111
		      => HOLogic.mk_Trueprop (elimR2Fol_aux prems concl)
paulson@15956
   112
                    | Free(x,Type("prop",[])) => HOLogic.mk_Trueprop(elimR2Fol_aux prems concl) 
paulson@15347
   113
		    | _ => raise ELIMR2FOL("Not an elimination rule!")
paulson@15347
   114
    end;
paulson@15347
   115
paulson@15347
   116
paulson@15390
   117
(* check if a rule is an elim rule *)
paulson@16009
   118
fun is_elimR th = 
paulson@16009
   119
    case (concl_of th) of (Const ("Trueprop", _) $ Var (idx,_)) => true
paulson@15347
   120
			 | Var(indx,Type("prop",[])) => true
paulson@15347
   121
			 | _ => false;
paulson@15347
   122
paulson@15997
   123
(* convert an elim-rule into an equivalent theorem that does not have the 
paulson@15997
   124
   predicate variable.  Leave other theorems unchanged.*) 
paulson@16009
   125
fun transform_elim th =
paulson@16009
   126
  if is_elimR th then
paulson@16009
   127
    let val tm = elimR2Fol th
paulson@16009
   128
	val ctm = cterm_of (sign_of_thm th) tm	
paulson@15997
   129
    in
paulson@16009
   130
	prove_goalw_cterm [] ctm (fn prems => [elimRule_tac th])
paulson@15997
   131
    end
paulson@16563
   132
 else th;
paulson@15997
   133
paulson@15997
   134
paulson@15997
   135
(**** Transformation of Clasets and Simpsets into First-Order Axioms ****)
paulson@15997
   136
paulson@15390
   137
(* repeated resolution *)
paulson@15347
   138
fun repeat_RS thm1 thm2 =
paulson@15347
   139
    let val thm1' =  thm1 RS thm2 handle THM _ => thm1
paulson@15347
   140
    in
paulson@15347
   141
	if eq_thm(thm1,thm1') then thm1' else (repeat_RS thm1' thm2)
paulson@15347
   142
    end;
paulson@15347
   143
paulson@15347
   144
paulson@16009
   145
(*Convert a theorem into NNF and also skolemize it. Original version, using
paulson@16009
   146
  Hilbert's epsilon in the resulting clauses.*)
paulson@16009
   147
fun skolem_axiom th = 
paulson@16588
   148
  let val th' = (skolemize o make_nnf o ObjectLogic.atomize_thm o Drule.freeze_all) th
paulson@16588
   149
  in  repeat_RS th' someI_ex
paulson@16588
   150
  end;
paulson@15347
   151
paulson@15347
   152
paulson@16009
   153
fun cnf_rule th = make_clauses [skolem_axiom (transform_elim th)];
paulson@15347
   154
paulson@16563
   155
(*Transfer a theorem into theory Reconstruction.thy if it is not already
paulson@15359
   156
  inside that theory -- because it's needed for Skolemization *)
paulson@15359
   157
paulson@16563
   158
(*This will refer to the final version of theory Reconstruction.*)
paulson@16563
   159
val recon_thy_ref = Theory.self_ref (the_context ());  
paulson@15359
   160
paulson@16563
   161
(*If called while Reconstruction is being created, it will transfer to the
paulson@16563
   162
  current version. If called afterward, it will transfer to the final version.*)
paulson@16009
   163
fun transfer_to_Reconstruction th =
paulson@16563
   164
    transfer (Theory.deref recon_thy_ref) th handle THM _ => th;
paulson@15347
   165
paulson@15955
   166
fun is_taut th =
paulson@15955
   167
      case (prop_of th) of
paulson@15955
   168
           (Const ("Trueprop", _) $ Const ("True", _)) => true
paulson@15955
   169
         | _ => false;
paulson@15955
   170
paulson@15955
   171
(* remove tautologous clauses *)
paulson@15955
   172
val rm_redundant_cls = List.filter (not o is_taut);
paulson@15347
   173
paulson@15347
   174
(* transform an Isabelle thm into CNF *)
paulson@16009
   175
fun cnf_axiom_aux th =
paulson@16173
   176
    map zero_var_indexes
paulson@16009
   177
        (rm_redundant_cls (cnf_rule (transfer_to_Reconstruction th)));
paulson@15997
   178
       
paulson@15997
   179
       
paulson@16009
   180
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
   181
paulson@16009
   182
(*Traverse a term, accumulating Skolem function definitions.*)
paulson@16009
   183
fun declare_skofuns s t thy =
paulson@17404
   184
  let fun dec_sko (Const ("Ex",_) $ (xtp as Abs(_,T,p))) (n, (thy, axs)) =
paulson@16009
   185
	    (*Existential: declare a Skolem function, then insert into body and continue*)
paulson@16009
   186
	    let val cname = s ^ "_" ^ Int.toString n
paulson@16012
   187
		val args = term_frees xtp  (*get the formal parameter list*)
paulson@16009
   188
		val Ts = map type_of args
paulson@16009
   189
		val cT = Ts ---> T
wenzelm@16125
   190
		val c = Const (Sign.full_name (Theory.sign_of thy) cname, cT)
paulson@16009
   191
		val rhs = list_abs_free (map dest_Free args, HOLogic.choice_const T $ xtp)
paulson@16012
   192
		        (*Forms a lambda-abstraction over the formal parameters*)
paulson@16009
   193
		val def = equals cT $ c $ rhs
paulson@16009
   194
		val thy' = Theory.add_consts_i [(cname, cT, NoSyn)] thy
paulson@16012
   195
		           (*Theory is augmented with the constant, then its def*)
paulson@17404
   196
		val cdef = cname ^ "_def"
paulson@17404
   197
		val thy'' = Theory.add_defs_i false [(cdef, def)] thy'
paulson@17404
   198
	    in dec_sko (subst_bound (list_comb(c,args), p)) 
paulson@17404
   199
	               (n+1, (thy'', get_axiom thy'' cdef :: axs)) 
paulson@17404
   200
	    end
paulson@17404
   201
	| dec_sko (Const ("All",_) $ (xtp as Abs(a,T,p))) (n, thx) =
paulson@16012
   202
	    (*Universal quant: insert a free variable into body and continue*)
paulson@16009
   203
	    let val fname = variant (add_term_names (p,[])) a
paulson@17404
   204
	    in dec_sko (subst_bound (Free(fname,T), p)) (n, thx) end
paulson@16009
   205
	| dec_sko (Const ("op &", _) $ p $ q) nthy = 
paulson@16009
   206
	    dec_sko q (dec_sko p nthy)
paulson@16009
   207
	| dec_sko (Const ("op |", _) $ p $ q) nthy = 
paulson@16009
   208
	    dec_sko q (dec_sko p nthy)
paulson@17404
   209
	| dec_sko (Const ("HOL.tag", _) $ p) nthy = 
paulson@17404
   210
	    dec_sko p nthy
paulson@16009
   211
	| dec_sko (Const ("Trueprop", _) $ p) nthy = 
paulson@16009
   212
	    dec_sko p nthy
paulson@17404
   213
	| dec_sko t nthx = nthx (*Do nothing otherwise*)
paulson@17404
   214
  in  #2 (dec_sko t (1, (thy,[])))  end;
paulson@16009
   215
paulson@16009
   216
(*cterms are used throughout for efficiency*)
paulson@16009
   217
val cTrueprop = Thm.cterm_of (Theory.sign_of HOL.thy) HOLogic.Trueprop;
paulson@16009
   218
paulson@16009
   219
(*cterm version of mk_cTrueprop*)
paulson@16009
   220
fun c_mkTrueprop A = Thm.capply cTrueprop A;
paulson@16009
   221
paulson@16009
   222
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   223
  ones. Return the body, along with the list of free variables.*)
paulson@16009
   224
fun c_variant_abs_multi (ct0, vars) = 
paulson@16009
   225
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   226
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   227
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   228
paulson@16009
   229
(*Given the definition of a Skolem function, return a theorem to replace 
paulson@16009
   230
  an existential formula by a use of that function.*)
paulson@16588
   231
fun skolem_of_def def =  
paulson@16009
   232
  let val (c,rhs) = Drule.dest_equals (cprop_of (Drule.freeze_all def))
paulson@16009
   233
      val (ch, frees) = c_variant_abs_multi (rhs, [])
paulson@16009
   234
      val (chil,cabs) = Thm.dest_comb ch
paulson@16588
   235
      val {sign,t, ...} = rep_cterm chil
paulson@16009
   236
      val (Const ("Hilbert_Choice.Eps", Type("fun",[_,T]))) = t
paulson@16009
   237
      val cex = Thm.cterm_of sign (HOLogic.exists_const T)
paulson@16009
   238
      val ex_tm = c_mkTrueprop (Thm.capply cex cabs)
paulson@16009
   239
      and conc =  c_mkTrueprop (Drule.beta_conv cabs (Drule.list_comb(c,frees)));
paulson@16009
   240
  in  prove_goalw_cterm [def] (Drule.mk_implies (ex_tm, conc))
paulson@16009
   241
	    (fn [prem] => [ rtac (prem RS someI_ex) 1 ])
paulson@16009
   242
  end;	 
paulson@16009
   243
paulson@16009
   244
paulson@16009
   245
(*Converts an Isabelle theorem (intro, elim or simp format) into nnf.*)
paulson@16009
   246
fun to_nnf thy th = 
paulson@16588
   247
    th |> Thm.transfer thy
paulson@16588
   248
       |> transform_elim |> Drule.freeze_all
paulson@16588
   249
       |> ObjectLogic.atomize_thm |> make_nnf;
paulson@16009
   250
paulson@16009
   251
(*The cache prevents repeated clausification of a theorem, 
wenzelm@16800
   252
  and also repeated declaration of Skolem functions*)  (* FIXME better use Termtab!? *)
paulson@15955
   253
val clause_cache = ref (Symtab.empty : (thm * thm list) Symtab.table)
paulson@15955
   254
paulson@16009
   255
(*Declare Skolem functions for a theorem, supplied in nnf and with its name*)
paulson@16009
   256
fun skolem thy (name,th) =
paulson@16588
   257
  let val cname = (case name of "" => gensym "sko" | s => Sign.base_name s)
paulson@17404
   258
      val (thy',axs) = declare_skofuns cname (#prop (rep_thm th)) thy
paulson@17404
   259
  in (map skolem_of_def axs, thy') end;
paulson@16009
   260
paulson@16009
   261
(*Populate the clause cache using the supplied theorems*)
paulson@16009
   262
fun skolemlist [] thy = thy
paulson@16009
   263
  | skolemlist ((name,th)::nths) thy = 
wenzelm@17261
   264
      (case Symtab.curried_lookup (!clause_cache) name of
paulson@16009
   265
	  NONE => 
paulson@16588
   266
	    let val (nnfth,ok) = (to_nnf thy th, true)  
paulson@16588
   267
	                 handle THM _ => (asm_rl, false)
paulson@16588
   268
            in
paulson@16588
   269
                if ok then
paulson@16588
   270
                    let val (skoths,thy') = skolem thy (name, nnfth)
paulson@16588
   271
			val cls = Meson.make_cnf skoths nnfth
wenzelm@17261
   272
		    in change clause_cache (Symtab.curried_update (name, (th, cls)));
paulson@16588
   273
			skolemlist nths thy'
paulson@16588
   274
		    end
paulson@16588
   275
		else skolemlist nths thy
paulson@16588
   276
            end
paulson@16009
   277
	| SOME _ => skolemlist nths thy) (*FIXME: check for duplicate names?*)
paulson@16009
   278
paulson@16009
   279
(*Exported function to convert Isabelle theorems into axiom clauses*) 
paulson@15956
   280
fun cnf_axiom (name,th) =
paulson@15956
   281
    case name of
paulson@15955
   282
	  "" => cnf_axiom_aux th (*no name, so can't cache*)
wenzelm@17261
   283
	| s  => case Symtab.curried_lookup (!clause_cache) s of
paulson@15955
   284
	  	  NONE => 
paulson@15955
   285
		    let val cls = cnf_axiom_aux th
wenzelm@17261
   286
		    in change clause_cache (Symtab.curried_update (s, (th, cls))); cls end
paulson@15955
   287
	        | SOME(th',cls) =>
paulson@15955
   288
		    if eq_thm(th,th') then cls
paulson@15955
   289
		    else (*New theorem stored under the same name? Possible??*)
paulson@15955
   290
		      let val cls = cnf_axiom_aux th
wenzelm@17261
   291
		      in change clause_cache (Symtab.curried_update (s, (th, cls))); cls end;
paulson@15347
   292
paulson@15956
   293
fun pairname th = (Thm.name_of_thm th, th);
paulson@15956
   294
paulson@15956
   295
fun meta_cnf_axiom th = 
paulson@15956
   296
    map Meson.make_meta_clause (cnf_axiom (pairname th));
paulson@15499
   297
paulson@15347
   298
paulson@15347
   299
(* changed: with one extra case added *)
paulson@15956
   300
fun univ_vars_of_aux (Const ("Hilbert_Choice.Eps",_) $ Abs(_,_,body)) vars =    
paulson@15956
   301
      univ_vars_of_aux body vars
paulson@15956
   302
  | univ_vars_of_aux (Const ("Ex",_) $ Abs(_,_,body)) vars = 
paulson@15956
   303
      univ_vars_of_aux body vars (* EX x. body *)
paulson@15347
   304
  | univ_vars_of_aux (P $ Q) vars =
paulson@15956
   305
      univ_vars_of_aux Q (univ_vars_of_aux P vars)
paulson@15347
   306
  | univ_vars_of_aux (t as Var(_,_)) vars = 
paulson@15956
   307
      if (t mem vars) then vars else (t::vars)
paulson@15347
   308
  | univ_vars_of_aux _ vars = vars;
paulson@15347
   309
  
paulson@15347
   310
fun univ_vars_of t = univ_vars_of_aux t [];
paulson@15347
   311
paulson@15347
   312
paulson@15347
   313
fun get_new_skolem epss (t as (Const ("Hilbert_Choice.Eps",_) $ Abs(_,tp,_)))  = 
paulson@15347
   314
    let val all_vars = univ_vars_of t
paulson@15347
   315
	val sk_term = ResSkolemFunction.gen_skolem all_vars tp
paulson@15347
   316
    in
paulson@15347
   317
	(sk_term,(t,sk_term)::epss)
paulson@15347
   318
    end;
paulson@15347
   319
paulson@17404
   320
(*FIXME: use a-list lookup!!*)
skalberg@15531
   321
fun sk_lookup [] t = NONE
skalberg@15531
   322
  | sk_lookup ((tm,sk_tm)::tms) t = if (t = tm) then SOME (sk_tm) else (sk_lookup tms t);
paulson@15347
   323
paulson@15390
   324
(* get the proper skolem term to replace epsilon term *)
paulson@15347
   325
fun get_skolem epss t = 
paulson@15956
   326
    case (sk_lookup epss t) of NONE => get_new_skolem epss t
paulson@15956
   327
		             | SOME sk => (sk,epss);
paulson@15347
   328
paulson@16009
   329
fun rm_Eps_cls_aux epss (t as (Const ("Hilbert_Choice.Eps",_) $ Abs(_,_,_))) = 
paulson@16009
   330
       get_skolem epss t
paulson@15347
   331
  | rm_Eps_cls_aux epss (P $ Q) =
paulson@16009
   332
       let val (P',epss') = rm_Eps_cls_aux epss P
paulson@16009
   333
	   val (Q',epss'') = rm_Eps_cls_aux epss' Q
paulson@16009
   334
       in (P' $ Q',epss'') end
paulson@15347
   335
  | rm_Eps_cls_aux epss t = (t,epss);
paulson@15347
   336
paulson@16009
   337
fun rm_Eps_cls epss th = rm_Eps_cls_aux epss (prop_of th);
paulson@15347
   338
paulson@17404
   339
(* replace the epsilon terms in a formula by skolem terms. *)
paulson@15347
   340
fun rm_Eps _ [] = []
paulson@16009
   341
  | rm_Eps epss (th::thms) = 
paulson@16009
   342
      let val (th',epss') = rm_Eps_cls epss th
paulson@16009
   343
      in th' :: (rm_Eps epss' thms) end;
paulson@15347
   344
paulson@15347
   345
paulson@15347
   346
paulson@15872
   347
(**** Extract and Clausify theorems from a theory's claset and simpset ****)
paulson@15347
   348
paulson@17404
   349
(*Preserve the name of "th" after the transformation "f"*)
paulson@17404
   350
fun preserve_name f th = Thm.name_thm (Thm.name_of_thm th, f th);
paulson@17404
   351
paulson@17404
   352
(*Tags identify the major premise or conclusion, as hints to resolution provers.
paulson@17404
   353
  However, they don't appear to help in recent tests, and they complicate the code.*)
paulson@17404
   354
val tagI = thm "tagI";
paulson@17404
   355
val tagD = thm "tagD";
paulson@17404
   356
paulson@17404
   357
val tag_intro = preserve_name (fn th => th RS tagI);
paulson@17404
   358
val tag_elim  = preserve_name (fn th => tagD RS th);
paulson@17404
   359
paulson@15347
   360
fun claset_rules_of_thy thy =
paulson@17404
   361
  let val cs = rep_cs (claset_of thy)
paulson@17404
   362
      val intros = (#safeIs cs) @ (#hazIs cs)
paulson@17404
   363
      val elims  = (#safeEs cs) @ (#hazEs cs)
paulson@17404
   364
  in
paulson@17404
   365
     if tagging_enabled 
paulson@17404
   366
     then map pairname (map tag_intro intros @ map tag_elim elims)
paulson@17404
   367
     else map pairname (intros @  elims)
paulson@17404
   368
  end;
paulson@15347
   369
paulson@15347
   370
fun simpset_rules_of_thy thy =
wenzelm@16800
   371
    let val rules = #rules (fst (rep_ss (simpset_of thy)))
wenzelm@16800
   372
    in map (fn r => (#name r, #thm r)) (Net.entries rules) end;
paulson@15347
   373
paulson@15347
   374
paulson@15872
   375
(**** Translate a set of classical/simplifier rules into CNF (still as type "thm")  ****)
paulson@15347
   376
paulson@15347
   377
(* classical rules *)
paulson@15872
   378
fun cnf_rules [] err_list = ([],err_list)
paulson@16009
   379
  | cnf_rules ((name,th) :: thms) err_list = 
paulson@15872
   380
      let val (ts,es) = cnf_rules thms err_list
paulson@17404
   381
      in  (cnf_axiom (name,th) :: ts,es) handle  _ => (ts, (th::es))  end;  
paulson@15347
   382
paulson@15347
   383
paulson@15872
   384
(**** Convert all theorems of a claset/simpset into clauses (ResClause.clause) ****)
paulson@15347
   385
paulson@17404
   386
fun addclause (c,th) l =
paulson@17404
   387
  if ResClause.isTaut c then l else (c,th) :: l;
paulson@17404
   388
quigley@16156
   389
(* outputs a list of (clause,thm) pairs *)
quigley@16039
   390
fun clausify_axiom_pairs (thm_name,thm) =
paulson@17404
   391
    let val isa_clauses = cnf_axiom (thm_name,thm) 
quigley@16039
   392
        val isa_clauses' = rm_Eps [] isa_clauses
quigley@16039
   393
        val clauses_n = length isa_clauses
quigley@16039
   394
	fun make_axiom_clauses _ [] []= []
paulson@16897
   395
	  | make_axiom_clauses i (cls::clss) (cls'::clss') =
paulson@17404
   396
	      addclause (ResClause.make_axiom_clause cls (thm_name,i), cls') 
paulson@17404
   397
	                (make_axiom_clauses (i+1) clss clss')
paulson@15347
   398
    in
quigley@16039
   399
	make_axiom_clauses 0 isa_clauses' isa_clauses		
paulson@17404
   400
    end
paulson@15347
   401
quigley@16039
   402
fun clausify_rules_pairs [] err_list = ([],err_list)
quigley@16039
   403
  | clausify_rules_pairs ((name,thm)::thms) err_list =
paulson@16897
   404
      let val (ts,es) = clausify_rules_pairs thms err_list
paulson@16897
   405
      in
paulson@16897
   406
	  ((clausify_axiom_pairs (name,thm))::ts, es) 
paulson@17404
   407
	  handle THM (msg,_,_) =>  
paulson@17404
   408
		  (debug ("Cannot clausify " ^ name ^ ": " ^ msg); 
paulson@17404
   409
		   (ts, (thm::es)))
paulson@17404
   410
             |  ResClause.CLAUSE (msg,t) => 
paulson@17404
   411
                  (debug ("Cannot clausify " ^ name ^ ": " ^ msg ^
paulson@17404
   412
                          ": " ^ TermLib.string_of_term t); 
paulson@17404
   413
		   (ts, (thm::es)))
paulson@17404
   414
paulson@16897
   415
      end;
quigley@16039
   416
paulson@15347
   417
paulson@16009
   418
(*Setup function: takes a theory and installs ALL simprules and claset rules 
paulson@16009
   419
  into the clause cache*)
paulson@16009
   420
fun clause_cache_setup thy =
paulson@16009
   421
  let val simps = simpset_rules_of_thy thy
paulson@16009
   422
      and clas  = claset_rules_of_thy thy
paulson@16009
   423
  in skolemlist clas (skolemlist simps thy) end;
paulson@16009
   424
  
paulson@16563
   425
val clause_setup = [clause_cache_setup];  
paulson@16563
   426
paulson@16563
   427
paulson@16563
   428
(*** meson proof methods ***)
paulson@16563
   429
paulson@16563
   430
fun cnf_rules_of_ths ths = List.concat (#1 (cnf_rules (map pairname ths) []));
paulson@16563
   431
paulson@16563
   432
fun meson_meth ths ctxt =
paulson@16563
   433
  Method.SIMPLE_METHOD' HEADGOAL
paulson@16563
   434
    (CHANGED_PROP o Meson.meson_claset_tac (cnf_rules_of_ths ths) (local_claset_of ctxt));
paulson@16563
   435
paulson@16563
   436
val meson_method_setup =
paulson@16563
   437
 [Method.add_methods
paulson@16563
   438
  [("meson", Method.thms_ctxt_args meson_meth, 
paulson@16563
   439
    "The MESON resolution proof procedure")]];
paulson@15347
   440
paulson@15347
   441
end;