src/HOL/Nat_Transfer.thy
author haftmann
Mon Mar 08 09:38:58 2010 +0100 (2010-03-08)
changeset 35644 d20cf282342e
parent 35551 85aada96578b
child 35683 70ace653fe77
permissions -rw-r--r--
transfer: avoid camel case
huffman@31708
     1
haftmann@32554
     2
(* Authors: Jeremy Avigad and Amine Chaieb *)
huffman@31708
     3
haftmann@33318
     4
header {* Generic transfer machinery;  specific transfer from nats to ints and back. *}
huffman@31708
     5
haftmann@32558
     6
theory Nat_Transfer
haftmann@33318
     7
imports Nat_Numeral
haftmann@33318
     8
uses ("Tools/transfer.ML")
huffman@31708
     9
begin
huffman@31708
    10
haftmann@33318
    11
subsection {* Generic transfer machinery *}
haftmann@33318
    12
haftmann@35644
    13
definition transfer_morphism:: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> bool"
haftmann@35644
    14
  where "transfer_morphism f A \<longleftrightarrow> True"
haftmann@35644
    15
haftmann@35644
    16
lemma transfer_morphismI:
haftmann@35644
    17
  "transfer_morphism f A"
haftmann@35644
    18
  by (simp add: transfer_morphism_def)
haftmann@33318
    19
haftmann@33318
    20
use "Tools/transfer.ML"
haftmann@33318
    21
haftmann@33318
    22
setup Transfer.setup
haftmann@33318
    23
haftmann@33318
    24
huffman@31708
    25
subsection {* Set up transfer from nat to int *}
huffman@31708
    26
haftmann@33318
    27
text {* set up transfer direction *}
huffman@31708
    28
haftmann@35644
    29
lemma transfer_morphism_nat_int: "transfer_morphism nat (op <= (0::int))"
haftmann@35644
    30
  by (simp add: transfer_morphism_def)
huffman@31708
    31
haftmann@35644
    32
declare transfer_morphism_nat_int [transfer
huffman@31708
    33
  add mode: manual
huffman@31708
    34
  return: nat_0_le
huffman@31708
    35
  labels: natint
huffman@31708
    36
]
huffman@31708
    37
haftmann@33318
    38
text {* basic functions and relations *}
huffman@31708
    39
huffman@31708
    40
lemma transfer_nat_int_numerals:
huffman@31708
    41
    "(0::nat) = nat 0"
huffman@31708
    42
    "(1::nat) = nat 1"
huffman@31708
    43
    "(2::nat) = nat 2"
huffman@31708
    44
    "(3::nat) = nat 3"
huffman@31708
    45
  by auto
huffman@31708
    46
huffman@31708
    47
definition
huffman@31708
    48
  tsub :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31708
    49
where
huffman@31708
    50
  "tsub x y = (if x >= y then x - y else 0)"
huffman@31708
    51
huffman@31708
    52
lemma tsub_eq: "x >= y \<Longrightarrow> tsub x y = x - y"
huffman@31708
    53
  by (simp add: tsub_def)
huffman@31708
    54
huffman@31708
    55
huffman@31708
    56
lemma transfer_nat_int_functions:
huffman@31708
    57
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) + (nat y) = nat (x + y)"
huffman@31708
    58
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)"
huffman@31708
    59
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)"
huffman@31708
    60
    "(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)"
huffman@31708
    61
  by (auto simp add: eq_nat_nat_iff nat_mult_distrib
haftmann@33318
    62
      nat_power_eq tsub_def)
huffman@31708
    63
huffman@31708
    64
lemma transfer_nat_int_function_closures:
huffman@31708
    65
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0"
huffman@31708
    66
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0"
huffman@31708
    67
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0"
huffman@31708
    68
    "(x::int) >= 0 \<Longrightarrow> x^n >= 0"
huffman@31708
    69
    "(0::int) >= 0"
huffman@31708
    70
    "(1::int) >= 0"
huffman@31708
    71
    "(2::int) >= 0"
huffman@31708
    72
    "(3::int) >= 0"
huffman@31708
    73
    "int z >= 0"
haftmann@33340
    74
  by (auto simp add: zero_le_mult_iff tsub_def)
huffman@31708
    75
huffman@31708
    76
lemma transfer_nat_int_relations:
huffman@31708
    77
    "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
huffman@31708
    78
      (nat (x::int) = nat y) = (x = y)"
huffman@31708
    79
    "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
huffman@31708
    80
      (nat (x::int) < nat y) = (x < y)"
huffman@31708
    81
    "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
huffman@31708
    82
      (nat (x::int) <= nat y) = (x <= y)"
huffman@31708
    83
    "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
huffman@31708
    84
      (nat (x::int) dvd nat y) = (x dvd y)"
haftmann@32558
    85
  by (auto simp add: zdvd_int)
huffman@31708
    86
haftmann@35644
    87
declare transfer_morphism_nat_int [transfer add return:
huffman@31708
    88
  transfer_nat_int_numerals
huffman@31708
    89
  transfer_nat_int_functions
huffman@31708
    90
  transfer_nat_int_function_closures
huffman@31708
    91
  transfer_nat_int_relations
huffman@31708
    92
]
huffman@31708
    93
huffman@31708
    94
haftmann@33318
    95
text {* first-order quantifiers *}
haftmann@33318
    96
haftmann@33318
    97
lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))"
haftmann@33318
    98
  by (simp split add: split_nat)
haftmann@33318
    99
haftmann@33318
   100
lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))"
haftmann@33318
   101
proof
haftmann@33318
   102
  assume "\<exists>x. P x"
haftmann@33318
   103
  then obtain x where "P x" ..
haftmann@33318
   104
  then have "int x \<ge> 0 \<and> P (nat (int x))" by simp
haftmann@33318
   105
  then show "\<exists>x\<ge>0. P (nat x)" ..
haftmann@33318
   106
next
haftmann@33318
   107
  assume "\<exists>x\<ge>0. P (nat x)"
haftmann@33318
   108
  then show "\<exists>x. P x" by auto
haftmann@33318
   109
qed
huffman@31708
   110
huffman@31708
   111
lemma transfer_nat_int_quantifiers:
huffman@31708
   112
    "(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))"
huffman@31708
   113
    "(EX (x::nat). P x) = (EX (x::int). x >= 0 & P (nat x))"
huffman@31708
   114
  by (rule all_nat, rule ex_nat)
huffman@31708
   115
huffman@31708
   116
(* should we restrict these? *)
huffman@31708
   117
lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow>
huffman@31708
   118
    (ALL x. Q x \<longrightarrow> P x) = (ALL x. Q x \<longrightarrow> P' x)"
huffman@31708
   119
  by auto
huffman@31708
   120
huffman@31708
   121
lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow>
huffman@31708
   122
    (EX x. Q x \<and> P x) = (EX x. Q x \<and> P' x)"
huffman@31708
   123
  by auto
huffman@31708
   124
haftmann@35644
   125
declare transfer_morphism_nat_int [transfer add
huffman@31708
   126
  return: transfer_nat_int_quantifiers
huffman@31708
   127
  cong: all_cong ex_cong]
huffman@31708
   128
huffman@31708
   129
haftmann@33318
   130
text {* if *}
huffman@31708
   131
huffman@31708
   132
lemma nat_if_cong: "(if P then (nat x) else (nat y)) =
huffman@31708
   133
    nat (if P then x else y)"
huffman@31708
   134
  by auto
huffman@31708
   135
haftmann@35644
   136
declare transfer_morphism_nat_int [transfer add return: nat_if_cong]
huffman@31708
   137
huffman@31708
   138
haftmann@33318
   139
text {* operations with sets *}
huffman@31708
   140
huffman@31708
   141
definition
huffman@31708
   142
  nat_set :: "int set \<Rightarrow> bool"
huffman@31708
   143
where
huffman@31708
   144
  "nat_set S = (ALL x:S. x >= 0)"
huffman@31708
   145
huffman@31708
   146
lemma transfer_nat_int_set_functions:
huffman@31708
   147
    "card A = card (int ` A)"
huffman@31708
   148
    "{} = nat ` ({}::int set)"
huffman@31708
   149
    "A Un B = nat ` (int ` A Un int ` B)"
huffman@31708
   150
    "A Int B = nat ` (int ` A Int int ` B)"
huffman@31708
   151
    "{x. P x} = nat ` {x. x >= 0 & P(nat x)}"
huffman@31708
   152
  apply (rule card_image [symmetric])
huffman@31708
   153
  apply (auto simp add: inj_on_def image_def)
huffman@31708
   154
  apply (rule_tac x = "int x" in bexI)
huffman@31708
   155
  apply auto
huffman@31708
   156
  apply (rule_tac x = "int x" in bexI)
huffman@31708
   157
  apply auto
huffman@31708
   158
  apply (rule_tac x = "int x" in bexI)
huffman@31708
   159
  apply auto
huffman@31708
   160
  apply (rule_tac x = "int x" in exI)
huffman@31708
   161
  apply auto
huffman@31708
   162
done
huffman@31708
   163
huffman@31708
   164
lemma transfer_nat_int_set_function_closures:
huffman@31708
   165
    "nat_set {}"
huffman@31708
   166
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"
huffman@31708
   167
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"
huffman@31708
   168
    "nat_set {x. x >= 0 & P x}"
huffman@31708
   169
    "nat_set (int ` C)"
huffman@31708
   170
    "nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *)
huffman@31708
   171
  unfolding nat_set_def apply auto
huffman@31708
   172
done
huffman@31708
   173
huffman@31708
   174
lemma transfer_nat_int_set_relations:
huffman@31708
   175
    "(finite A) = (finite (int ` A))"
huffman@31708
   176
    "(x : A) = (int x : int ` A)"
huffman@31708
   177
    "(A = B) = (int ` A = int ` B)"
huffman@31708
   178
    "(A < B) = (int ` A < int ` B)"
huffman@31708
   179
    "(A <= B) = (int ` A <= int ` B)"
huffman@31708
   180
  apply (rule iffI)
huffman@31708
   181
  apply (erule finite_imageI)
huffman@31708
   182
  apply (erule finite_imageD)
huffman@31708
   183
  apply (auto simp add: image_def expand_set_eq inj_on_def)
huffman@31708
   184
  apply (drule_tac x = "int x" in spec, auto)
huffman@31708
   185
  apply (drule_tac x = "int x" in spec, auto)
huffman@31708
   186
  apply (drule_tac x = "int x" in spec, auto)
huffman@31708
   187
done
huffman@31708
   188
huffman@31708
   189
lemma transfer_nat_int_set_return_embed: "nat_set A \<Longrightarrow>
huffman@31708
   190
    (int ` nat ` A = A)"
huffman@31708
   191
  by (auto simp add: nat_set_def image_def)
huffman@31708
   192
huffman@31708
   193
lemma transfer_nat_int_set_cong: "(!!x. x >= 0 \<Longrightarrow> P x = P' x) \<Longrightarrow>
huffman@31708
   194
    {(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}"
huffman@31708
   195
  by auto
huffman@31708
   196
haftmann@35644
   197
declare transfer_morphism_nat_int [transfer add
huffman@31708
   198
  return: transfer_nat_int_set_functions
huffman@31708
   199
    transfer_nat_int_set_function_closures
huffman@31708
   200
    transfer_nat_int_set_relations
huffman@31708
   201
    transfer_nat_int_set_return_embed
huffman@31708
   202
  cong: transfer_nat_int_set_cong
huffman@31708
   203
]
huffman@31708
   204
huffman@31708
   205
haftmann@33318
   206
text {* setsum and setprod *}
huffman@31708
   207
huffman@31708
   208
(* this handles the case where the *domain* of f is nat *)
huffman@31708
   209
lemma transfer_nat_int_sum_prod:
huffman@31708
   210
    "setsum f A = setsum (%x. f (nat x)) (int ` A)"
huffman@31708
   211
    "setprod f A = setprod (%x. f (nat x)) (int ` A)"
huffman@31708
   212
  apply (subst setsum_reindex)
huffman@31708
   213
  apply (unfold inj_on_def, auto)
huffman@31708
   214
  apply (subst setprod_reindex)
huffman@31708
   215
  apply (unfold inj_on_def o_def, auto)
huffman@31708
   216
done
huffman@31708
   217
huffman@31708
   218
(* this handles the case where the *range* of f is nat *)
huffman@31708
   219
lemma transfer_nat_int_sum_prod2:
huffman@31708
   220
    "setsum f A = nat(setsum (%x. int (f x)) A)"
huffman@31708
   221
    "setprod f A = nat(setprod (%x. int (f x)) A)"
huffman@31708
   222
  apply (subst int_setsum [symmetric])
huffman@31708
   223
  apply auto
huffman@31708
   224
  apply (subst int_setprod [symmetric])
huffman@31708
   225
  apply auto
huffman@31708
   226
done
huffman@31708
   227
huffman@31708
   228
lemma transfer_nat_int_sum_prod_closure:
huffman@31708
   229
    "nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0"
huffman@31708
   230
    "nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0"
huffman@31708
   231
  unfolding nat_set_def
huffman@31708
   232
  apply (rule setsum_nonneg)
huffman@31708
   233
  apply auto
huffman@31708
   234
  apply (rule setprod_nonneg)
huffman@31708
   235
  apply auto
huffman@31708
   236
done
huffman@31708
   237
huffman@31708
   238
(* this version doesn't work, even with nat_set A \<Longrightarrow>
huffman@31708
   239
      x : A \<Longrightarrow> x >= 0 turned on. Why not?
huffman@31708
   240
huffman@31708
   241
  also: what does =simp=> do?
huffman@31708
   242
huffman@31708
   243
lemma transfer_nat_int_sum_prod_closure:
huffman@31708
   244
    "(!!x. x : A  ==> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0"
huffman@31708
   245
    "(!!x. x : A  ==> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0"
huffman@31708
   246
  unfolding nat_set_def simp_implies_def
huffman@31708
   247
  apply (rule setsum_nonneg)
huffman@31708
   248
  apply auto
huffman@31708
   249
  apply (rule setprod_nonneg)
huffman@31708
   250
  apply auto
huffman@31708
   251
done
huffman@31708
   252
*)
huffman@31708
   253
huffman@31708
   254
(* Making A = B in this lemma doesn't work. Why not?
huffman@31708
   255
   Also, why aren't setsum_cong and setprod_cong enough,
huffman@31708
   256
   with the previously mentioned rule turned on? *)
huffman@31708
   257
huffman@31708
   258
lemma transfer_nat_int_sum_prod_cong:
huffman@31708
   259
    "A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow>
huffman@31708
   260
      setsum f A = setsum g B"
huffman@31708
   261
    "A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow>
huffman@31708
   262
      setprod f A = setprod g B"
huffman@31708
   263
  unfolding nat_set_def
huffman@31708
   264
  apply (subst setsum_cong, assumption)
huffman@31708
   265
  apply auto [2]
huffman@31708
   266
  apply (subst setprod_cong, assumption, auto)
huffman@31708
   267
done
huffman@31708
   268
haftmann@35644
   269
declare transfer_morphism_nat_int [transfer add
huffman@31708
   270
  return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2
huffman@31708
   271
    transfer_nat_int_sum_prod_closure
huffman@31708
   272
  cong: transfer_nat_int_sum_prod_cong]
huffman@31708
   273
huffman@31708
   274
huffman@31708
   275
subsection {* Set up transfer from int to nat *}
huffman@31708
   276
haftmann@33318
   277
text {* set up transfer direction *}
huffman@31708
   278
haftmann@35644
   279
lemma transfer_morphism_int_nat: "transfer_morphism int (UNIV :: nat set)"
haftmann@35644
   280
  by (simp add: transfer_morphism_def)
huffman@31708
   281
haftmann@35644
   282
declare transfer_morphism_int_nat [transfer add
huffman@31708
   283
  mode: manual
huffman@31708
   284
(*  labels: int-nat *)
huffman@31708
   285
  return: nat_int
huffman@31708
   286
]
huffman@31708
   287
huffman@31708
   288
haftmann@33318
   289
text {* basic functions and relations *}
haftmann@33318
   290
haftmann@33318
   291
lemma UNIV_apply:
haftmann@33318
   292
  "UNIV x = True"
haftmann@33318
   293
  by (simp add: top_fun_eq top_bool_eq)
huffman@31708
   294
huffman@31708
   295
definition
huffman@31708
   296
  is_nat :: "int \<Rightarrow> bool"
huffman@31708
   297
where
huffman@31708
   298
  "is_nat x = (x >= 0)"
huffman@31708
   299
huffman@31708
   300
lemma transfer_int_nat_numerals:
huffman@31708
   301
    "0 = int 0"
huffman@31708
   302
    "1 = int 1"
huffman@31708
   303
    "2 = int 2"
huffman@31708
   304
    "3 = int 3"
huffman@31708
   305
  by auto
huffman@31708
   306
huffman@31708
   307
lemma transfer_int_nat_functions:
huffman@31708
   308
    "(int x) + (int y) = int (x + y)"
huffman@31708
   309
    "(int x) * (int y) = int (x * y)"
huffman@31708
   310
    "tsub (int x) (int y) = int (x - y)"
huffman@31708
   311
    "(int x)^n = int (x^n)"
haftmann@33318
   312
  by (auto simp add: int_mult tsub_def int_power)
huffman@31708
   313
huffman@31708
   314
lemma transfer_int_nat_function_closures:
huffman@31708
   315
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)"
huffman@31708
   316
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)"
huffman@31708
   317
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)"
huffman@31708
   318
    "is_nat x \<Longrightarrow> is_nat (x^n)"
huffman@31708
   319
    "is_nat 0"
huffman@31708
   320
    "is_nat 1"
huffman@31708
   321
    "is_nat 2"
huffman@31708
   322
    "is_nat 3"
huffman@31708
   323
    "is_nat (int z)"
huffman@31708
   324
  by (simp_all only: is_nat_def transfer_nat_int_function_closures)
huffman@31708
   325
huffman@31708
   326
lemma transfer_int_nat_relations:
huffman@31708
   327
    "(int x = int y) = (x = y)"
huffman@31708
   328
    "(int x < int y) = (x < y)"
huffman@31708
   329
    "(int x <= int y) = (x <= y)"
huffman@31708
   330
    "(int x dvd int y) = (x dvd y)"
haftmann@33318
   331
  by (auto simp add: zdvd_int)
haftmann@32121
   332
haftmann@35644
   333
declare transfer_morphism_int_nat [transfer add return:
huffman@31708
   334
  transfer_int_nat_numerals
huffman@31708
   335
  transfer_int_nat_functions
huffman@31708
   336
  transfer_int_nat_function_closures
huffman@31708
   337
  transfer_int_nat_relations
haftmann@32121
   338
  UNIV_apply
huffman@31708
   339
]
huffman@31708
   340
huffman@31708
   341
haftmann@33318
   342
text {* first-order quantifiers *}
huffman@31708
   343
huffman@31708
   344
lemma transfer_int_nat_quantifiers:
huffman@31708
   345
    "(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))"
huffman@31708
   346
    "(EX (x::int) >= 0. P x) = (EX (x::nat). P (int x))"
huffman@31708
   347
  apply (subst all_nat)
huffman@31708
   348
  apply auto [1]
huffman@31708
   349
  apply (subst ex_nat)
huffman@31708
   350
  apply auto
huffman@31708
   351
done
huffman@31708
   352
haftmann@35644
   353
declare transfer_morphism_int_nat [transfer add
huffman@31708
   354
  return: transfer_int_nat_quantifiers]
huffman@31708
   355
huffman@31708
   356
haftmann@33318
   357
text {* if *}
huffman@31708
   358
huffman@31708
   359
lemma int_if_cong: "(if P then (int x) else (int y)) =
huffman@31708
   360
    int (if P then x else y)"
huffman@31708
   361
  by auto
huffman@31708
   362
haftmann@35644
   363
declare transfer_morphism_int_nat [transfer add return: int_if_cong]
huffman@31708
   364
huffman@31708
   365
huffman@31708
   366
haftmann@33318
   367
text {* operations with sets *}
huffman@31708
   368
huffman@31708
   369
lemma transfer_int_nat_set_functions:
huffman@31708
   370
    "nat_set A \<Longrightarrow> card A = card (nat ` A)"
huffman@31708
   371
    "{} = int ` ({}::nat set)"
huffman@31708
   372
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)"
huffman@31708
   373
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)"
huffman@31708
   374
    "{x. x >= 0 & P x} = int ` {x. P(int x)}"
huffman@31708
   375
       (* need all variants of these! *)
huffman@31708
   376
  by (simp_all only: is_nat_def transfer_nat_int_set_functions
huffman@31708
   377
          transfer_nat_int_set_function_closures
huffman@31708
   378
          transfer_nat_int_set_return_embed nat_0_le
huffman@31708
   379
          cong: transfer_nat_int_set_cong)
huffman@31708
   380
huffman@31708
   381
lemma transfer_int_nat_set_function_closures:
huffman@31708
   382
    "nat_set {}"
huffman@31708
   383
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"
huffman@31708
   384
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"
huffman@31708
   385
    "nat_set {x. x >= 0 & P x}"
huffman@31708
   386
    "nat_set (int ` C)"
huffman@31708
   387
    "nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x"
huffman@31708
   388
  by (simp_all only: transfer_nat_int_set_function_closures is_nat_def)
huffman@31708
   389
huffman@31708
   390
lemma transfer_int_nat_set_relations:
huffman@31708
   391
    "nat_set A \<Longrightarrow> finite A = finite (nat ` A)"
huffman@31708
   392
    "is_nat x \<Longrightarrow> nat_set A \<Longrightarrow> (x : A) = (nat x : nat ` A)"
huffman@31708
   393
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A = B) = (nat ` A = nat ` B)"
huffman@31708
   394
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A < B) = (nat ` A < nat ` B)"
huffman@31708
   395
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A <= B) = (nat ` A <= nat ` B)"
huffman@31708
   396
  by (simp_all only: is_nat_def transfer_nat_int_set_relations
huffman@31708
   397
    transfer_nat_int_set_return_embed nat_0_le)
huffman@31708
   398
huffman@31708
   399
lemma transfer_int_nat_set_return_embed: "nat ` int ` A = A"
huffman@31708
   400
  by (simp only: transfer_nat_int_set_relations
huffman@31708
   401
    transfer_nat_int_set_function_closures
huffman@31708
   402
    transfer_nat_int_set_return_embed nat_0_le)
huffman@31708
   403
huffman@31708
   404
lemma transfer_int_nat_set_cong: "(!!x. P x = P' x) \<Longrightarrow>
huffman@31708
   405
    {(x::nat). P x} = {x. P' x}"
huffman@31708
   406
  by auto
huffman@31708
   407
haftmann@35644
   408
declare transfer_morphism_int_nat [transfer add
huffman@31708
   409
  return: transfer_int_nat_set_functions
huffman@31708
   410
    transfer_int_nat_set_function_closures
huffman@31708
   411
    transfer_int_nat_set_relations
huffman@31708
   412
    transfer_int_nat_set_return_embed
huffman@31708
   413
  cong: transfer_int_nat_set_cong
huffman@31708
   414
]
huffman@31708
   415
huffman@31708
   416
haftmann@33318
   417
text {* setsum and setprod *}
huffman@31708
   418
huffman@31708
   419
(* this handles the case where the *domain* of f is int *)
huffman@31708
   420
lemma transfer_int_nat_sum_prod:
huffman@31708
   421
    "nat_set A \<Longrightarrow> setsum f A = setsum (%x. f (int x)) (nat ` A)"
huffman@31708
   422
    "nat_set A \<Longrightarrow> setprod f A = setprod (%x. f (int x)) (nat ` A)"
huffman@31708
   423
  apply (subst setsum_reindex)
huffman@31708
   424
  apply (unfold inj_on_def nat_set_def, auto simp add: eq_nat_nat_iff)
huffman@31708
   425
  apply (subst setprod_reindex)
huffman@31708
   426
  apply (unfold inj_on_def nat_set_def o_def, auto simp add: eq_nat_nat_iff
huffman@31708
   427
            cong: setprod_cong)
huffman@31708
   428
done
huffman@31708
   429
huffman@31708
   430
(* this handles the case where the *range* of f is int *)
huffman@31708
   431
lemma transfer_int_nat_sum_prod2:
huffman@31708
   432
    "(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> setsum f A = int(setsum (%x. nat (f x)) A)"
huffman@31708
   433
    "(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow>
huffman@31708
   434
      setprod f A = int(setprod (%x. nat (f x)) A)"
huffman@31708
   435
  unfolding is_nat_def
huffman@31708
   436
  apply (subst int_setsum, auto)
huffman@31708
   437
  apply (subst int_setprod, auto simp add: cong: setprod_cong)
huffman@31708
   438
done
huffman@31708
   439
haftmann@35644
   440
declare transfer_morphism_int_nat [transfer add
huffman@31708
   441
  return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2
huffman@31708
   442
  cong: setsum_cong setprod_cong]
huffman@31708
   443
huffman@31708
   444
end