src/HOL/Algebra/Coset.thy
author wenzelm
Mon Mar 16 18:24:30 2009 +0100 (2009-03-16)
changeset 30549 d2d7874648bd
parent 30198 922f944f03b2
child 31727 2621a957d417
permissions -rw-r--r--
simplified method setup;
wenzelm@14706
     1
(*  Title:      HOL/Algebra/Coset.thy
ballarin@20318
     2
    Author:     Florian Kammueller, with new proofs by L C Paulson, and
ballarin@20318
     3
                Stephan Hohe
paulson@13870
     4
*)
paulson@13870
     5
ballarin@27717
     6
theory Coset imports Group begin
paulson@13870
     7
ballarin@20318
     8
ballarin@20318
     9
section {*Cosets and Quotient Groups*}
paulson@13870
    10
wenzelm@14651
    11
constdefs (structure G)
paulson@14963
    12
  r_coset    :: "[_, 'a set, 'a] \<Rightarrow> 'a set"    (infixl "#>\<index>" 60)
paulson@14963
    13
  "H #> a \<equiv> \<Union>h\<in>H. {h \<otimes> a}"
paulson@13870
    14
paulson@14963
    15
  l_coset    :: "[_, 'a, 'a set] \<Rightarrow> 'a set"    (infixl "<#\<index>" 60)
paulson@14963
    16
  "a <# H \<equiv> \<Union>h\<in>H. {a \<otimes> h}"
paulson@13870
    17
paulson@14963
    18
  RCOSETS  :: "[_, 'a set] \<Rightarrow> ('a set)set"   ("rcosets\<index> _" [81] 80)
paulson@14963
    19
  "rcosets H \<equiv> \<Union>a\<in>carrier G. {H #> a}"
paulson@14963
    20
paulson@14963
    21
  set_mult  :: "[_, 'a set ,'a set] \<Rightarrow> 'a set" (infixl "<#>\<index>" 60)
paulson@14963
    22
  "H <#> K \<equiv> \<Union>h\<in>H. \<Union>k\<in>K. {h \<otimes> k}"
paulson@13870
    23
paulson@14963
    24
  SET_INV :: "[_,'a set] \<Rightarrow> 'a set"  ("set'_inv\<index> _" [81] 80)
paulson@14963
    25
  "set_inv H \<equiv> \<Union>h\<in>H. {inv h}"
paulson@13870
    26
paulson@14963
    27
paulson@14963
    28
locale normal = subgroup + group +
paulson@14963
    29
  assumes coset_eq: "(\<forall>x \<in> carrier G. H #> x = x <# H)"
paulson@13870
    30
wenzelm@19380
    31
abbreviation
wenzelm@21404
    32
  normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool"  (infixl "\<lhd>" 60) where
wenzelm@19380
    33
  "H \<lhd> G \<equiv> normal H G"
paulson@13870
    34
paulson@13870
    35
paulson@14803
    36
subsection {*Basic Properties of Cosets*}
paulson@13870
    37
paulson@14747
    38
lemma (in group) coset_mult_assoc:
paulson@14747
    39
     "[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
paulson@13870
    40
      ==> (M #> g) #> h = M #> (g \<otimes> h)"
paulson@14747
    41
by (force simp add: r_coset_def m_assoc)
paulson@13870
    42
paulson@14747
    43
lemma (in group) coset_mult_one [simp]: "M \<subseteq> carrier G ==> M #> \<one> = M"
paulson@14747
    44
by (force simp add: r_coset_def)
paulson@13870
    45
paulson@14747
    46
lemma (in group) coset_mult_inv1:
wenzelm@14666
    47
     "[| M #> (x \<otimes> (inv y)) = M;  x \<in> carrier G ; y \<in> carrier G;
paulson@14747
    48
         M \<subseteq> carrier G |] ==> M #> x = M #> y"
paulson@13870
    49
apply (erule subst [of concl: "%z. M #> x = z #> y"])
paulson@13870
    50
apply (simp add: coset_mult_assoc m_assoc)
paulson@13870
    51
done
paulson@13870
    52
paulson@14747
    53
lemma (in group) coset_mult_inv2:
paulson@14747
    54
     "[| M #> x = M #> y;  x \<in> carrier G;  y \<in> carrier G;  M \<subseteq> carrier G |]
paulson@13870
    55
      ==> M #> (x \<otimes> (inv y)) = M "
paulson@13870
    56
apply (simp add: coset_mult_assoc [symmetric])
paulson@13870
    57
apply (simp add: coset_mult_assoc)
paulson@13870
    58
done
paulson@13870
    59
paulson@14747
    60
lemma (in group) coset_join1:
paulson@14747
    61
     "[| H #> x = H;  x \<in> carrier G;  subgroup H G |] ==> x \<in> H"
paulson@13870
    62
apply (erule subst)
paulson@14963
    63
apply (simp add: r_coset_def)
paulson@14963
    64
apply (blast intro: l_one subgroup.one_closed sym)
paulson@13870
    65
done
paulson@13870
    66
paulson@14747
    67
lemma (in group) solve_equation:
paulson@14963
    68
    "\<lbrakk>subgroup H G; x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<otimes> x"
paulson@13870
    69
apply (rule bexI [of _ "y \<otimes> (inv x)"])
wenzelm@14666
    70
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
paulson@13870
    71
                      subgroup.subset [THEN subsetD])
paulson@13870
    72
done
paulson@13870
    73
paulson@14963
    74
lemma (in group) repr_independence:
paulson@14963
    75
     "\<lbrakk>y \<in> H #> x;  x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> H #> x = H #> y"
paulson@14963
    76
by (auto simp add: r_coset_def m_assoc [symmetric]
paulson@14963
    77
                   subgroup.subset [THEN subsetD]
paulson@14963
    78
                   subgroup.m_closed solve_equation)
paulson@14963
    79
paulson@14747
    80
lemma (in group) coset_join2:
paulson@14963
    81
     "\<lbrakk>x \<in> carrier G;  subgroup H G;  x\<in>H\<rbrakk> \<Longrightarrow> H #> x = H"
paulson@14963
    82
  --{*Alternative proof is to put @{term "x=\<one>"} in @{text repr_independence}.*}
paulson@14963
    83
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
paulson@13870
    84
ballarin@20318
    85
lemma (in monoid) r_coset_subset_G:
paulson@14747
    86
     "[| H \<subseteq> carrier G; x \<in> carrier G |] ==> H #> x \<subseteq> carrier G"
paulson@14747
    87
by (auto simp add: r_coset_def)
paulson@13870
    88
paulson@14747
    89
lemma (in group) rcosI:
paulson@14747
    90
     "[| h \<in> H; H \<subseteq> carrier G; x \<in> carrier G|] ==> h \<otimes> x \<in> H #> x"
paulson@14747
    91
by (auto simp add: r_coset_def)
paulson@13870
    92
paulson@14963
    93
lemma (in group) rcosetsI:
paulson@14963
    94
     "\<lbrakk>H \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> H #> x \<in> rcosets H"
paulson@14963
    95
by (auto simp add: RCOSETS_def)
paulson@13870
    96
paulson@13870
    97
text{*Really needed?*}
paulson@14747
    98
lemma (in group) transpose_inv:
wenzelm@14666
    99
     "[| x \<otimes> y = z;  x \<in> carrier G;  y \<in> carrier G;  z \<in> carrier G |]
paulson@13870
   100
      ==> (inv x) \<otimes> z = y"
paulson@13870
   101
by (force simp add: m_assoc [symmetric])
paulson@13870
   102
paulson@14747
   103
lemma (in group) rcos_self: "[| x \<in> carrier G; subgroup H G |] ==> x \<in> H #> x"
paulson@14963
   104
apply (simp add: r_coset_def)
paulson@14963
   105
apply (blast intro: sym l_one subgroup.subset [THEN subsetD]
paulson@13870
   106
                    subgroup.one_closed)
paulson@13870
   107
done
paulson@13870
   108
wenzelm@23350
   109
text (in group) {* Opposite of @{thm [source] "repr_independence"} *}
ballarin@20318
   110
lemma (in group) repr_independenceD:
ballarin@27611
   111
  assumes "subgroup H G"
ballarin@20318
   112
  assumes ycarr: "y \<in> carrier G"
ballarin@20318
   113
      and repr:  "H #> x = H #> y"
ballarin@20318
   114
  shows "y \<in> H #> x"
ballarin@27611
   115
proof -
ballarin@29237
   116
  interpret subgroup H G by fact
ballarin@27611
   117
  show ?thesis  apply (subst repr)
wenzelm@23350
   118
  apply (intro rcos_self)
wenzelm@23350
   119
   apply (rule ycarr)
wenzelm@23350
   120
   apply (rule is_subgroup)
wenzelm@23350
   121
  done
ballarin@27611
   122
qed
ballarin@20318
   123
ballarin@20318
   124
text {* Elements of a right coset are in the carrier *}
ballarin@20318
   125
lemma (in subgroup) elemrcos_carrier:
ballarin@27611
   126
  assumes "group G"
ballarin@20318
   127
  assumes acarr: "a \<in> carrier G"
ballarin@20318
   128
    and a': "a' \<in> H #> a"
ballarin@20318
   129
  shows "a' \<in> carrier G"
ballarin@20318
   130
proof -
ballarin@29237
   131
  interpret group G by fact
ballarin@20318
   132
  from subset and acarr
ballarin@20318
   133
  have "H #> a \<subseteq> carrier G" by (rule r_coset_subset_G)
ballarin@20318
   134
  from this and a'
ballarin@20318
   135
  show "a' \<in> carrier G"
ballarin@20318
   136
    by fast
ballarin@20318
   137
qed
ballarin@20318
   138
ballarin@20318
   139
lemma (in subgroup) rcos_const:
ballarin@27611
   140
  assumes "group G"
ballarin@20318
   141
  assumes hH: "h \<in> H"
ballarin@20318
   142
  shows "H #> h = H"
ballarin@27611
   143
proof -
ballarin@29237
   144
  interpret group G by fact
ballarin@27611
   145
  show ?thesis apply (unfold r_coset_def)
ballarin@27611
   146
    apply rule
ballarin@27611
   147
    apply rule
ballarin@27611
   148
    apply clarsimp
ballarin@27611
   149
    apply (intro subgroup.m_closed)
ballarin@27611
   150
    apply (rule is_subgroup)
wenzelm@23463
   151
    apply assumption
ballarin@27611
   152
    apply (rule hH)
ballarin@27611
   153
    apply rule
ballarin@27611
   154
    apply simp
ballarin@27611
   155
  proof -
ballarin@27611
   156
    fix h'
ballarin@27611
   157
    assume h'H: "h' \<in> H"
ballarin@27611
   158
    note carr = hH[THEN mem_carrier] h'H[THEN mem_carrier]
ballarin@27611
   159
    from carr
ballarin@27611
   160
    have a: "h' = (h' \<otimes> inv h) \<otimes> h" by (simp add: m_assoc)
ballarin@27611
   161
    from h'H hH
ballarin@27611
   162
    have "h' \<otimes> inv h \<in> H" by simp
ballarin@27611
   163
    from this and a
ballarin@27611
   164
    show "\<exists>x\<in>H. h' = x \<otimes> h" by fast
ballarin@27611
   165
  qed
ballarin@20318
   166
qed
ballarin@20318
   167
ballarin@20318
   168
text {* Step one for lemma @{text "rcos_module"} *}
ballarin@20318
   169
lemma (in subgroup) rcos_module_imp:
ballarin@27611
   170
  assumes "group G"
ballarin@20318
   171
  assumes xcarr: "x \<in> carrier G"
ballarin@20318
   172
      and x'cos: "x' \<in> H #> x"
ballarin@20318
   173
  shows "(x' \<otimes> inv x) \<in> H"
ballarin@20318
   174
proof -
ballarin@29237
   175
  interpret group G by fact
ballarin@20318
   176
  from xcarr x'cos
ballarin@20318
   177
      have x'carr: "x' \<in> carrier G"
ballarin@20318
   178
      by (rule elemrcos_carrier[OF is_group])
ballarin@20318
   179
  from xcarr
ballarin@20318
   180
      have ixcarr: "inv x \<in> carrier G"
ballarin@20318
   181
      by simp
ballarin@20318
   182
  from x'cos
ballarin@20318
   183
      have "\<exists>h\<in>H. x' = h \<otimes> x"
ballarin@20318
   184
      unfolding r_coset_def
ballarin@20318
   185
      by fast
ballarin@20318
   186
  from this
ballarin@20318
   187
      obtain h
ballarin@20318
   188
        where hH: "h \<in> H"
ballarin@20318
   189
        and x': "x' = h \<otimes> x"
ballarin@20318
   190
      by auto
ballarin@20318
   191
  from hH and subset
ballarin@20318
   192
      have hcarr: "h \<in> carrier G" by fast
ballarin@20318
   193
  note carr = xcarr x'carr hcarr
ballarin@20318
   194
  from x' and carr
ballarin@20318
   195
      have "x' \<otimes> (inv x) = (h \<otimes> x) \<otimes> (inv x)" by fast
ballarin@20318
   196
  also from carr
ballarin@20318
   197
      have "\<dots> = h \<otimes> (x \<otimes> inv x)" by (simp add: m_assoc)
ballarin@20318
   198
  also from carr
ballarin@20318
   199
      have "\<dots> = h \<otimes> \<one>" by simp
ballarin@20318
   200
  also from carr
ballarin@20318
   201
      have "\<dots> = h" by simp
ballarin@20318
   202
  finally
ballarin@20318
   203
      have "x' \<otimes> (inv x) = h" by simp
ballarin@20318
   204
  from hH this
ballarin@20318
   205
      show "x' \<otimes> (inv x) \<in> H" by simp
ballarin@20318
   206
qed
ballarin@20318
   207
ballarin@20318
   208
text {* Step two for lemma @{text "rcos_module"} *}
ballarin@20318
   209
lemma (in subgroup) rcos_module_rev:
ballarin@27611
   210
  assumes "group G"
ballarin@20318
   211
  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
ballarin@20318
   212
      and xixH: "(x' \<otimes> inv x) \<in> H"
ballarin@20318
   213
  shows "x' \<in> H #> x"
ballarin@20318
   214
proof -
ballarin@29237
   215
  interpret group G by fact
ballarin@20318
   216
  from xixH
ballarin@20318
   217
      have "\<exists>h\<in>H. x' \<otimes> (inv x) = h" by fast
ballarin@20318
   218
  from this
ballarin@20318
   219
      obtain h
ballarin@20318
   220
        where hH: "h \<in> H"
ballarin@20318
   221
        and hsym: "x' \<otimes> (inv x) = h"
ballarin@20318
   222
      by fast
ballarin@20318
   223
  from hH subset have hcarr: "h \<in> carrier G" by simp
ballarin@20318
   224
  note carr = carr hcarr
ballarin@20318
   225
  from hsym[symmetric] have "h \<otimes> x = x' \<otimes> (inv x) \<otimes> x" by fast
ballarin@20318
   226
  also from carr
ballarin@20318
   227
      have "\<dots> = x' \<otimes> ((inv x) \<otimes> x)" by (simp add: m_assoc)
ballarin@20318
   228
  also from carr
ballarin@20318
   229
      have "\<dots> = x' \<otimes> \<one>" by (simp add: l_inv)
ballarin@20318
   230
  also from carr
ballarin@20318
   231
      have "\<dots> = x'" by simp
ballarin@20318
   232
  finally
ballarin@20318
   233
      have "h \<otimes> x = x'" by simp
ballarin@20318
   234
  from this[symmetric] and hH
ballarin@20318
   235
      show "x' \<in> H #> x"
ballarin@20318
   236
      unfolding r_coset_def
ballarin@20318
   237
      by fast
ballarin@20318
   238
qed
ballarin@20318
   239
ballarin@20318
   240
text {* Module property of right cosets *}
ballarin@20318
   241
lemma (in subgroup) rcos_module:
ballarin@27611
   242
  assumes "group G"
ballarin@20318
   243
  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
ballarin@20318
   244
  shows "(x' \<in> H #> x) = (x' \<otimes> inv x \<in> H)"
ballarin@27611
   245
proof -
ballarin@29237
   246
  interpret group G by fact
ballarin@27611
   247
  show ?thesis proof  assume "x' \<in> H #> x"
ballarin@27611
   248
    from this and carr
ballarin@27611
   249
    show "x' \<otimes> inv x \<in> H"
ballarin@20318
   250
      by (intro rcos_module_imp[OF is_group])
ballarin@27611
   251
  next
ballarin@27611
   252
    assume "x' \<otimes> inv x \<in> H"
ballarin@27611
   253
    from this and carr
ballarin@27611
   254
    show "x' \<in> H #> x"
ballarin@20318
   255
      by (intro rcos_module_rev[OF is_group])
ballarin@27611
   256
  qed
ballarin@20318
   257
qed
ballarin@20318
   258
ballarin@20318
   259
text {* Right cosets are subsets of the carrier. *} 
ballarin@20318
   260
lemma (in subgroup) rcosets_carrier:
ballarin@27611
   261
  assumes "group G"
ballarin@20318
   262
  assumes XH: "X \<in> rcosets H"
ballarin@20318
   263
  shows "X \<subseteq> carrier G"
ballarin@20318
   264
proof -
ballarin@29237
   265
  interpret group G by fact
ballarin@20318
   266
  from XH have "\<exists>x\<in> carrier G. X = H #> x"
ballarin@20318
   267
      unfolding RCOSETS_def
ballarin@20318
   268
      by fast
ballarin@20318
   269
  from this
ballarin@20318
   270
      obtain x
ballarin@20318
   271
        where xcarr: "x\<in> carrier G"
ballarin@20318
   272
        and X: "X = H #> x"
ballarin@20318
   273
      by fast
ballarin@20318
   274
  from subset and xcarr
ballarin@20318
   275
      show "X \<subseteq> carrier G"
ballarin@20318
   276
      unfolding X
ballarin@20318
   277
      by (rule r_coset_subset_G)
ballarin@20318
   278
qed
ballarin@20318
   279
ballarin@20318
   280
text {* Multiplication of general subsets *}
ballarin@20318
   281
lemma (in monoid) set_mult_closed:
ballarin@20318
   282
  assumes Acarr: "A \<subseteq> carrier G"
ballarin@20318
   283
      and Bcarr: "B \<subseteq> carrier G"
ballarin@20318
   284
  shows "A <#> B \<subseteq> carrier G"
ballarin@20318
   285
apply rule apply (simp add: set_mult_def, clarsimp)
ballarin@20318
   286
proof -
ballarin@20318
   287
  fix a b
ballarin@20318
   288
  assume "a \<in> A"
ballarin@20318
   289
  from this and Acarr
ballarin@20318
   290
      have acarr: "a \<in> carrier G" by fast
ballarin@20318
   291
ballarin@20318
   292
  assume "b \<in> B"
ballarin@20318
   293
  from this and Bcarr
ballarin@20318
   294
      have bcarr: "b \<in> carrier G" by fast
ballarin@20318
   295
ballarin@20318
   296
  from acarr bcarr
ballarin@20318
   297
      show "a \<otimes> b \<in> carrier G" by (rule m_closed)
ballarin@20318
   298
qed
ballarin@20318
   299
ballarin@20318
   300
lemma (in comm_group) mult_subgroups:
ballarin@20318
   301
  assumes subH: "subgroup H G"
ballarin@20318
   302
      and subK: "subgroup K G"
ballarin@20318
   303
  shows "subgroup (H <#> K) G"
ballarin@20318
   304
apply (rule subgroup.intro)
ballarin@20318
   305
   apply (intro set_mult_closed subgroup.subset[OF subH] subgroup.subset[OF subK])
ballarin@20318
   306
  apply (simp add: set_mult_def) apply clarsimp defer 1
ballarin@20318
   307
  apply (simp add: set_mult_def) defer 1
ballarin@20318
   308
  apply (simp add: set_mult_def, clarsimp) defer 1
ballarin@20318
   309
proof -
ballarin@20318
   310
  fix ha hb ka kb
ballarin@20318
   311
  assume haH: "ha \<in> H" and hbH: "hb \<in> H" and kaK: "ka \<in> K" and kbK: "kb \<in> K"
ballarin@20318
   312
  note carr = haH[THEN subgroup.mem_carrier[OF subH]] hbH[THEN subgroup.mem_carrier[OF subH]]
ballarin@20318
   313
              kaK[THEN subgroup.mem_carrier[OF subK]] kbK[THEN subgroup.mem_carrier[OF subK]]
ballarin@20318
   314
  from carr
ballarin@20318
   315
      have "(ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = ha \<otimes> (ka \<otimes> hb) \<otimes> kb" by (simp add: m_assoc)
ballarin@20318
   316
  also from carr
ballarin@20318
   317
      have "\<dots> = ha \<otimes> (hb \<otimes> ka) \<otimes> kb" by (simp add: m_comm)
ballarin@20318
   318
  also from carr
ballarin@20318
   319
      have "\<dots> = (ha \<otimes> hb) \<otimes> (ka \<otimes> kb)" by (simp add: m_assoc)
ballarin@20318
   320
  finally
ballarin@20318
   321
      have eq: "(ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = (ha \<otimes> hb) \<otimes> (ka \<otimes> kb)" .
ballarin@20318
   322
ballarin@20318
   323
  from haH hbH have hH: "ha \<otimes> hb \<in> H" by (simp add: subgroup.m_closed[OF subH])
ballarin@20318
   324
  from kaK kbK have kK: "ka \<otimes> kb \<in> K" by (simp add: subgroup.m_closed[OF subK])
ballarin@20318
   325
  
ballarin@20318
   326
  from hH and kK and eq
ballarin@20318
   327
      show "\<exists>h'\<in>H. \<exists>k'\<in>K. (ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = h' \<otimes> k'" by fast
ballarin@20318
   328
next
ballarin@20318
   329
  have "\<one> = \<one> \<otimes> \<one>" by simp
ballarin@20318
   330
  from subgroup.one_closed[OF subH] subgroup.one_closed[OF subK] this
ballarin@20318
   331
      show "\<exists>h\<in>H. \<exists>k\<in>K. \<one> = h \<otimes> k" by fast
ballarin@20318
   332
next
ballarin@20318
   333
  fix h k
ballarin@20318
   334
  assume hH: "h \<in> H"
ballarin@20318
   335
     and kK: "k \<in> K"
ballarin@20318
   336
ballarin@20318
   337
  from hH[THEN subgroup.mem_carrier[OF subH]] kK[THEN subgroup.mem_carrier[OF subK]]
ballarin@20318
   338
      have "inv (h \<otimes> k) = inv h \<otimes> inv k" by (simp add: inv_mult_group m_comm)
ballarin@20318
   339
ballarin@20318
   340
  from subgroup.m_inv_closed[OF subH hH] and subgroup.m_inv_closed[OF subK kK] and this
ballarin@20318
   341
      show "\<exists>ha\<in>H. \<exists>ka\<in>K. inv (h \<otimes> k) = ha \<otimes> ka" by fast
ballarin@20318
   342
qed
ballarin@20318
   343
ballarin@20318
   344
lemma (in subgroup) lcos_module_rev:
ballarin@27611
   345
  assumes "group G"
ballarin@20318
   346
  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
ballarin@20318
   347
      and xixH: "(inv x \<otimes> x') \<in> H"
ballarin@20318
   348
  shows "x' \<in> x <# H"
ballarin@20318
   349
proof -
ballarin@29237
   350
  interpret group G by fact
ballarin@20318
   351
  from xixH
ballarin@20318
   352
      have "\<exists>h\<in>H. (inv x) \<otimes> x' = h" by fast
ballarin@20318
   353
  from this
ballarin@20318
   354
      obtain h
ballarin@20318
   355
        where hH: "h \<in> H"
ballarin@20318
   356
        and hsym: "(inv x) \<otimes> x' = h"
ballarin@20318
   357
      by fast
ballarin@20318
   358
ballarin@20318
   359
  from hH subset have hcarr: "h \<in> carrier G" by simp
ballarin@20318
   360
  note carr = carr hcarr
ballarin@20318
   361
  from hsym[symmetric] have "x \<otimes> h = x \<otimes> ((inv x) \<otimes> x')" by fast
ballarin@20318
   362
  also from carr
ballarin@20318
   363
      have "\<dots> = (x \<otimes> (inv x)) \<otimes> x'" by (simp add: m_assoc[symmetric])
ballarin@20318
   364
  also from carr
ballarin@20318
   365
      have "\<dots> = \<one> \<otimes> x'" by simp
ballarin@20318
   366
  also from carr
ballarin@20318
   367
      have "\<dots> = x'" by simp
ballarin@20318
   368
  finally
ballarin@20318
   369
      have "x \<otimes> h = x'" by simp
ballarin@20318
   370
ballarin@20318
   371
  from this[symmetric] and hH
ballarin@20318
   372
      show "x' \<in> x <# H"
ballarin@20318
   373
      unfolding l_coset_def
ballarin@20318
   374
      by fast
ballarin@20318
   375
qed
ballarin@20318
   376
paulson@13870
   377
wenzelm@14666
   378
subsection {* Normal subgroups *}
paulson@13870
   379
paulson@14963
   380
lemma normal_imp_subgroup: "H \<lhd> G \<Longrightarrow> subgroup H G"
paulson@14963
   381
  by (simp add: normal_def subgroup_def)
paulson@13870
   382
paulson@14963
   383
lemma (in group) normalI: 
wenzelm@26310
   384
  "subgroup H G \<Longrightarrow> (\<forall>x \<in> carrier G. H #> x = x <# H) \<Longrightarrow> H \<lhd> G"
paulson@14963
   385
  by (simp add: normal_def normal_axioms_def prems) 
paulson@14963
   386
paulson@14963
   387
lemma (in normal) inv_op_closed1:
paulson@14963
   388
     "\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> (inv x) \<otimes> h \<otimes> x \<in> H"
paulson@14963
   389
apply (insert coset_eq) 
paulson@14963
   390
apply (auto simp add: l_coset_def r_coset_def)
wenzelm@14666
   391
apply (drule bspec, assumption)
paulson@13870
   392
apply (drule equalityD1 [THEN subsetD], blast, clarify)
paulson@14963
   393
apply (simp add: m_assoc)
paulson@14963
   394
apply (simp add: m_assoc [symmetric])
paulson@13870
   395
done
paulson@13870
   396
paulson@14963
   397
lemma (in normal) inv_op_closed2:
paulson@14963
   398
     "\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> (inv x) \<in> H"
paulson@14963
   399
apply (subgoal_tac "inv (inv x) \<otimes> h \<otimes> (inv x) \<in> H") 
wenzelm@26310
   400
apply (simp add: ) 
paulson@14963
   401
apply (blast intro: inv_op_closed1) 
paulson@13870
   402
done
paulson@13870
   403
paulson@14747
   404
text{*Alternative characterization of normal subgroups*}
paulson@14747
   405
lemma (in group) normal_inv_iff:
paulson@14747
   406
     "(N \<lhd> G) = 
paulson@14747
   407
      (subgroup N G & (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<otimes> h \<otimes> (inv x) \<in> N))"
paulson@14747
   408
      (is "_ = ?rhs")
paulson@14747
   409
proof
paulson@14747
   410
  assume N: "N \<lhd> G"
paulson@14747
   411
  show ?rhs
paulson@14963
   412
    by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup) 
paulson@14747
   413
next
paulson@14747
   414
  assume ?rhs
paulson@14747
   415
  hence sg: "subgroup N G" 
paulson@14963
   416
    and closed: "\<And>x. x\<in>carrier G \<Longrightarrow> \<forall>h\<in>N. x \<otimes> h \<otimes> inv x \<in> N" by auto
paulson@14747
   417
  hence sb: "N \<subseteq> carrier G" by (simp add: subgroup.subset) 
paulson@14747
   418
  show "N \<lhd> G"
paulson@14963
   419
  proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
paulson@14747
   420
    fix x
paulson@14747
   421
    assume x: "x \<in> carrier G"
nipkow@15120
   422
    show "(\<Union>h\<in>N. {h \<otimes> x}) = (\<Union>h\<in>N. {x \<otimes> h})"
paulson@14747
   423
    proof
nipkow@15120
   424
      show "(\<Union>h\<in>N. {h \<otimes> x}) \<subseteq> (\<Union>h\<in>N. {x \<otimes> h})"
paulson@14747
   425
      proof clarify
paulson@14747
   426
        fix n
paulson@14747
   427
        assume n: "n \<in> N" 
nipkow@15120
   428
        show "n \<otimes> x \<in> (\<Union>h\<in>N. {x \<otimes> h})"
paulson@14747
   429
        proof 
paulson@14963
   430
          from closed [of "inv x"]
paulson@14963
   431
          show "inv x \<otimes> n \<otimes> x \<in> N" by (simp add: x n)
paulson@14963
   432
          show "n \<otimes> x \<in> {x \<otimes> (inv x \<otimes> n \<otimes> x)}"
paulson@14747
   433
            by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
paulson@14747
   434
        qed
paulson@14747
   435
      qed
paulson@14747
   436
    next
nipkow@15120
   437
      show "(\<Union>h\<in>N. {x \<otimes> h}) \<subseteq> (\<Union>h\<in>N. {h \<otimes> x})"
paulson@14747
   438
      proof clarify
paulson@14747
   439
        fix n
paulson@14747
   440
        assume n: "n \<in> N" 
nipkow@15120
   441
        show "x \<otimes> n \<in> (\<Union>h\<in>N. {h \<otimes> x})"
paulson@14747
   442
        proof 
paulson@14963
   443
          show "x \<otimes> n \<otimes> inv x \<in> N" by (simp add: x n closed)
paulson@14963
   444
          show "x \<otimes> n \<in> {x \<otimes> n \<otimes> inv x \<otimes> x}"
paulson@14747
   445
            by (simp add: x n m_assoc sb [THEN subsetD])
paulson@14747
   446
        qed
paulson@14747
   447
      qed
paulson@14747
   448
    qed
paulson@14747
   449
  qed
paulson@14747
   450
qed
paulson@13870
   451
paulson@14963
   452
paulson@14803
   453
subsection{*More Properties of Cosets*}
paulson@14803
   454
paulson@14747
   455
lemma (in group) lcos_m_assoc:
paulson@14747
   456
     "[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
paulson@14747
   457
      ==> g <# (h <# M) = (g \<otimes> h) <# M"
paulson@14747
   458
by (force simp add: l_coset_def m_assoc)
paulson@13870
   459
paulson@14747
   460
lemma (in group) lcos_mult_one: "M \<subseteq> carrier G ==> \<one> <# M = M"
paulson@14747
   461
by (force simp add: l_coset_def)
paulson@13870
   462
paulson@14747
   463
lemma (in group) l_coset_subset_G:
paulson@14747
   464
     "[| H \<subseteq> carrier G; x \<in> carrier G |] ==> x <# H \<subseteq> carrier G"
paulson@14747
   465
by (auto simp add: l_coset_def subsetD)
paulson@14747
   466
paulson@14747
   467
lemma (in group) l_coset_swap:
paulson@14963
   468
     "\<lbrakk>y \<in> x <# H;  x \<in> carrier G;  subgroup H G\<rbrakk> \<Longrightarrow> x \<in> y <# H"
paulson@14963
   469
proof (simp add: l_coset_def)
paulson@14963
   470
  assume "\<exists>h\<in>H. y = x \<otimes> h"
wenzelm@14666
   471
    and x: "x \<in> carrier G"
paulson@14530
   472
    and sb: "subgroup H G"
paulson@14530
   473
  then obtain h' where h': "h' \<in> H & x \<otimes> h' = y" by blast
paulson@14963
   474
  show "\<exists>h\<in>H. x = y \<otimes> h"
paulson@14530
   475
  proof
paulson@14963
   476
    show "x = y \<otimes> inv h'" using h' x sb
paulson@14530
   477
      by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
paulson@14530
   478
    show "inv h' \<in> H" using h' sb
paulson@14530
   479
      by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
paulson@14530
   480
  qed
paulson@14530
   481
qed
paulson@14530
   482
paulson@14747
   483
lemma (in group) l_coset_carrier:
paulson@14530
   484
     "[| y \<in> x <# H;  x \<in> carrier G;  subgroup H G |] ==> y \<in> carrier G"
paulson@14747
   485
by (auto simp add: l_coset_def m_assoc
paulson@14530
   486
                   subgroup.subset [THEN subsetD] subgroup.m_closed)
paulson@14530
   487
paulson@14747
   488
lemma (in group) l_repr_imp_subset:
wenzelm@14666
   489
  assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G"
paulson@14530
   490
  shows "y <# H \<subseteq> x <# H"
paulson@14530
   491
proof -
paulson@14530
   492
  from y
paulson@14747
   493
  obtain h' where "h' \<in> H" "x \<otimes> h' = y" by (auto simp add: l_coset_def)
paulson@14530
   494
  thus ?thesis using x sb
paulson@14747
   495
    by (auto simp add: l_coset_def m_assoc
paulson@14530
   496
                       subgroup.subset [THEN subsetD] subgroup.m_closed)
paulson@14530
   497
qed
paulson@14530
   498
paulson@14747
   499
lemma (in group) l_repr_independence:
wenzelm@14666
   500
  assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G"
paulson@14530
   501
  shows "x <# H = y <# H"
wenzelm@14666
   502
proof
paulson@14530
   503
  show "x <# H \<subseteq> y <# H"
wenzelm@14666
   504
    by (rule l_repr_imp_subset,
paulson@14530
   505
        (blast intro: l_coset_swap l_coset_carrier y x sb)+)
wenzelm@14666
   506
  show "y <# H \<subseteq> x <# H" by (rule l_repr_imp_subset [OF y x sb])
paulson@14530
   507
qed
paulson@13870
   508
paulson@14747
   509
lemma (in group) setmult_subset_G:
paulson@14963
   510
     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G\<rbrakk> \<Longrightarrow> H <#> K \<subseteq> carrier G"
paulson@14963
   511
by (auto simp add: set_mult_def subsetD)
paulson@13870
   512
paulson@14963
   513
lemma (in group) subgroup_mult_id: "subgroup H G \<Longrightarrow> H <#> H = H"
paulson@14963
   514
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
paulson@13870
   515
apply (rule_tac x = x in bexI)
paulson@13870
   516
apply (rule bexI [of _ "\<one>"])
wenzelm@14666
   517
apply (auto simp add: subgroup.m_closed subgroup.one_closed
paulson@13870
   518
                      r_one subgroup.subset [THEN subsetD])
paulson@13870
   519
done
paulson@13870
   520
paulson@13870
   521
ballarin@20318
   522
subsubsection {* Set of Inverses of an @{text r_coset}. *}
wenzelm@14666
   523
paulson@14963
   524
lemma (in normal) rcos_inv:
paulson@14963
   525
  assumes x:     "x \<in> carrier G"
paulson@14963
   526
  shows "set_inv (H #> x) = H #> (inv x)" 
paulson@14963
   527
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
paulson@14963
   528
  fix h
paulson@14963
   529
  assume "h \<in> H"
nipkow@15120
   530
  show "inv x \<otimes> inv h \<in> (\<Union>j\<in>H. {j \<otimes> inv x})"
paulson@14963
   531
  proof
paulson@14963
   532
    show "inv x \<otimes> inv h \<otimes> x \<in> H"
paulson@14963
   533
      by (simp add: inv_op_closed1 prems)
paulson@14963
   534
    show "inv x \<otimes> inv h \<in> {inv x \<otimes> inv h \<otimes> x \<otimes> inv x}"
paulson@14963
   535
      by (simp add: prems m_assoc)
paulson@14963
   536
  qed
paulson@14963
   537
next
paulson@14963
   538
  fix h
paulson@14963
   539
  assume "h \<in> H"
nipkow@15120
   540
  show "h \<otimes> inv x \<in> (\<Union>j\<in>H. {inv x \<otimes> inv j})"
paulson@14963
   541
  proof
paulson@14963
   542
    show "x \<otimes> inv h \<otimes> inv x \<in> H"
paulson@14963
   543
      by (simp add: inv_op_closed2 prems)
paulson@14963
   544
    show "h \<otimes> inv x \<in> {inv x \<otimes> inv (x \<otimes> inv h \<otimes> inv x)}"
paulson@14963
   545
      by (simp add: prems m_assoc [symmetric] inv_mult_group)
paulson@13870
   546
  qed
paulson@13870
   547
qed
paulson@13870
   548
paulson@13870
   549
paulson@14803
   550
subsubsection {*Theorems for @{text "<#>"} with @{text "#>"} or @{text "<#"}.*}
wenzelm@14666
   551
paulson@14747
   552
lemma (in group) setmult_rcos_assoc:
paulson@14963
   553
     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk>
paulson@14963
   554
      \<Longrightarrow> H <#> (K #> x) = (H <#> K) #> x"
paulson@14963
   555
by (force simp add: r_coset_def set_mult_def m_assoc)
paulson@13870
   556
paulson@14747
   557
lemma (in group) rcos_assoc_lcos:
paulson@14963
   558
     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk>
paulson@14963
   559
      \<Longrightarrow> (H #> x) <#> K = H <#> (x <# K)"
paulson@14963
   560
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)
paulson@13870
   561
paulson@14963
   562
lemma (in normal) rcos_mult_step1:
paulson@14963
   563
     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
paulson@14963
   564
      \<Longrightarrow> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
paulson@14963
   565
by (simp add: setmult_rcos_assoc subset
paulson@13870
   566
              r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)
paulson@13870
   567
paulson@14963
   568
lemma (in normal) rcos_mult_step2:
paulson@14963
   569
     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
paulson@14963
   570
      \<Longrightarrow> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"
paulson@14963
   571
by (insert coset_eq, simp add: normal_def)
paulson@13870
   572
paulson@14963
   573
lemma (in normal) rcos_mult_step3:
paulson@14963
   574
     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
paulson@14963
   575
      \<Longrightarrow> (H <#> (H #> x)) #> y = H #> (x \<otimes> y)"
paulson@14963
   576
by (simp add: setmult_rcos_assoc coset_mult_assoc
ballarin@19931
   577
              subgroup_mult_id normal.axioms subset prems)
paulson@13870
   578
paulson@14963
   579
lemma (in normal) rcos_sum:
paulson@14963
   580
     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
paulson@14963
   581
      \<Longrightarrow> (H #> x) <#> (H #> y) = H #> (x \<otimes> y)"
paulson@13870
   582
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
paulson@13870
   583
paulson@14963
   584
lemma (in normal) rcosets_mult_eq: "M \<in> rcosets H \<Longrightarrow> H <#> M = M"
wenzelm@14666
   585
  -- {* generalizes @{text subgroup_mult_id} *}
paulson@14963
   586
  by (auto simp add: RCOSETS_def subset
ballarin@19931
   587
        setmult_rcos_assoc subgroup_mult_id normal.axioms prems)
paulson@14963
   588
paulson@14963
   589
paulson@14963
   590
subsubsection{*An Equivalence Relation*}
paulson@14963
   591
paulson@14963
   592
constdefs (structure G)
paulson@14963
   593
  r_congruent :: "[('a,'b)monoid_scheme, 'a set] \<Rightarrow> ('a*'a)set"
paulson@14963
   594
                  ("rcong\<index> _")
paulson@14963
   595
   "rcong H \<equiv> {(x,y). x \<in> carrier G & y \<in> carrier G & inv x \<otimes> y \<in> H}"
paulson@14963
   596
paulson@14963
   597
paulson@14963
   598
lemma (in subgroup) equiv_rcong:
ballarin@27611
   599
   assumes "group G"
paulson@14963
   600
   shows "equiv (carrier G) (rcong H)"
ballarin@27611
   601
proof -
ballarin@29237
   602
  interpret group G by fact
ballarin@27611
   603
  show ?thesis
ballarin@27611
   604
  proof (intro equiv.intro)
nipkow@30198
   605
    show "refl_on (carrier G) (rcong H)"
nipkow@30198
   606
      by (auto simp add: r_congruent_def refl_on_def) 
ballarin@27611
   607
  next
ballarin@27611
   608
    show "sym (rcong H)"
ballarin@27611
   609
    proof (simp add: r_congruent_def sym_def, clarify)
ballarin@27611
   610
      fix x y
ballarin@27611
   611
      assume [simp]: "x \<in> carrier G" "y \<in> carrier G" 
ballarin@27611
   612
	 and "inv x \<otimes> y \<in> H"
ballarin@27611
   613
      hence "inv (inv x \<otimes> y) \<in> H" by (simp add: m_inv_closed) 
ballarin@27611
   614
      thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group)
ballarin@27611
   615
    qed
ballarin@27611
   616
  next
ballarin@27611
   617
    show "trans (rcong H)"
ballarin@27611
   618
    proof (simp add: r_congruent_def trans_def, clarify)
ballarin@27611
   619
      fix x y z
ballarin@27611
   620
      assume [simp]: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@27611
   621
	 and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H"
ballarin@27611
   622
      hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp
ballarin@27698
   623
      hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H"
ballarin@27698
   624
	by (simp add: m_assoc del: r_inv Units_r_inv) 
ballarin@27611
   625
      thus "inv x \<otimes> z \<in> H" by simp
ballarin@27611
   626
    qed
paulson@14963
   627
  qed
paulson@14963
   628
qed
paulson@14963
   629
paulson@14963
   630
text{*Equivalence classes of @{text rcong} correspond to left cosets.
paulson@14963
   631
  Was there a mistake in the definitions? I'd have expected them to
paulson@14963
   632
  correspond to right cosets.*}
paulson@14963
   633
paulson@14963
   634
(* CB: This is correct, but subtle.
paulson@14963
   635
   We call H #> a the right coset of a relative to H.  According to
paulson@14963
   636
   Jacobson, this is what the majority of group theory literature does.
paulson@14963
   637
   He then defines the notion of congruence relation ~ over monoids as
paulson@14963
   638
   equivalence relation with a ~ a' & b ~ b' \<Longrightarrow> a*b ~ a'*b'.
paulson@14963
   639
   Our notion of right congruence induced by K: rcong K appears only in
paulson@14963
   640
   the context where K is a normal subgroup.  Jacobson doesn't name it.
paulson@14963
   641
   But in this context left and right cosets are identical.
paulson@14963
   642
*)
paulson@14963
   643
paulson@14963
   644
lemma (in subgroup) l_coset_eq_rcong:
ballarin@27611
   645
  assumes "group G"
paulson@14963
   646
  assumes a: "a \<in> carrier G"
paulson@14963
   647
  shows "a <# H = rcong H `` {a}"
ballarin@27611
   648
proof -
ballarin@29237
   649
  interpret group G by fact
ballarin@27611
   650
  show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a ) 
ballarin@27611
   651
qed
paulson@13870
   652
ballarin@20318
   653
subsubsection{*Two Distinct Right Cosets are Disjoint*}
paulson@14803
   654
paulson@14803
   655
lemma (in group) rcos_equation:
ballarin@27611
   656
  assumes "subgroup H G"
ballarin@27611
   657
  assumes p: "ha \<otimes> a = h \<otimes> b" "a \<in> carrier G" "b \<in> carrier G" "h \<in> H" "ha \<in> H" "hb \<in> H"
ballarin@27611
   658
  shows "hb \<otimes> a \<in> (\<Union>h\<in>H. {h \<otimes> b})"
ballarin@27611
   659
proof -
ballarin@29237
   660
  interpret subgroup H G by fact
ballarin@27611
   661
  from p show ?thesis apply (rule_tac UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"])
ballarin@27611
   662
    apply (simp add: )
ballarin@27611
   663
    apply (simp add: m_assoc transpose_inv)
ballarin@27611
   664
    done
ballarin@27611
   665
qed
paulson@14803
   666
paulson@14803
   667
lemma (in group) rcos_disjoint:
ballarin@27611
   668
  assumes "subgroup H G"
ballarin@27611
   669
  assumes p: "a \<in> rcosets H" "b \<in> rcosets H" "a\<noteq>b"
ballarin@27611
   670
  shows "a \<inter> b = {}"
ballarin@27611
   671
proof -
ballarin@29237
   672
  interpret subgroup H G by fact
ballarin@27611
   673
  from p show ?thesis apply (simp add: RCOSETS_def r_coset_def)
ballarin@27611
   674
    apply (blast intro: rcos_equation prems sym)
ballarin@27611
   675
    done
ballarin@27611
   676
qed
paulson@14803
   677
ballarin@20318
   678
subsection {* Further lemmas for @{text "r_congruent"} *}
ballarin@20318
   679
ballarin@20318
   680
text {* The relation is a congruence *}
ballarin@20318
   681
ballarin@20318
   682
lemma (in normal) congruent_rcong:
ballarin@20318
   683
  shows "congruent2 (rcong H) (rcong H) (\<lambda>a b. a \<otimes> b <# H)"
ballarin@20318
   684
proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group)
ballarin@20318
   685
  fix a b c
ballarin@20318
   686
  assume abrcong: "(a, b) \<in> rcong H"
ballarin@20318
   687
    and ccarr: "c \<in> carrier G"
ballarin@20318
   688
ballarin@20318
   689
  from abrcong
ballarin@20318
   690
      have acarr: "a \<in> carrier G"
ballarin@20318
   691
        and bcarr: "b \<in> carrier G"
ballarin@20318
   692
        and abH: "inv a \<otimes> b \<in> H"
ballarin@20318
   693
      unfolding r_congruent_def
ballarin@20318
   694
      by fast+
ballarin@20318
   695
ballarin@20318
   696
  note carr = acarr bcarr ccarr
ballarin@20318
   697
ballarin@20318
   698
  from ccarr and abH
ballarin@20318
   699
      have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c \<in> H" by (rule inv_op_closed1)
ballarin@20318
   700
  moreover
ballarin@20318
   701
      from carr and inv_closed
ballarin@20318
   702
      have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c = (inv c \<otimes> inv a) \<otimes> (b \<otimes> c)" 
ballarin@20318
   703
      by (force cong: m_assoc)
ballarin@20318
   704
  moreover 
ballarin@20318
   705
      from carr and inv_closed
ballarin@20318
   706
      have "\<dots> = (inv (a \<otimes> c)) \<otimes> (b \<otimes> c)"
ballarin@20318
   707
      by (simp add: inv_mult_group)
ballarin@20318
   708
  ultimately
ballarin@20318
   709
      have "(inv (a \<otimes> c)) \<otimes> (b \<otimes> c) \<in> H" by simp
ballarin@20318
   710
  from carr and this
ballarin@20318
   711
     have "(b \<otimes> c) \<in> (a \<otimes> c) <# H"
ballarin@20318
   712
     by (simp add: lcos_module_rev[OF is_group])
ballarin@20318
   713
  from carr and this and is_subgroup
ballarin@20318
   714
     show "(a \<otimes> c) <# H = (b \<otimes> c) <# H" by (intro l_repr_independence, simp+)
ballarin@20318
   715
next
ballarin@20318
   716
  fix a b c
ballarin@20318
   717
  assume abrcong: "(a, b) \<in> rcong H"
ballarin@20318
   718
    and ccarr: "c \<in> carrier G"
ballarin@20318
   719
ballarin@20318
   720
  from ccarr have "c \<in> Units G" by (simp add: Units_eq)
ballarin@20318
   721
  hence cinvc_one: "inv c \<otimes> c = \<one>" by (rule Units_l_inv)
ballarin@20318
   722
ballarin@20318
   723
  from abrcong
ballarin@20318
   724
      have acarr: "a \<in> carrier G"
ballarin@20318
   725
       and bcarr: "b \<in> carrier G"
ballarin@20318
   726
       and abH: "inv a \<otimes> b \<in> H"
ballarin@20318
   727
      by (unfold r_congruent_def, fast+)
ballarin@20318
   728
ballarin@20318
   729
  note carr = acarr bcarr ccarr
ballarin@20318
   730
ballarin@20318
   731
  from carr and inv_closed
ballarin@20318
   732
     have "inv a \<otimes> b = inv a \<otimes> (\<one> \<otimes> b)" by simp
ballarin@20318
   733
  also from carr and inv_closed
ballarin@20318
   734
      have "\<dots> = inv a \<otimes> (inv c \<otimes> c) \<otimes> b" by simp
ballarin@20318
   735
  also from carr and inv_closed
ballarin@20318
   736
      have "\<dots> = (inv a \<otimes> inv c) \<otimes> (c \<otimes> b)" by (force cong: m_assoc)
ballarin@20318
   737
  also from carr and inv_closed
ballarin@20318
   738
      have "\<dots> = inv (c \<otimes> a) \<otimes> (c \<otimes> b)" by (simp add: inv_mult_group)
ballarin@20318
   739
  finally
ballarin@20318
   740
      have "inv a \<otimes> b = inv (c \<otimes> a) \<otimes> (c \<otimes> b)" .
ballarin@20318
   741
  from abH and this
ballarin@20318
   742
      have "inv (c \<otimes> a) \<otimes> (c \<otimes> b) \<in> H" by simp
ballarin@20318
   743
ballarin@20318
   744
  from carr and this
ballarin@20318
   745
     have "(c \<otimes> b) \<in> (c \<otimes> a) <# H"
ballarin@20318
   746
     by (simp add: lcos_module_rev[OF is_group])
ballarin@20318
   747
  from carr and this and is_subgroup
ballarin@20318
   748
     show "(c \<otimes> a) <# H = (c \<otimes> b) <# H" by (intro l_repr_independence, simp+)
ballarin@20318
   749
qed
ballarin@20318
   750
paulson@14803
   751
paulson@14803
   752
subsection {*Order of a Group and Lagrange's Theorem*}
paulson@14803
   753
paulson@14803
   754
constdefs
paulson@14963
   755
  order :: "('a, 'b) monoid_scheme \<Rightarrow> nat"
paulson@14963
   756
  "order S \<equiv> card (carrier S)"
paulson@13870
   757
paulson@14963
   758
lemma (in group) rcosets_part_G:
ballarin@27611
   759
  assumes "subgroup H G"
paulson@14963
   760
  shows "\<Union>(rcosets H) = carrier G"
ballarin@27611
   761
proof -
ballarin@29237
   762
  interpret subgroup H G by fact
ballarin@27611
   763
  show ?thesis
ballarin@27611
   764
    apply (rule equalityI)
ballarin@27611
   765
    apply (force simp add: RCOSETS_def r_coset_def)
ballarin@27611
   766
    apply (auto simp add: RCOSETS_def intro: rcos_self prems)
ballarin@27611
   767
    done
ballarin@27611
   768
qed
paulson@13870
   769
paulson@14747
   770
lemma (in group) cosets_finite:
paulson@14963
   771
     "\<lbrakk>c \<in> rcosets H;  H \<subseteq> carrier G;  finite (carrier G)\<rbrakk> \<Longrightarrow> finite c"
paulson@14963
   772
apply (auto simp add: RCOSETS_def)
paulson@14963
   773
apply (simp add: r_coset_subset_G [THEN finite_subset])
paulson@13870
   774
done
paulson@13870
   775
paulson@14747
   776
text{*The next two lemmas support the proof of @{text card_cosets_equal}.*}
paulson@14747
   777
lemma (in group) inj_on_f:
paulson@14963
   778
    "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> inv a) (H #> a)"
paulson@13870
   779
apply (rule inj_onI)
paulson@13870
   780
apply (subgoal_tac "x \<in> carrier G & y \<in> carrier G")
paulson@13870
   781
 prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])
paulson@13870
   782
apply (simp add: subsetD)
paulson@13870
   783
done
paulson@13870
   784
paulson@14747
   785
lemma (in group) inj_on_g:
paulson@14963
   786
    "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> a) H"
paulson@13870
   787
by (force simp add: inj_on_def subsetD)
paulson@13870
   788
paulson@14747
   789
lemma (in group) card_cosets_equal:
paulson@14963
   790
     "\<lbrakk>c \<in> rcosets H;  H \<subseteq> carrier G; finite(carrier G)\<rbrakk>
paulson@14963
   791
      \<Longrightarrow> card c = card H"
paulson@14963
   792
apply (auto simp add: RCOSETS_def)
paulson@13870
   793
apply (rule card_bij_eq)
wenzelm@14666
   794
     apply (rule inj_on_f, assumption+)
paulson@14747
   795
    apply (force simp add: m_assoc subsetD r_coset_def)
wenzelm@14666
   796
   apply (rule inj_on_g, assumption+)
paulson@14747
   797
  apply (force simp add: m_assoc subsetD r_coset_def)
paulson@13870
   798
 txt{*The sets @{term "H #> a"} and @{term "H"} are finite.*}
paulson@13870
   799
 apply (simp add: r_coset_subset_G [THEN finite_subset])
paulson@13870
   800
apply (blast intro: finite_subset)
paulson@13870
   801
done
paulson@13870
   802
paulson@14963
   803
lemma (in group) rcosets_subset_PowG:
paulson@14963
   804
     "subgroup H G  \<Longrightarrow> rcosets H \<subseteq> Pow(carrier G)"
paulson@14963
   805
apply (simp add: RCOSETS_def)
paulson@13870
   806
apply (blast dest: r_coset_subset_G subgroup.subset)
paulson@13870
   807
done
paulson@13870
   808
paulson@14803
   809
paulson@14803
   810
theorem (in group) lagrange:
paulson@14963
   811
     "\<lbrakk>finite(carrier G); subgroup H G\<rbrakk>
paulson@14963
   812
      \<Longrightarrow> card(rcosets H) * card(H) = order(G)"
paulson@14963
   813
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
paulson@14803
   814
apply (subst mult_commute)
paulson@14803
   815
apply (rule card_partition)
paulson@14963
   816
   apply (simp add: rcosets_subset_PowG [THEN finite_subset])
paulson@14963
   817
  apply (simp add: rcosets_part_G)
paulson@14803
   818
 apply (simp add: card_cosets_equal subgroup.subset)
paulson@14803
   819
apply (simp add: rcos_disjoint)
paulson@14803
   820
done
paulson@14803
   821
paulson@14803
   822
paulson@14747
   823
subsection {*Quotient Groups: Factorization of a Group*}
paulson@13870
   824
paulson@13870
   825
constdefs
paulson@14963
   826
  FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid"
paulson@14803
   827
     (infixl "Mod" 65)
paulson@14747
   828
    --{*Actually defined for groups rather than monoids*}
paulson@14963
   829
  "FactGroup G H \<equiv>
paulson@14963
   830
    \<lparr>carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>"
paulson@14747
   831
paulson@14963
   832
lemma (in normal) setmult_closed:
paulson@14963
   833
     "\<lbrakk>K1 \<in> rcosets H; K2 \<in> rcosets H\<rbrakk> \<Longrightarrow> K1 <#> K2 \<in> rcosets H"
paulson@14963
   834
by (auto simp add: rcos_sum RCOSETS_def)
paulson@13870
   835
paulson@14963
   836
lemma (in normal) setinv_closed:
paulson@14963
   837
     "K \<in> rcosets H \<Longrightarrow> set_inv K \<in> rcosets H"
paulson@14963
   838
by (auto simp add: rcos_inv RCOSETS_def)
ballarin@13889
   839
paulson@14963
   840
lemma (in normal) rcosets_assoc:
paulson@14963
   841
     "\<lbrakk>M1 \<in> rcosets H; M2 \<in> rcosets H; M3 \<in> rcosets H\<rbrakk>
paulson@14963
   842
      \<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
paulson@14963
   843
by (auto simp add: RCOSETS_def rcos_sum m_assoc)
paulson@13870
   844
paulson@14963
   845
lemma (in subgroup) subgroup_in_rcosets:
ballarin@27611
   846
  assumes "group G"
paulson@14963
   847
  shows "H \<in> rcosets H"
ballarin@13889
   848
proof -
ballarin@29237
   849
  interpret group G by fact
wenzelm@26203
   850
  from _ subgroup_axioms have "H #> \<one> = H"
wenzelm@23350
   851
    by (rule coset_join2) auto
ballarin@13889
   852
  then show ?thesis
paulson@14963
   853
    by (auto simp add: RCOSETS_def)
ballarin@13889
   854
qed
ballarin@13889
   855
paulson@14963
   856
lemma (in normal) rcosets_inv_mult_group_eq:
paulson@14963
   857
     "M \<in> rcosets H \<Longrightarrow> set_inv M <#> M = H"
ballarin@19931
   858
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms prems)
ballarin@13889
   859
paulson@14963
   860
theorem (in normal) factorgroup_is_group:
paulson@14963
   861
  "group (G Mod H)"
wenzelm@14666
   862
apply (simp add: FactGroup_def)
ballarin@13936
   863
apply (rule groupI)
paulson@14747
   864
    apply (simp add: setmult_closed)
paulson@14963
   865
   apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])
paulson@14963
   866
  apply (simp add: restrictI setmult_closed rcosets_assoc)
ballarin@13889
   867
 apply (simp add: normal_imp_subgroup
paulson@14963
   868
                  subgroup_in_rcosets rcosets_mult_eq)
paulson@14963
   869
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
ballarin@13889
   870
done
ballarin@13889
   871
paulson@14803
   872
lemma mult_FactGroup [simp]: "X \<otimes>\<^bsub>(G Mod H)\<^esub> X' = X <#>\<^bsub>G\<^esub> X'"
paulson@14803
   873
  by (simp add: FactGroup_def) 
paulson@14803
   874
paulson@14963
   875
lemma (in normal) inv_FactGroup:
paulson@14963
   876
     "X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X"
paulson@14747
   877
apply (rule group.inv_equality [OF factorgroup_is_group]) 
paulson@14963
   878
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
paulson@14747
   879
done
paulson@14747
   880
paulson@14747
   881
text{*The coset map is a homomorphism from @{term G} to the quotient group
paulson@14963
   882
  @{term "G Mod H"}*}
paulson@14963
   883
lemma (in normal) r_coset_hom_Mod:
paulson@14963
   884
  "(\<lambda>a. H #> a) \<in> hom G (G Mod H)"
paulson@14963
   885
  by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)
paulson@14747
   886
paulson@14963
   887
 
paulson@14963
   888
subsection{*The First Isomorphism Theorem*}
paulson@14803
   889
paulson@14963
   890
text{*The quotient by the kernel of a homomorphism is isomorphic to the 
paulson@14963
   891
  range of that homomorphism.*}
paulson@14803
   892
paulson@14803
   893
constdefs
paulson@14963
   894
  kernel :: "('a, 'm) monoid_scheme \<Rightarrow> ('b, 'n) monoid_scheme \<Rightarrow> 
paulson@14963
   895
             ('a \<Rightarrow> 'b) \<Rightarrow> 'a set" 
paulson@14803
   896
    --{*the kernel of a homomorphism*}
wenzelm@26310
   897
  "kernel G H h \<equiv> {x. x \<in> carrier G & h x = \<one>\<^bsub>H\<^esub>}"
paulson@14803
   898
paulson@14803
   899
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
paulson@14963
   900
apply (rule subgroup.intro) 
paulson@14803
   901
apply (auto simp add: kernel_def group.intro prems) 
paulson@14803
   902
done
paulson@14803
   903
paulson@14803
   904
text{*The kernel of a homomorphism is a normal subgroup*}
paulson@14963
   905
lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G"
ballarin@19931
   906
apply (simp add: G.normal_inv_iff subgroup_kernel)
ballarin@19931
   907
apply (simp add: kernel_def)
paulson@14803
   908
done
paulson@14803
   909
paulson@14803
   910
lemma (in group_hom) FactGroup_nonempty:
paulson@14803
   911
  assumes X: "X \<in> carrier (G Mod kernel G H h)"
paulson@14803
   912
  shows "X \<noteq> {}"
paulson@14803
   913
proof -
paulson@14803
   914
  from X
paulson@14803
   915
  obtain g where "g \<in> carrier G" 
paulson@14803
   916
             and "X = kernel G H h #> g"
paulson@14963
   917
    by (auto simp add: FactGroup_def RCOSETS_def)
paulson@14803
   918
  thus ?thesis 
paulson@14963
   919
   by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
paulson@14803
   920
qed
paulson@14803
   921
paulson@14803
   922
paulson@14803
   923
lemma (in group_hom) FactGroup_contents_mem:
paulson@14803
   924
  assumes X: "X \<in> carrier (G Mod (kernel G H h))"
paulson@14803
   925
  shows "contents (h`X) \<in> carrier H"
paulson@14803
   926
proof -
paulson@14803
   927
  from X
paulson@14803
   928
  obtain g where g: "g \<in> carrier G" 
paulson@14803
   929
             and "X = kernel G H h #> g"
paulson@14963
   930
    by (auto simp add: FactGroup_def RCOSETS_def)
paulson@14963
   931
  hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def image_def g)
paulson@14803
   932
  thus ?thesis by (auto simp add: g)
paulson@14803
   933
qed
paulson@14803
   934
paulson@14803
   935
lemma (in group_hom) FactGroup_hom:
paulson@14963
   936
     "(\<lambda>X. contents (h`X)) \<in> hom (G Mod (kernel G H h)) H"
paulson@14963
   937
apply (simp add: hom_def FactGroup_contents_mem  normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed)  
paulson@14803
   938
proof (simp add: hom_def funcsetI FactGroup_contents_mem, intro ballI) 
paulson@14803
   939
  fix X and X'
paulson@14803
   940
  assume X:  "X  \<in> carrier (G Mod kernel G H h)"
paulson@14803
   941
     and X': "X' \<in> carrier (G Mod kernel G H h)"
paulson@14803
   942
  then
paulson@14803
   943
  obtain g and g'
paulson@14803
   944
           where "g \<in> carrier G" and "g' \<in> carrier G" 
paulson@14803
   945
             and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
paulson@14963
   946
    by (auto simp add: FactGroup_def RCOSETS_def)
paulson@14803
   947
  hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" 
paulson@14803
   948
    and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G"
paulson@14803
   949
    by (force simp add: kernel_def r_coset_def image_def)+
paulson@14803
   950
  hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X'
paulson@14803
   951
    by (auto dest!: FactGroup_nonempty
paulson@14803
   952
             simp add: set_mult_def image_eq_UN 
paulson@14803
   953
                       subsetD [OF Xsub] subsetD [OF X'sub]) 
paulson@14803
   954
  thus "contents (h ` (X <#> X')) = contents (h ` X) \<otimes>\<^bsub>H\<^esub> contents (h ` X')"
paulson@14803
   955
    by (simp add: all image_eq_UN FactGroup_nonempty X X')  
paulson@14803
   956
qed
paulson@14803
   957
paulson@14963
   958
paulson@14803
   959
text{*Lemma for the following injectivity result*}
paulson@14803
   960
lemma (in group_hom) FactGroup_subset:
paulson@14963
   961
     "\<lbrakk>g \<in> carrier G; g' \<in> carrier G; h g = h g'\<rbrakk>
paulson@14963
   962
      \<Longrightarrow>  kernel G H h #> g \<subseteq> kernel G H h #> g'"
wenzelm@26310
   963
apply (clarsimp simp add: kernel_def r_coset_def image_def)
paulson@14803
   964
apply (rename_tac y)  
paulson@14803
   965
apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI) 
wenzelm@26310
   966
apply (simp add: G.m_assoc) 
paulson@14803
   967
done
paulson@14803
   968
paulson@14803
   969
lemma (in group_hom) FactGroup_inj_on:
paulson@14803
   970
     "inj_on (\<lambda>X. contents (h ` X)) (carrier (G Mod kernel G H h))"
paulson@14803
   971
proof (simp add: inj_on_def, clarify) 
paulson@14803
   972
  fix X and X'
paulson@14803
   973
  assume X:  "X  \<in> carrier (G Mod kernel G H h)"
paulson@14803
   974
     and X': "X' \<in> carrier (G Mod kernel G H h)"
paulson@14803
   975
  then
paulson@14803
   976
  obtain g and g'
paulson@14803
   977
           where gX: "g \<in> carrier G"  "g' \<in> carrier G" 
paulson@14803
   978
              "X = kernel G H h #> g" "X' = kernel G H h #> g'"
paulson@14963
   979
    by (auto simp add: FactGroup_def RCOSETS_def)
paulson@14803
   980
  hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" 
paulson@14803
   981
    by (force simp add: kernel_def r_coset_def image_def)+
paulson@14803
   982
  assume "contents (h ` X) = contents (h ` X')"
paulson@14803
   983
  hence h: "h g = h g'"
paulson@14803
   984
    by (simp add: image_eq_UN all FactGroup_nonempty X X') 
paulson@14803
   985
  show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX) 
paulson@14803
   986
qed
paulson@14803
   987
paulson@14803
   988
text{*If the homomorphism @{term h} is onto @{term H}, then so is the
paulson@14803
   989
homomorphism from the quotient group*}
paulson@14803
   990
lemma (in group_hom) FactGroup_onto:
paulson@14803
   991
  assumes h: "h ` carrier G = carrier H"
paulson@14803
   992
  shows "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) = carrier H"
paulson@14803
   993
proof
paulson@14803
   994
  show "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) \<subseteq> carrier H"
paulson@14803
   995
    by (auto simp add: FactGroup_contents_mem)
paulson@14803
   996
  show "carrier H \<subseteq> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)"
paulson@14803
   997
  proof
paulson@14803
   998
    fix y
paulson@14803
   999
    assume y: "y \<in> carrier H"
paulson@14803
  1000
    with h obtain g where g: "g \<in> carrier G" "h g = y"
wenzelm@26310
  1001
      by (blast elim: equalityE) 
nipkow@15120
  1002
    hence "(\<Union>x\<in>kernel G H h #> g. {h x}) = {y}" 
paulson@14803
  1003
      by (auto simp add: y kernel_def r_coset_def) 
paulson@14803
  1004
    with g show "y \<in> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)" 
paulson@14963
  1005
      by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN)
paulson@14803
  1006
  qed
paulson@14803
  1007
qed
paulson@14803
  1008
paulson@14803
  1009
paulson@14803
  1010
text{*If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
paulson@14803
  1011
 quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.*}
paulson@14803
  1012
theorem (in group_hom) FactGroup_iso:
paulson@14803
  1013
  "h ` carrier G = carrier H
paulson@14963
  1014
   \<Longrightarrow> (\<lambda>X. contents (h`X)) \<in> (G Mod (kernel G H h)) \<cong> H"
paulson@14803
  1015
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def 
paulson@14803
  1016
              FactGroup_onto) 
paulson@14803
  1017
paulson@14963
  1018
paulson@13870
  1019
end