src/HOL/Fun.thy
author wenzelm
Mon Mar 16 18:24:30 2009 +0100 (2009-03-16)
changeset 30549 d2d7874648bd
parent 30301 429612400fe9
child 31080 21ffc770ebc0
permissions -rw-r--r--
simplified method setup;
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@1475
     2
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     3
    Copyright   1994  University of Cambridge
huffman@18154
     4
*)
clasohm@923
     5
huffman@18154
     6
header {* Notions about functions *}
clasohm@923
     7
paulson@15510
     8
theory Fun
haftmann@22886
     9
imports Set
nipkow@15131
    10
begin
nipkow@2912
    11
haftmann@26147
    12
text{*As a simplification rule, it replaces all function equalities by
haftmann@26147
    13
  first-order equalities.*}
haftmann@26147
    14
lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
haftmann@26147
    15
apply (rule iffI)
haftmann@26147
    16
apply (simp (no_asm_simp))
haftmann@26147
    17
apply (rule ext)
haftmann@26147
    18
apply (simp (no_asm_simp))
haftmann@26147
    19
done
oheimb@5305
    20
haftmann@26147
    21
lemma apply_inverse:
haftmann@26357
    22
  "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
haftmann@26147
    23
  by auto
nipkow@2912
    24
wenzelm@12258
    25
haftmann@26147
    26
subsection {* The Identity Function @{text id} *}
paulson@6171
    27
haftmann@22744
    28
definition
haftmann@22744
    29
  id :: "'a \<Rightarrow> 'a"
haftmann@22744
    30
where
haftmann@22744
    31
  "id = (\<lambda>x. x)"
nipkow@13910
    32
haftmann@26147
    33
lemma id_apply [simp]: "id x = x"
haftmann@26147
    34
  by (simp add: id_def)
haftmann@26147
    35
haftmann@26147
    36
lemma image_ident [simp]: "(%x. x) ` Y = Y"
haftmann@26147
    37
by blast
haftmann@26147
    38
haftmann@26147
    39
lemma image_id [simp]: "id ` Y = Y"
haftmann@26147
    40
by (simp add: id_def)
haftmann@26147
    41
haftmann@26147
    42
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
haftmann@26147
    43
by blast
haftmann@26147
    44
haftmann@26147
    45
lemma vimage_id [simp]: "id -` A = A"
haftmann@26147
    46
by (simp add: id_def)
haftmann@26147
    47
haftmann@26147
    48
haftmann@26147
    49
subsection {* The Composition Operator @{text "f \<circ> g"} *}
haftmann@26147
    50
haftmann@22744
    51
definition
haftmann@22744
    52
  comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
haftmann@22744
    53
where
haftmann@22744
    54
  "f o g = (\<lambda>x. f (g x))"
oheimb@11123
    55
wenzelm@21210
    56
notation (xsymbols)
wenzelm@19656
    57
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    58
wenzelm@21210
    59
notation (HTML output)
wenzelm@19656
    60
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    61
paulson@13585
    62
text{*compatibility*}
paulson@13585
    63
lemmas o_def = comp_def
nipkow@2912
    64
paulson@13585
    65
lemma o_apply [simp]: "(f o g) x = f (g x)"
paulson@13585
    66
by (simp add: comp_def)
paulson@13585
    67
paulson@13585
    68
lemma o_assoc: "f o (g o h) = f o g o h"
paulson@13585
    69
by (simp add: comp_def)
paulson@13585
    70
paulson@13585
    71
lemma id_o [simp]: "id o g = g"
paulson@13585
    72
by (simp add: comp_def)
paulson@13585
    73
paulson@13585
    74
lemma o_id [simp]: "f o id = f"
paulson@13585
    75
by (simp add: comp_def)
paulson@13585
    76
paulson@13585
    77
lemma image_compose: "(f o g) ` r = f`(g`r)"
paulson@13585
    78
by (simp add: comp_def, blast)
paulson@13585
    79
paulson@13585
    80
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
paulson@13585
    81
by (unfold comp_def, blast)
paulson@13585
    82
paulson@13585
    83
haftmann@26588
    84
subsection {* The Forward Composition Operator @{text fcomp} *}
haftmann@26357
    85
haftmann@26357
    86
definition
haftmann@26357
    87
  fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o>" 60)
haftmann@26357
    88
where
haftmann@26357
    89
  "f o> g = (\<lambda>x. g (f x))"
haftmann@26357
    90
haftmann@26357
    91
lemma fcomp_apply:  "(f o> g) x = g (f x)"
haftmann@26357
    92
  by (simp add: fcomp_def)
haftmann@26357
    93
haftmann@26357
    94
lemma fcomp_assoc: "(f o> g) o> h = f o> (g o> h)"
haftmann@26357
    95
  by (simp add: fcomp_def)
haftmann@26357
    96
haftmann@26357
    97
lemma id_fcomp [simp]: "id o> g = g"
haftmann@26357
    98
  by (simp add: fcomp_def)
haftmann@26357
    99
haftmann@26357
   100
lemma fcomp_id [simp]: "f o> id = f"
haftmann@26357
   101
  by (simp add: fcomp_def)
haftmann@26357
   102
haftmann@26588
   103
no_notation fcomp (infixl "o>" 60)
haftmann@26588
   104
haftmann@26357
   105
haftmann@26147
   106
subsection {* Injectivity and Surjectivity *}
haftmann@26147
   107
haftmann@26147
   108
constdefs
haftmann@26147
   109
  inj_on :: "['a => 'b, 'a set] => bool"  -- "injective"
haftmann@26147
   110
  "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
haftmann@26147
   111
haftmann@26147
   112
text{*A common special case: functions injective over the entire domain type.*}
haftmann@26147
   113
haftmann@26147
   114
abbreviation
haftmann@26147
   115
  "inj f == inj_on f UNIV"
paulson@13585
   116
haftmann@26147
   117
definition
haftmann@26147
   118
  bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
haftmann@28562
   119
  [code del]: "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"
haftmann@26147
   120
haftmann@26147
   121
constdefs
haftmann@26147
   122
  surj :: "('a => 'b) => bool"                   (*surjective*)
haftmann@26147
   123
  "surj f == ! y. ? x. y=f(x)"
paulson@13585
   124
haftmann@26147
   125
  bij :: "('a => 'b) => bool"                    (*bijective*)
haftmann@26147
   126
  "bij f == inj f & surj f"
haftmann@26147
   127
haftmann@26147
   128
lemma injI:
haftmann@26147
   129
  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
haftmann@26147
   130
  shows "inj f"
haftmann@26147
   131
  using assms unfolding inj_on_def by auto
paulson@13585
   132
paulson@13585
   133
text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
paulson@13585
   134
lemma datatype_injI:
paulson@13585
   135
    "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
paulson@13585
   136
by (simp add: inj_on_def)
paulson@13585
   137
berghofe@13637
   138
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   139
  by (unfold inj_on_def, blast)
berghofe@13637
   140
paulson@13585
   141
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   142
by (simp add: inj_on_def)
paulson@13585
   143
paulson@13585
   144
(*Useful with the simplifier*)
paulson@13585
   145
lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   146
by (force simp add: inj_on_def)
paulson@13585
   147
haftmann@26147
   148
lemma inj_on_id[simp]: "inj_on id A"
haftmann@26147
   149
  by (simp add: inj_on_def) 
paulson@13585
   150
haftmann@26147
   151
lemma inj_on_id2[simp]: "inj_on (%x. x) A"
haftmann@26147
   152
by (simp add: inj_on_def) 
haftmann@26147
   153
haftmann@26147
   154
lemma surj_id[simp]: "surj id"
haftmann@26147
   155
by (simp add: surj_def) 
haftmann@26147
   156
haftmann@26147
   157
lemma bij_id[simp]: "bij id"
haftmann@26147
   158
by (simp add: bij_def inj_on_id surj_id) 
paulson@13585
   159
paulson@13585
   160
lemma inj_onI:
paulson@13585
   161
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   162
by (simp add: inj_on_def)
paulson@13585
   163
paulson@13585
   164
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   165
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   166
paulson@13585
   167
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   168
by (unfold inj_on_def, blast)
paulson@13585
   169
paulson@13585
   170
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
paulson@13585
   171
by (blast dest!: inj_onD)
paulson@13585
   172
paulson@13585
   173
lemma comp_inj_on:
paulson@13585
   174
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   175
by (simp add: comp_def inj_on_def)
paulson@13585
   176
nipkow@15303
   177
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
nipkow@15303
   178
apply(simp add:inj_on_def image_def)
nipkow@15303
   179
apply blast
nipkow@15303
   180
done
nipkow@15303
   181
nipkow@15439
   182
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
nipkow@15439
   183
  inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
nipkow@15439
   184
apply(unfold inj_on_def)
nipkow@15439
   185
apply blast
nipkow@15439
   186
done
nipkow@15439
   187
paulson@13585
   188
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   189
by (unfold inj_on_def, blast)
wenzelm@12258
   190
paulson@13585
   191
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   192
by (simp add: inj_on_def)
paulson@13585
   193
nipkow@15111
   194
lemma inj_on_empty[iff]: "inj_on f {}"
nipkow@15111
   195
by(simp add: inj_on_def)
nipkow@15111
   196
nipkow@15303
   197
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
paulson@13585
   198
by (unfold inj_on_def, blast)
paulson@13585
   199
nipkow@15111
   200
lemma inj_on_Un:
nipkow@15111
   201
 "inj_on f (A Un B) =
nipkow@15111
   202
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
nipkow@15111
   203
apply(unfold inj_on_def)
nipkow@15111
   204
apply (blast intro:sym)
nipkow@15111
   205
done
nipkow@15111
   206
nipkow@15111
   207
lemma inj_on_insert[iff]:
nipkow@15111
   208
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
nipkow@15111
   209
apply(unfold inj_on_def)
nipkow@15111
   210
apply (blast intro:sym)
nipkow@15111
   211
done
nipkow@15111
   212
nipkow@15111
   213
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
nipkow@15111
   214
apply(unfold inj_on_def)
nipkow@15111
   215
apply (blast)
nipkow@15111
   216
done
nipkow@15111
   217
paulson@13585
   218
lemma surjI: "(!! x. g(f x) = x) ==> surj g"
paulson@13585
   219
apply (simp add: surj_def)
paulson@13585
   220
apply (blast intro: sym)
paulson@13585
   221
done
paulson@13585
   222
paulson@13585
   223
lemma surj_range: "surj f ==> range f = UNIV"
paulson@13585
   224
by (auto simp add: surj_def)
paulson@13585
   225
paulson@13585
   226
lemma surjD: "surj f ==> EX x. y = f x"
paulson@13585
   227
by (simp add: surj_def)
paulson@13585
   228
paulson@13585
   229
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"
paulson@13585
   230
by (simp add: surj_def, blast)
paulson@13585
   231
paulson@13585
   232
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   233
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   234
apply (drule_tac x = y in spec, clarify)
paulson@13585
   235
apply (drule_tac x = x in spec, blast)
paulson@13585
   236
done
paulson@13585
   237
paulson@13585
   238
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   239
by (simp add: bij_def)
paulson@13585
   240
paulson@13585
   241
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   242
by (simp add: bij_def)
paulson@13585
   243
paulson@13585
   244
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   245
by (simp add: bij_def)
paulson@13585
   246
nipkow@26105
   247
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
nipkow@26105
   248
by (simp add: bij_betw_def)
nipkow@26105
   249
nipkow@26105
   250
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
nipkow@26105
   251
proof -
nipkow@26105
   252
  have i: "inj_on f A" and s: "f ` A = B"
nipkow@26105
   253
    using assms by(auto simp:bij_betw_def)
nipkow@26105
   254
  let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
nipkow@26105
   255
  { fix a b assume P: "?P b a"
nipkow@26105
   256
    hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast
nipkow@26105
   257
    hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
nipkow@26105
   258
    hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
nipkow@26105
   259
  } note g = this
nipkow@26105
   260
  have "inj_on ?g B"
nipkow@26105
   261
  proof(rule inj_onI)
nipkow@26105
   262
    fix x y assume "x:B" "y:B" "?g x = ?g y"
nipkow@26105
   263
    from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast
nipkow@26105
   264
    from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast
nipkow@26105
   265
    from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp
nipkow@26105
   266
  qed
nipkow@26105
   267
  moreover have "?g ` B = A"
nipkow@26105
   268
  proof(auto simp:image_def)
nipkow@26105
   269
    fix b assume "b:B"
nipkow@26105
   270
    with s obtain a where P: "?P b a" unfolding image_def by blast
nipkow@26105
   271
    thus "?g b \<in> A" using g[OF P] by auto
nipkow@26105
   272
  next
nipkow@26105
   273
    fix a assume "a:A"
nipkow@26105
   274
    then obtain b where P: "?P b a" using s unfolding image_def by blast
nipkow@26105
   275
    then have "b:B" using s unfolding image_def by blast
nipkow@26105
   276
    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
nipkow@26105
   277
  qed
nipkow@26105
   278
  ultimately show ?thesis by(auto simp:bij_betw_def)
nipkow@26105
   279
qed
nipkow@26105
   280
paulson@13585
   281
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
paulson@13585
   282
by (simp add: surj_range)
paulson@13585
   283
paulson@13585
   284
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   285
by (simp add: inj_on_def, blast)
paulson@13585
   286
paulson@13585
   287
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
paulson@13585
   288
apply (unfold surj_def)
paulson@13585
   289
apply (blast intro: sym)
paulson@13585
   290
done
paulson@13585
   291
paulson@13585
   292
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   293
by (unfold inj_on_def, blast)
paulson@13585
   294
paulson@13585
   295
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   296
apply (unfold bij_def)
paulson@13585
   297
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   298
done
paulson@13585
   299
paulson@13585
   300
lemma inj_on_image_Int:
paulson@13585
   301
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   302
apply (simp add: inj_on_def, blast)
paulson@13585
   303
done
paulson@13585
   304
paulson@13585
   305
lemma inj_on_image_set_diff:
paulson@13585
   306
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
paulson@13585
   307
apply (simp add: inj_on_def, blast)
paulson@13585
   308
done
paulson@13585
   309
paulson@13585
   310
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   311
by (simp add: inj_on_def, blast)
paulson@13585
   312
paulson@13585
   313
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   314
by (simp add: inj_on_def, blast)
paulson@13585
   315
paulson@13585
   316
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
paulson@13585
   317
by (blast dest: injD)
paulson@13585
   318
paulson@13585
   319
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
paulson@13585
   320
by (simp add: inj_on_def, blast)
paulson@13585
   321
paulson@13585
   322
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
paulson@13585
   323
by (blast dest: injD)
paulson@13585
   324
paulson@13585
   325
(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
paulson@13585
   326
lemma image_INT:
paulson@13585
   327
   "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
paulson@13585
   328
    ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   329
apply (simp add: inj_on_def, blast)
paulson@13585
   330
done
paulson@13585
   331
paulson@13585
   332
(*Compare with image_INT: no use of inj_on, and if f is surjective then
paulson@13585
   333
  it doesn't matter whether A is empty*)
paulson@13585
   334
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   335
apply (simp add: bij_def)
paulson@13585
   336
apply (simp add: inj_on_def surj_def, blast)
paulson@13585
   337
done
paulson@13585
   338
paulson@13585
   339
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
paulson@13585
   340
by (auto simp add: surj_def)
paulson@13585
   341
paulson@13585
   342
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   343
by (auto simp add: inj_on_def)
paulson@5852
   344
paulson@13585
   345
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   346
apply (simp add: bij_def)
paulson@13585
   347
apply (rule equalityI)
paulson@13585
   348
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   349
done
paulson@13585
   350
paulson@13585
   351
paulson@13585
   352
subsection{*Function Updating*}
paulson@13585
   353
haftmann@26147
   354
constdefs
haftmann@26147
   355
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
haftmann@26147
   356
  "fun_upd f a b == % x. if x=a then b else f x"
haftmann@26147
   357
haftmann@26147
   358
nonterminals
haftmann@26147
   359
  updbinds updbind
haftmann@26147
   360
syntax
haftmann@26147
   361
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
haftmann@26147
   362
  ""         :: "updbind => updbinds"             ("_")
haftmann@26147
   363
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
haftmann@26147
   364
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
haftmann@26147
   365
haftmann@26147
   366
translations
haftmann@26147
   367
  "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
haftmann@26147
   368
  "f(x:=y)"                     == "fun_upd f x y"
haftmann@26147
   369
haftmann@26147
   370
(* Hint: to define the sum of two functions (or maps), use sum_case.
haftmann@26147
   371
         A nice infix syntax could be defined (in Datatype.thy or below) by
haftmann@26147
   372
consts
haftmann@26147
   373
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
haftmann@26147
   374
translations
haftmann@26147
   375
 "fun_sum" == sum_case
haftmann@26147
   376
*)
haftmann@26147
   377
paulson@13585
   378
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   379
apply (simp add: fun_upd_def, safe)
paulson@13585
   380
apply (erule subst)
paulson@13585
   381
apply (rule_tac [2] ext, auto)
paulson@13585
   382
done
paulson@13585
   383
paulson@13585
   384
(* f x = y ==> f(x:=y) = f *)
paulson@13585
   385
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
paulson@13585
   386
paulson@13585
   387
(* f(x := f x) = f *)
paulson@17084
   388
lemmas fun_upd_triv = refl [THEN fun_upd_idem]
paulson@17084
   389
declare fun_upd_triv [iff]
paulson@13585
   390
paulson@13585
   391
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@17084
   392
by (simp add: fun_upd_def)
paulson@13585
   393
paulson@13585
   394
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   395
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   396
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   397
by simp
paulson@13585
   398
paulson@13585
   399
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   400
by simp
paulson@13585
   401
paulson@13585
   402
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
paulson@13585
   403
by (simp add: expand_fun_eq)
paulson@13585
   404
paulson@13585
   405
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   406
by (rule ext, auto)
paulson@13585
   407
nipkow@15303
   408
lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A"
nipkow@15303
   409
by(fastsimp simp:inj_on_def image_def)
nipkow@15303
   410
paulson@15510
   411
lemma fun_upd_image:
paulson@15510
   412
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
paulson@15510
   413
by auto
paulson@15510
   414
haftmann@26147
   415
haftmann@26147
   416
subsection {* @{text override_on} *}
haftmann@26147
   417
haftmann@26147
   418
definition
haftmann@26147
   419
  override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
haftmann@26147
   420
where
haftmann@26147
   421
  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
nipkow@13910
   422
nipkow@15691
   423
lemma override_on_emptyset[simp]: "override_on f g {} = f"
nipkow@15691
   424
by(simp add:override_on_def)
nipkow@13910
   425
nipkow@15691
   426
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
nipkow@15691
   427
by(simp add:override_on_def)
nipkow@13910
   428
nipkow@15691
   429
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
nipkow@15691
   430
by(simp add:override_on_def)
nipkow@13910
   431
haftmann@26147
   432
haftmann@26147
   433
subsection {* @{text swap} *}
paulson@15510
   434
haftmann@22744
   435
definition
haftmann@22744
   436
  swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
haftmann@22744
   437
where
haftmann@22744
   438
  "swap a b f = f (a := f b, b:= f a)"
paulson@15510
   439
paulson@15510
   440
lemma swap_self: "swap a a f = f"
nipkow@15691
   441
by (simp add: swap_def)
paulson@15510
   442
paulson@15510
   443
lemma swap_commute: "swap a b f = swap b a f"
paulson@15510
   444
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   445
paulson@15510
   446
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
paulson@15510
   447
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   448
paulson@15510
   449
lemma inj_on_imp_inj_on_swap:
haftmann@22744
   450
  "[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A"
paulson@15510
   451
by (simp add: inj_on_def swap_def, blast)
paulson@15510
   452
paulson@15510
   453
lemma inj_on_swap_iff [simp]:
paulson@15510
   454
  assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A"
paulson@15510
   455
proof 
paulson@15510
   456
  assume "inj_on (swap a b f) A"
paulson@15510
   457
  with A have "inj_on (swap a b (swap a b f)) A" 
nipkow@17589
   458
    by (iprover intro: inj_on_imp_inj_on_swap) 
paulson@15510
   459
  thus "inj_on f A" by simp 
paulson@15510
   460
next
paulson@15510
   461
  assume "inj_on f A"
nipkow@27165
   462
  with A show "inj_on (swap a b f) A" by(iprover intro: inj_on_imp_inj_on_swap)
paulson@15510
   463
qed
paulson@15510
   464
paulson@15510
   465
lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)"
paulson@15510
   466
apply (simp add: surj_def swap_def, clarify)
wenzelm@27125
   467
apply (case_tac "y = f b", blast)
wenzelm@27125
   468
apply (case_tac "y = f a", auto)
paulson@15510
   469
done
paulson@15510
   470
paulson@15510
   471
lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f"
paulson@15510
   472
proof 
paulson@15510
   473
  assume "surj (swap a b f)"
paulson@15510
   474
  hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) 
paulson@15510
   475
  thus "surj f" by simp 
paulson@15510
   476
next
paulson@15510
   477
  assume "surj f"
paulson@15510
   478
  thus "surj (swap a b f)" by (rule surj_imp_surj_swap) 
paulson@15510
   479
qed
paulson@15510
   480
paulson@15510
   481
lemma bij_swap_iff: "bij (swap a b f) = bij f"
paulson@15510
   482
by (simp add: bij_def)
haftmann@21547
   483
nipkow@27188
   484
hide (open) const swap
haftmann@21547
   485
haftmann@22845
   486
subsection {* Proof tool setup *} 
haftmann@22845
   487
haftmann@22845
   488
text {* simplifies terms of the form
haftmann@22845
   489
  f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}
haftmann@22845
   490
wenzelm@24017
   491
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
haftmann@22845
   492
let
haftmann@22845
   493
  fun gen_fun_upd NONE T _ _ = NONE
wenzelm@24017
   494
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
haftmann@22845
   495
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
haftmann@22845
   496
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
haftmann@22845
   497
    let
haftmann@22845
   498
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
haftmann@22845
   499
            if v aconv x then SOME g else gen_fun_upd (find g) T v w
haftmann@22845
   500
        | find t = NONE
haftmann@22845
   501
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
wenzelm@24017
   502
wenzelm@24017
   503
  fun proc ss ct =
wenzelm@24017
   504
    let
wenzelm@24017
   505
      val ctxt = Simplifier.the_context ss
wenzelm@24017
   506
      val t = Thm.term_of ct
wenzelm@24017
   507
    in
wenzelm@24017
   508
      case find_double t of
wenzelm@24017
   509
        (T, NONE) => NONE
wenzelm@24017
   510
      | (T, SOME rhs) =>
wenzelm@27330
   511
          SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
wenzelm@24017
   512
            (fn _ =>
wenzelm@24017
   513
              rtac eq_reflection 1 THEN
wenzelm@24017
   514
              rtac ext 1 THEN
wenzelm@24017
   515
              simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
wenzelm@24017
   516
    end
wenzelm@24017
   517
in proc end
haftmann@22845
   518
*}
haftmann@22845
   519
haftmann@22845
   520
haftmann@21870
   521
subsection {* Code generator setup *}
haftmann@21870
   522
berghofe@25886
   523
types_code
berghofe@25886
   524
  "fun"  ("(_ ->/ _)")
berghofe@25886
   525
attach (term_of) {*
berghofe@25886
   526
fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
berghofe@25886
   527
*}
berghofe@25886
   528
attach (test) {*
berghofe@25886
   529
fun gen_fun_type aF aT bG bT i =
berghofe@25886
   530
  let
berghofe@25886
   531
    val tab = ref [];
berghofe@25886
   532
    fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
berghofe@25886
   533
      (aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y ()
berghofe@25886
   534
  in
berghofe@25886
   535
    (fn x =>
berghofe@25886
   536
       case AList.lookup op = (!tab) x of
berghofe@25886
   537
         NONE =>
berghofe@25886
   538
           let val p as (y, _) = bG i
berghofe@25886
   539
           in (tab := (x, p) :: !tab; y) end
berghofe@25886
   540
       | SOME (y, _) => y,
berghofe@28711
   541
     fn () => Basics.fold mk_upd (!tab) (Const ("HOL.undefined", aT --> bT)))
berghofe@25886
   542
  end;
berghofe@25886
   543
*}
berghofe@25886
   544
haftmann@21870
   545
code_const "op \<circ>"
haftmann@21870
   546
  (SML infixl 5 "o")
haftmann@21870
   547
  (Haskell infixr 9 ".")
haftmann@21870
   548
haftmann@21906
   549
code_const "id"
haftmann@21906
   550
  (Haskell "id")
haftmann@21906
   551
nipkow@2912
   552
end