src/HOL/Algebra/Module.thy
author wenzelm
Mon Mar 16 18:24:30 2009 +0100 (2009-03-16)
changeset 30549 d2d7874648bd
parent 29237 e90d9d51106b
child 35849 b5522b51cb1e
permissions -rw-r--r--
simplified method setup;
wenzelm@14706
     1
(*  Title:      HOL/Algebra/Module.thy
ballarin@13936
     2
    Author:     Clemens Ballarin, started 15 April 2003
ballarin@13936
     3
    Copyright:  Clemens Ballarin
ballarin@13936
     4
*)
ballarin@13936
     5
ballarin@20318
     6
theory Module imports Ring begin
ballarin@20318
     7
ballarin@13936
     8
ballarin@20318
     9
section {* Modules over an Abelian Group *}
ballarin@20318
    10
ballarin@20318
    11
subsection {* Definitions *}
ballarin@13936
    12
ballarin@13936
    13
record ('a, 'b) module = "'b ring" +
ballarin@13936
    14
  smult :: "['a, 'b] => 'b" (infixl "\<odot>\<index>" 70)
ballarin@13936
    15
ballarin@29237
    16
locale module = R: cring + M: abelian_group M for M (structure) +
ballarin@13936
    17
  assumes smult_closed [simp, intro]:
ballarin@15095
    18
      "[| a \<in> carrier R; x \<in> carrier M |] ==> a \<odot>\<^bsub>M\<^esub> x \<in> carrier M"
ballarin@13936
    19
    and smult_l_distr:
ballarin@13936
    20
      "[| a \<in> carrier R; b \<in> carrier R; x \<in> carrier M |] ==>
ballarin@15095
    21
      (a \<oplus> b) \<odot>\<^bsub>M\<^esub> x = a \<odot>\<^bsub>M\<^esub> x \<oplus>\<^bsub>M\<^esub> b \<odot>\<^bsub>M\<^esub> x"
ballarin@13936
    22
    and smult_r_distr:
ballarin@13936
    23
      "[| a \<in> carrier R; x \<in> carrier M; y \<in> carrier M |] ==>
ballarin@15095
    24
      a \<odot>\<^bsub>M\<^esub> (x \<oplus>\<^bsub>M\<^esub> y) = a \<odot>\<^bsub>M\<^esub> x \<oplus>\<^bsub>M\<^esub> a \<odot>\<^bsub>M\<^esub> y"
ballarin@13936
    25
    and smult_assoc1:
ballarin@13936
    26
      "[| a \<in> carrier R; b \<in> carrier R; x \<in> carrier M |] ==>
ballarin@15095
    27
      (a \<otimes> b) \<odot>\<^bsub>M\<^esub> x = a \<odot>\<^bsub>M\<^esub> (b \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
    28
    and smult_one [simp]:
ballarin@15095
    29
      "x \<in> carrier M ==> \<one> \<odot>\<^bsub>M\<^esub> x = x"
ballarin@13936
    30
ballarin@29237
    31
locale algebra = module + cring M +
ballarin@13936
    32
  assumes smult_assoc2:
ballarin@13936
    33
      "[| a \<in> carrier R; x \<in> carrier M; y \<in> carrier M |] ==>
ballarin@15095
    34
      (a \<odot>\<^bsub>M\<^esub> x) \<otimes>\<^bsub>M\<^esub> y = a \<odot>\<^bsub>M\<^esub> (x \<otimes>\<^bsub>M\<^esub> y)"
ballarin@13936
    35
ballarin@13936
    36
lemma moduleI:
ballarin@19783
    37
  fixes R (structure) and M (structure)
ballarin@13936
    38
  assumes cring: "cring R"
ballarin@13936
    39
    and abelian_group: "abelian_group M"
ballarin@13936
    40
    and smult_closed:
ballarin@15095
    41
      "!!a x. [| a \<in> carrier R; x \<in> carrier M |] ==> a \<odot>\<^bsub>M\<^esub> x \<in> carrier M"
ballarin@13936
    42
    and smult_l_distr:
ballarin@13936
    43
      "!!a b x. [| a \<in> carrier R; b \<in> carrier R; x \<in> carrier M |] ==>
ballarin@15095
    44
      (a \<oplus> b) \<odot>\<^bsub>M\<^esub> x = (a \<odot>\<^bsub>M\<^esub> x) \<oplus>\<^bsub>M\<^esub> (b \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
    45
    and smult_r_distr:
ballarin@13936
    46
      "!!a x y. [| a \<in> carrier R; x \<in> carrier M; y \<in> carrier M |] ==>
ballarin@15095
    47
      a \<odot>\<^bsub>M\<^esub> (x \<oplus>\<^bsub>M\<^esub> y) = (a \<odot>\<^bsub>M\<^esub> x) \<oplus>\<^bsub>M\<^esub> (a \<odot>\<^bsub>M\<^esub> y)"
ballarin@13936
    48
    and smult_assoc1:
ballarin@13936
    49
      "!!a b x. [| a \<in> carrier R; b \<in> carrier R; x \<in> carrier M |] ==>
ballarin@15095
    50
      (a \<otimes> b) \<odot>\<^bsub>M\<^esub> x = a \<odot>\<^bsub>M\<^esub> (b \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
    51
    and smult_one:
ballarin@15095
    52
      "!!x. x \<in> carrier M ==> \<one> \<odot>\<^bsub>M\<^esub> x = x"
ballarin@13936
    53
  shows "module R M"
ballarin@13936
    54
  by (auto intro: module.intro cring.axioms abelian_group.axioms
ballarin@27714
    55
    module_axioms.intro assms)
ballarin@13936
    56
ballarin@13936
    57
lemma algebraI:
ballarin@19783
    58
  fixes R (structure) and M (structure)
ballarin@13936
    59
  assumes R_cring: "cring R"
ballarin@13936
    60
    and M_cring: "cring M"
ballarin@13936
    61
    and smult_closed:
ballarin@15095
    62
      "!!a x. [| a \<in> carrier R; x \<in> carrier M |] ==> a \<odot>\<^bsub>M\<^esub> x \<in> carrier M"
ballarin@13936
    63
    and smult_l_distr:
ballarin@13936
    64
      "!!a b x. [| a \<in> carrier R; b \<in> carrier R; x \<in> carrier M |] ==>
ballarin@15095
    65
      (a \<oplus> b) \<odot>\<^bsub>M\<^esub> x = (a \<odot>\<^bsub>M\<^esub> x) \<oplus>\<^bsub>M\<^esub> (b \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
    66
    and smult_r_distr:
ballarin@13936
    67
      "!!a x y. [| a \<in> carrier R; x \<in> carrier M; y \<in> carrier M |] ==>
ballarin@15095
    68
      a \<odot>\<^bsub>M\<^esub> (x \<oplus>\<^bsub>M\<^esub> y) = (a \<odot>\<^bsub>M\<^esub> x) \<oplus>\<^bsub>M\<^esub> (a \<odot>\<^bsub>M\<^esub> y)"
ballarin@13936
    69
    and smult_assoc1:
ballarin@13936
    70
      "!!a b x. [| a \<in> carrier R; b \<in> carrier R; x \<in> carrier M |] ==>
ballarin@15095
    71
      (a \<otimes> b) \<odot>\<^bsub>M\<^esub> x = a \<odot>\<^bsub>M\<^esub> (b \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
    72
    and smult_one:
ballarin@15095
    73
      "!!x. x \<in> carrier M ==> (one R) \<odot>\<^bsub>M\<^esub> x = x"
ballarin@13936
    74
    and smult_assoc2:
ballarin@13936
    75
      "!!a x y. [| a \<in> carrier R; x \<in> carrier M; y \<in> carrier M |] ==>
ballarin@15095
    76
      (a \<odot>\<^bsub>M\<^esub> x) \<otimes>\<^bsub>M\<^esub> y = a \<odot>\<^bsub>M\<^esub> (x \<otimes>\<^bsub>M\<^esub> y)"
ballarin@13936
    77
  shows "algebra R M"
ballarin@19984
    78
apply intro_locales
ballarin@27714
    79
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms assms)+
ballarin@19931
    80
apply (rule module_axioms.intro)
ballarin@19931
    81
 apply (simp add: smult_closed)
ballarin@19931
    82
 apply (simp add: smult_l_distr)
ballarin@19931
    83
 apply (simp add: smult_r_distr)
ballarin@19931
    84
 apply (simp add: smult_assoc1)
ballarin@19931
    85
 apply (simp add: smult_one)
ballarin@27714
    86
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms assms)+
ballarin@19931
    87
apply (rule algebra_axioms.intro)
ballarin@19931
    88
 apply (simp add: smult_assoc2)
ballarin@19931
    89
done
ballarin@13936
    90
ballarin@13936
    91
lemma (in algebra) R_cring:
ballarin@13936
    92
  "cring R"
haftmann@28823
    93
  ..
ballarin@13936
    94
ballarin@13936
    95
lemma (in algebra) M_cring:
ballarin@13936
    96
  "cring M"
haftmann@28823
    97
  ..
ballarin@13936
    98
ballarin@13936
    99
lemma (in algebra) module:
ballarin@13936
   100
  "module R M"
ballarin@13936
   101
  by (auto intro: moduleI R_cring is_abelian_group
ballarin@13936
   102
    smult_l_distr smult_r_distr smult_assoc1)
ballarin@13936
   103
wenzelm@14651
   104
ballarin@13936
   105
subsection {* Basic Properties of Algebras *}
ballarin@13936
   106
ballarin@13936
   107
lemma (in algebra) smult_l_null [simp]:
ballarin@15095
   108
  "x \<in> carrier M ==> \<zero> \<odot>\<^bsub>M\<^esub> x = \<zero>\<^bsub>M\<^esub>"
ballarin@13936
   109
proof -
ballarin@13936
   110
  assume M: "x \<in> carrier M"
ballarin@20168
   111
  note facts = M smult_closed [OF R.zero_closed]
ballarin@15095
   112
  from facts have "\<zero> \<odot>\<^bsub>M\<^esub> x = (\<zero> \<odot>\<^bsub>M\<^esub> x \<oplus>\<^bsub>M\<^esub> \<zero> \<odot>\<^bsub>M\<^esub> x) \<oplus>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub> (\<zero> \<odot>\<^bsub>M\<^esub> x)" by algebra
ballarin@15095
   113
  also from M have "... = (\<zero> \<oplus> \<zero>) \<odot>\<^bsub>M\<^esub> x \<oplus>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub> (\<zero> \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
   114
    by (simp add: smult_l_distr del: R.l_zero R.r_zero)
ballarin@20168
   115
  also from facts have "... = \<zero>\<^bsub>M\<^esub>" apply algebra apply algebra done
ballarin@13936
   116
  finally show ?thesis .
ballarin@13936
   117
qed
ballarin@13936
   118
ballarin@13936
   119
lemma (in algebra) smult_r_null [simp]:
ballarin@15095
   120
  "a \<in> carrier R ==> a \<odot>\<^bsub>M\<^esub> \<zero>\<^bsub>M\<^esub> = \<zero>\<^bsub>M\<^esub>";
ballarin@13936
   121
proof -
ballarin@13936
   122
  assume R: "a \<in> carrier R"
ballarin@13936
   123
  note facts = R smult_closed
ballarin@15095
   124
  from facts have "a \<odot>\<^bsub>M\<^esub> \<zero>\<^bsub>M\<^esub> = (a \<odot>\<^bsub>M\<^esub> \<zero>\<^bsub>M\<^esub> \<oplus>\<^bsub>M\<^esub> a \<odot>\<^bsub>M\<^esub> \<zero>\<^bsub>M\<^esub>) \<oplus>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub> (a \<odot>\<^bsub>M\<^esub> \<zero>\<^bsub>M\<^esub>)"
ballarin@13936
   125
    by algebra
ballarin@15095
   126
  also from R have "... = a \<odot>\<^bsub>M\<^esub> (\<zero>\<^bsub>M\<^esub> \<oplus>\<^bsub>M\<^esub> \<zero>\<^bsub>M\<^esub>) \<oplus>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub> (a \<odot>\<^bsub>M\<^esub> \<zero>\<^bsub>M\<^esub>)"
ballarin@13936
   127
    by (simp add: smult_r_distr del: M.l_zero M.r_zero)
ballarin@15095
   128
  also from facts have "... = \<zero>\<^bsub>M\<^esub>" by algebra
ballarin@13936
   129
  finally show ?thesis .
ballarin@13936
   130
qed
ballarin@13936
   131
ballarin@13936
   132
lemma (in algebra) smult_l_minus:
ballarin@15095
   133
  "[| a \<in> carrier R; x \<in> carrier M |] ==> (\<ominus>a) \<odot>\<^bsub>M\<^esub> x = \<ominus>\<^bsub>M\<^esub> (a \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
   134
proof -
ballarin@13936
   135
  assume RM: "a \<in> carrier R" "x \<in> carrier M"
ballarin@20168
   136
  from RM have a_smult: "a \<odot>\<^bsub>M\<^esub> x \<in> carrier M" by simp
ballarin@20168
   137
  from RM have ma_smult: "\<ominus>a \<odot>\<^bsub>M\<^esub> x \<in> carrier M" by simp
ballarin@20168
   138
  note facts = RM a_smult ma_smult
ballarin@15095
   139
  from facts have "(\<ominus>a) \<odot>\<^bsub>M\<^esub> x = (\<ominus>a \<odot>\<^bsub>M\<^esub> x \<oplus>\<^bsub>M\<^esub> a \<odot>\<^bsub>M\<^esub> x) \<oplus>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub>(a \<odot>\<^bsub>M\<^esub> x)"
ballarin@15095
   140
    by algebra
ballarin@15095
   141
  also from RM have "... = (\<ominus>a \<oplus> a) \<odot>\<^bsub>M\<^esub> x \<oplus>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub>(a \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
   142
    by (simp add: smult_l_distr)
ballarin@20168
   143
  also from facts smult_l_null have "... = \<ominus>\<^bsub>M\<^esub>(a \<odot>\<^bsub>M\<^esub> x)"
ballarin@20168
   144
    apply algebra apply algebra done
ballarin@13936
   145
  finally show ?thesis .
ballarin@13936
   146
qed
ballarin@13936
   147
ballarin@13936
   148
lemma (in algebra) smult_r_minus:
ballarin@15095
   149
  "[| a \<in> carrier R; x \<in> carrier M |] ==> a \<odot>\<^bsub>M\<^esub> (\<ominus>\<^bsub>M\<^esub>x) = \<ominus>\<^bsub>M\<^esub> (a \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
   150
proof -
ballarin@13936
   151
  assume RM: "a \<in> carrier R" "x \<in> carrier M"
ballarin@13936
   152
  note facts = RM smult_closed
ballarin@15095
   153
  from facts have "a \<odot>\<^bsub>M\<^esub> (\<ominus>\<^bsub>M\<^esub>x) = (a \<odot>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub>x \<oplus>\<^bsub>M\<^esub> a \<odot>\<^bsub>M\<^esub> x) \<oplus>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub>(a \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
   154
    by algebra
ballarin@15095
   155
  also from RM have "... = a \<odot>\<^bsub>M\<^esub> (\<ominus>\<^bsub>M\<^esub>x \<oplus>\<^bsub>M\<^esub> x) \<oplus>\<^bsub>M\<^esub> \<ominus>\<^bsub>M\<^esub>(a \<odot>\<^bsub>M\<^esub> x)"
ballarin@13936
   156
    by (simp add: smult_r_distr)
ballarin@15095
   157
  also from facts smult_r_null have "... = \<ominus>\<^bsub>M\<^esub>(a \<odot>\<^bsub>M\<^esub> x)" by algebra
ballarin@13936
   158
  finally show ?thesis .
ballarin@13936
   159
qed
ballarin@13936
   160
ballarin@13936
   161
end