src/HOL/Hilbert_Choice.thy
author wenzelm
Mon Mar 16 18:24:30 2009 +0100 (2009-03-16)
changeset 30549 d2d7874648bd
parent 29655 ac31940cfb69
child 31380 f25536c0bb80
permissions -rw-r--r--
simplified method setup;
paulson@11451
     1
(*  Title:      HOL/Hilbert_Choice.thy
paulson@11451
     2
    Author:     Lawrence C Paulson
paulson@11451
     3
    Copyright   2001  University of Cambridge
wenzelm@12023
     4
*)
paulson@11451
     5
paulson@14760
     6
header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
paulson@11451
     7
nipkow@15131
     8
theory Hilbert_Choice
haftmann@29655
     9
imports Nat Wellfounded Plain
haftmann@16417
    10
uses ("Tools/meson.ML") ("Tools/specification_package.ML")
nipkow@15131
    11
begin
wenzelm@12298
    12
wenzelm@12298
    13
subsection {* Hilbert's epsilon *}
wenzelm@12298
    14
wenzelm@22690
    15
axiomatization
wenzelm@22690
    16
  Eps :: "('a => bool) => 'a"
wenzelm@22690
    17
where
wenzelm@22690
    18
  someI: "P x ==> P (Eps P)"
paulson@11451
    19
wenzelm@14872
    20
syntax (epsilon)
wenzelm@14872
    21
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
paulson@11451
    22
syntax (HOL)
wenzelm@12298
    23
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
paulson@11451
    24
syntax
wenzelm@12298
    25
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
paulson@11451
    26
translations
wenzelm@22690
    27
  "SOME x. P" == "CONST Eps (%x. P)"
nipkow@13763
    28
nipkow@13763
    29
print_translation {*
nipkow@13763
    30
(* to avoid eta-contraction of body *)
wenzelm@22690
    31
[(@{const_syntax Eps}, fn [Abs abs] =>
nipkow@13763
    32
     let val (x,t) = atomic_abs_tr' abs
nipkow@13763
    33
     in Syntax.const "_Eps" $ x $ t end)]
nipkow@13763
    34
*}
paulson@11451
    35
wenzelm@12298
    36
constdefs
wenzelm@12298
    37
  inv :: "('a => 'b) => ('b => 'a)"
wenzelm@12298
    38
  "inv(f :: 'a => 'b) == %y. SOME x. f x = y"
paulson@11454
    39
wenzelm@12298
    40
  Inv :: "'a set => ('a => 'b) => ('b => 'a)"
paulson@14760
    41
  "Inv A f == %x. SOME y. y \<in> A & f y = x"
paulson@14760
    42
paulson@14760
    43
paulson@14760
    44
subsection {*Hilbert's Epsilon-operator*}
paulson@14760
    45
paulson@14760
    46
text{*Easier to apply than @{text someI} if the witness comes from an
paulson@14760
    47
existential formula*}
paulson@14760
    48
lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)"
paulson@14760
    49
apply (erule exE)
paulson@14760
    50
apply (erule someI)
paulson@14760
    51
done
paulson@14760
    52
paulson@14760
    53
text{*Easier to apply than @{text someI} because the conclusion has only one
paulson@14760
    54
occurrence of @{term P}.*}
paulson@14760
    55
lemma someI2: "[| P a;  !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
paulson@14760
    56
by (blast intro: someI)
paulson@14760
    57
paulson@14760
    58
text{*Easier to apply than @{text someI2} if the witness comes from an
paulson@14760
    59
existential formula*}
paulson@14760
    60
lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
paulson@14760
    61
by (blast intro: someI2)
paulson@14760
    62
paulson@14760
    63
lemma some_equality [intro]:
paulson@14760
    64
     "[| P a;  !!x. P x ==> x=a |] ==> (SOME x. P x) = a"
paulson@14760
    65
by (blast intro: someI2)
paulson@14760
    66
paulson@14760
    67
lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a"
paulson@14760
    68
by (blast intro: some_equality)
paulson@14760
    69
paulson@14760
    70
lemma some_eq_ex: "P (SOME x. P x) =  (\<exists>x. P x)"
paulson@14760
    71
by (blast intro: someI)
paulson@14760
    72
paulson@14760
    73
lemma some_eq_trivial [simp]: "(SOME y. y=x) = x"
paulson@14760
    74
apply (rule some_equality)
paulson@14760
    75
apply (rule refl, assumption)
paulson@14760
    76
done
paulson@14760
    77
paulson@14760
    78
lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x"
paulson@14760
    79
apply (rule some_equality)
paulson@14760
    80
apply (rule refl)
paulson@14760
    81
apply (erule sym)
paulson@14760
    82
done
paulson@14760
    83
paulson@14760
    84
paulson@14760
    85
subsection{*Axiom of Choice, Proved Using the Description Operator*}
paulson@14760
    86
paulson@14760
    87
text{*Used in @{text "Tools/meson.ML"}*}
paulson@14760
    88
lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)"
paulson@14760
    89
by (fast elim: someI)
paulson@14760
    90
paulson@14760
    91
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)"
paulson@14760
    92
by (fast elim: someI)
paulson@14760
    93
paulson@14760
    94
paulson@14760
    95
subsection {*Function Inverse*}
paulson@14760
    96
paulson@14760
    97
lemma inv_id [simp]: "inv id = id"
paulson@14760
    98
by (simp add: inv_def id_def)
paulson@14760
    99
paulson@14760
   100
text{*A one-to-one function has an inverse.*}
paulson@14760
   101
lemma inv_f_f [simp]: "inj f ==> inv f (f x) = x"
paulson@14760
   102
by (simp add: inv_def inj_eq)
paulson@14760
   103
paulson@14760
   104
lemma inv_f_eq: "[| inj f;  f x = y |] ==> inv f y = x"
paulson@14760
   105
apply (erule subst)
paulson@14760
   106
apply (erule inv_f_f)
paulson@14760
   107
done
paulson@14760
   108
paulson@14760
   109
lemma inj_imp_inv_eq: "[| inj f; \<forall>x. f(g x) = x |] ==> inv f = g"
paulson@14760
   110
by (blast intro: ext inv_f_eq)
paulson@14760
   111
paulson@14760
   112
text{*But is it useful?*}
paulson@14760
   113
lemma inj_transfer:
paulson@14760
   114
  assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)"
paulson@14760
   115
  shows "P x"
paulson@14760
   116
proof -
paulson@14760
   117
  have "f x \<in> range f" by auto
paulson@14760
   118
  hence "P(inv f (f x))" by (rule minor)
paulson@14760
   119
  thus "P x" by (simp add: inv_f_f [OF injf])
paulson@14760
   120
qed
paulson@11451
   121
paulson@11451
   122
paulson@14760
   123
lemma inj_iff: "(inj f) = (inv f o f = id)"
paulson@14760
   124
apply (simp add: o_def expand_fun_eq)
paulson@14760
   125
apply (blast intro: inj_on_inverseI inv_f_f)
paulson@14760
   126
done
paulson@14760
   127
nipkow@23433
   128
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id"
nipkow@23433
   129
by (simp add: inj_iff)
nipkow@23433
   130
nipkow@23433
   131
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g"
nipkow@23433
   132
by (simp add: o_assoc[symmetric])
nipkow@23433
   133
nipkow@23433
   134
lemma inv_image_cancel[simp]:
nipkow@23433
   135
  "inj f ==> inv f ` f ` S = S"
nipkow@23433
   136
by (simp add: image_compose[symmetric])
nipkow@23433
   137
 
paulson@14760
   138
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)"
paulson@14760
   139
by (blast intro: surjI inv_f_f)
paulson@14760
   140
paulson@14760
   141
lemma f_inv_f: "y \<in> range(f) ==> f(inv f y) = y"
paulson@14760
   142
apply (simp add: inv_def)
paulson@14760
   143
apply (fast intro: someI)
paulson@14760
   144
done
paulson@14760
   145
paulson@14760
   146
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y"
paulson@14760
   147
by (simp add: f_inv_f surj_range)
paulson@14760
   148
paulson@14760
   149
lemma inv_injective:
paulson@14760
   150
  assumes eq: "inv f x = inv f y"
paulson@14760
   151
      and x: "x: range f"
paulson@14760
   152
      and y: "y: range f"
paulson@14760
   153
  shows "x=y"
paulson@14760
   154
proof -
paulson@14760
   155
  have "f (inv f x) = f (inv f y)" using eq by simp
paulson@14760
   156
  thus ?thesis by (simp add: f_inv_f x y) 
paulson@14760
   157
qed
paulson@14760
   158
paulson@14760
   159
lemma inj_on_inv: "A <= range(f) ==> inj_on (inv f) A"
paulson@14760
   160
by (fast intro: inj_onI elim: inv_injective injD)
paulson@14760
   161
paulson@14760
   162
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)"
paulson@14760
   163
by (simp add: inj_on_inv surj_range)
paulson@14760
   164
paulson@14760
   165
lemma surj_iff: "(surj f) = (f o inv f = id)"
paulson@14760
   166
apply (simp add: o_def expand_fun_eq)
paulson@14760
   167
apply (blast intro: surjI surj_f_inv_f)
paulson@14760
   168
done
paulson@14760
   169
paulson@14760
   170
lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g"
paulson@14760
   171
apply (rule ext)
paulson@14760
   172
apply (drule_tac x = "inv f x" in spec)
paulson@14760
   173
apply (simp add: surj_f_inv_f)
paulson@14760
   174
done
paulson@14760
   175
paulson@14760
   176
lemma bij_imp_bij_inv: "bij f ==> bij (inv f)"
paulson@14760
   177
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)
wenzelm@12372
   178
paulson@14760
   179
lemma inv_equality: "[| !!x. g (f x) = x;  !!y. f (g y) = y |] ==> inv f = g"
paulson@14760
   180
apply (rule ext)
paulson@14760
   181
apply (auto simp add: inv_def)
paulson@14760
   182
done
paulson@14760
   183
paulson@14760
   184
lemma inv_inv_eq: "bij f ==> inv (inv f) = f"
paulson@14760
   185
apply (rule inv_equality)
paulson@14760
   186
apply (auto simp add: bij_def surj_f_inv_f)
paulson@14760
   187
done
paulson@14760
   188
paulson@14760
   189
(** bij(inv f) implies little about f.  Consider f::bool=>bool such that
paulson@14760
   190
    f(True)=f(False)=True.  Then it's consistent with axiom someI that
paulson@14760
   191
    inv f could be any function at all, including the identity function.
paulson@14760
   192
    If inv f=id then inv f is a bijection, but inj f, surj(f) and
paulson@14760
   193
    inv(inv f)=f all fail.
paulson@14760
   194
**)
paulson@14760
   195
paulson@14760
   196
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f"
paulson@14760
   197
apply (rule inv_equality)
paulson@14760
   198
apply (auto simp add: bij_def surj_f_inv_f)
paulson@14760
   199
done
paulson@14760
   200
paulson@14760
   201
paulson@14760
   202
lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A"
paulson@14760
   203
by (simp add: image_eq_UN surj_f_inv_f)
paulson@14760
   204
paulson@14760
   205
lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A"
paulson@14760
   206
by (simp add: image_eq_UN)
paulson@14760
   207
paulson@14760
   208
lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X"
paulson@14760
   209
by (auto simp add: image_def)
paulson@14760
   210
paulson@14760
   211
lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
paulson@14760
   212
apply auto
paulson@14760
   213
apply (force simp add: bij_is_inj)
paulson@14760
   214
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])
paulson@14760
   215
done
paulson@14760
   216
paulson@14760
   217
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" 
paulson@14760
   218
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])
paulson@14760
   219
apply (blast intro: bij_is_inj [THEN inv_f_f, symmetric])
paulson@14760
   220
done
paulson@14760
   221
paulson@14760
   222
paulson@14760
   223
subsection {*Inverse of a PI-function (restricted domain)*}
paulson@14760
   224
paulson@14760
   225
lemma Inv_f_f: "[| inj_on f A;  x \<in> A |] ==> Inv A f (f x) = x"
paulson@14760
   226
apply (simp add: Inv_def inj_on_def)
paulson@14760
   227
apply (blast intro: someI2)
paulson@14760
   228
done
paulson@14760
   229
paulson@14760
   230
lemma f_Inv_f: "y \<in> f`A  ==> f (Inv A f y) = y"
paulson@14760
   231
apply (simp add: Inv_def)
paulson@13585
   232
apply (fast intro: someI2)
paulson@13585
   233
done
paulson@11451
   234
paulson@14760
   235
lemma Inv_injective:
paulson@14760
   236
  assumes eq: "Inv A f x = Inv A f y"
paulson@14760
   237
      and x: "x: f`A"
paulson@14760
   238
      and y: "y: f`A"
paulson@14760
   239
  shows "x=y"
paulson@14760
   240
proof -
paulson@14760
   241
  have "f (Inv A f x) = f (Inv A f y)" using eq by simp
paulson@14760
   242
  thus ?thesis by (simp add: f_Inv_f x y) 
paulson@14760
   243
qed
paulson@14760
   244
paulson@14760
   245
lemma inj_on_Inv: "B <= f`A ==> inj_on (Inv A f) B"
paulson@14760
   246
apply (rule inj_onI)
paulson@14760
   247
apply (blast intro: inj_onI dest: Inv_injective injD)
paulson@14760
   248
done
paulson@14760
   249
paulson@14760
   250
lemma Inv_mem: "[| f ` A = B;  x \<in> B |] ==> Inv A f x \<in> A"
paulson@14760
   251
apply (simp add: Inv_def)
paulson@14760
   252
apply (fast intro: someI2)
paulson@14760
   253
done
paulson@14760
   254
paulson@14760
   255
lemma Inv_f_eq: "[| inj_on f A; f x = y; x \<in> A |] ==> Inv A f y = x"
ballarin@14399
   256
  apply (erule subst)
paulson@14760
   257
  apply (erule Inv_f_f, assumption)
ballarin@14399
   258
  done
ballarin@14399
   259
ballarin@14399
   260
lemma Inv_comp:
paulson@14760
   261
  "[| inj_on f (g ` A); inj_on g A; x \<in> f ` g ` A |] ==>
ballarin@14399
   262
  Inv A (f o g) x = (Inv A g o Inv (g ` A) f) x"
ballarin@14399
   263
  apply simp
ballarin@14399
   264
  apply (rule Inv_f_eq)
ballarin@14399
   265
    apply (fast intro: comp_inj_on)
ballarin@14399
   266
   apply (simp add: f_Inv_f Inv_mem)
ballarin@14399
   267
  apply (simp add: Inv_mem)
ballarin@14399
   268
  done
ballarin@14399
   269
nipkow@26105
   270
lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A"
nipkow@26105
   271
  apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem)
nipkow@26105
   272
  apply (simp add: image_compose [symmetric] o_def)
nipkow@26105
   273
  apply (simp add: image_def Inv_f_f)
nipkow@26105
   274
  done
paulson@14760
   275
paulson@14760
   276
subsection {*Other Consequences of Hilbert's Epsilon*}
paulson@14760
   277
paulson@14760
   278
text {*Hilbert's Epsilon and the @{term split} Operator*}
paulson@14760
   279
paulson@14760
   280
text{*Looping simprule*}
paulson@14760
   281
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))"
haftmann@26347
   282
  by simp
paulson@14760
   283
paulson@14760
   284
lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))"
haftmann@26347
   285
  by (simp add: split_def)
paulson@14760
   286
paulson@14760
   287
lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)"
haftmann@26347
   288
  by blast
paulson@14760
   289
paulson@14760
   290
paulson@14760
   291
text{*A relation is wellfounded iff it has no infinite descending chain*}
paulson@14760
   292
lemma wf_iff_no_infinite_down_chain:
paulson@14760
   293
  "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))"
paulson@14760
   294
apply (simp only: wf_eq_minimal)
paulson@14760
   295
apply (rule iffI)
paulson@14760
   296
 apply (rule notI)
paulson@14760
   297
 apply (erule exE)
paulson@14760
   298
 apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
paulson@14760
   299
apply (erule contrapos_np, simp, clarify)
paulson@14760
   300
apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q")
paulson@14760
   301
 apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI)
paulson@14760
   302
 apply (rule allI, simp)
paulson@14760
   303
 apply (rule someI2_ex, blast, blast)
paulson@14760
   304
apply (rule allI)
paulson@14760
   305
apply (induct_tac "n", simp_all)
paulson@14760
   306
apply (rule someI2_ex, blast+)
paulson@14760
   307
done
paulson@14760
   308
nipkow@27760
   309
lemma wf_no_infinite_down_chainE:
nipkow@27760
   310
  assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r"
nipkow@27760
   311
using `wf r` wf_iff_no_infinite_down_chain[of r] by blast
nipkow@27760
   312
nipkow@27760
   313
paulson@14760
   314
text{*A dynamically-scoped fact for TFL *}
wenzelm@12298
   315
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"
wenzelm@12298
   316
  by (blast intro: someI)
paulson@11451
   317
wenzelm@12298
   318
wenzelm@12298
   319
subsection {* Least value operator *}
paulson@11451
   320
paulson@11451
   321
constdefs
wenzelm@12298
   322
  LeastM :: "['a => 'b::ord, 'a => bool] => 'a"
paulson@14760
   323
  "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)"
paulson@11451
   324
paulson@11451
   325
syntax
wenzelm@12298
   326
  "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   327
translations
wenzelm@12298
   328
  "LEAST x WRT m. P" == "LeastM m (%x. P)"
paulson@11451
   329
paulson@11451
   330
lemma LeastMI2:
wenzelm@12298
   331
  "P x ==> (!!y. P y ==> m x <= m y)
wenzelm@12298
   332
    ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x)
wenzelm@12298
   333
    ==> Q (LeastM m P)"
paulson@14760
   334
  apply (simp add: LeastM_def)
paulson@14208
   335
  apply (rule someI2_ex, blast, blast)
wenzelm@12298
   336
  done
paulson@11451
   337
paulson@11451
   338
lemma LeastM_equality:
wenzelm@12298
   339
  "P k ==> (!!x. P x ==> m k <= m x)
wenzelm@12298
   340
    ==> m (LEAST x WRT m. P x) = (m k::'a::order)"
paulson@14208
   341
  apply (rule LeastMI2, assumption, blast)
wenzelm@12298
   342
  apply (blast intro!: order_antisym)
wenzelm@12298
   343
  done
paulson@11451
   344
paulson@11454
   345
lemma wf_linord_ex_has_least:
paulson@14760
   346
  "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k
paulson@14760
   347
    ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)"
wenzelm@12298
   348
  apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])
paulson@14208
   349
  apply (drule_tac x = "m`Collect P" in spec, force)
wenzelm@12298
   350
  done
paulson@11454
   351
paulson@11454
   352
lemma ex_has_least_nat:
paulson@14760
   353
    "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))"
wenzelm@12298
   354
  apply (simp only: pred_nat_trancl_eq_le [symmetric])
wenzelm@12298
   355
  apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])
paulson@16796
   356
   apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption)
wenzelm@12298
   357
  done
paulson@11454
   358
wenzelm@12298
   359
lemma LeastM_nat_lemma:
paulson@14760
   360
    "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))"
paulson@14760
   361
  apply (simp add: LeastM_def)
wenzelm@12298
   362
  apply (rule someI_ex)
wenzelm@12298
   363
  apply (erule ex_has_least_nat)
wenzelm@12298
   364
  done
paulson@11454
   365
paulson@11454
   366
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard]
paulson@11454
   367
paulson@11454
   368
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)"
paulson@14208
   369
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption)
paulson@11454
   370
paulson@11451
   371
wenzelm@12298
   372
subsection {* Greatest value operator *}
paulson@11451
   373
paulson@11451
   374
constdefs
wenzelm@12298
   375
  GreatestM :: "['a => 'b::ord, 'a => bool] => 'a"
paulson@14760
   376
  "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)"
wenzelm@12298
   377
wenzelm@12298
   378
  Greatest :: "('a::ord => bool) => 'a"    (binder "GREATEST " 10)
wenzelm@12298
   379
  "Greatest == GreatestM (%x. x)"
paulson@11451
   380
paulson@11451
   381
syntax
wenzelm@12298
   382
  "_GreatestM" :: "[pttrn, 'a=>'b::ord, bool] => 'a"
wenzelm@12298
   383
      ("GREATEST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   384
paulson@11451
   385
translations
wenzelm@12298
   386
  "GREATEST x WRT m. P" == "GreatestM m (%x. P)"
paulson@11451
   387
paulson@11451
   388
lemma GreatestMI2:
wenzelm@12298
   389
  "P x ==> (!!y. P y ==> m y <= m x)
wenzelm@12298
   390
    ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x)
wenzelm@12298
   391
    ==> Q (GreatestM m P)"
paulson@14760
   392
  apply (simp add: GreatestM_def)
paulson@14208
   393
  apply (rule someI2_ex, blast, blast)
wenzelm@12298
   394
  done
paulson@11451
   395
paulson@11451
   396
lemma GreatestM_equality:
wenzelm@12298
   397
 "P k ==> (!!x. P x ==> m x <= m k)
wenzelm@12298
   398
    ==> m (GREATEST x WRT m. P x) = (m k::'a::order)"
paulson@14208
   399
  apply (rule_tac m = m in GreatestMI2, assumption, blast)
wenzelm@12298
   400
  apply (blast intro!: order_antisym)
wenzelm@12298
   401
  done
paulson@11451
   402
paulson@11451
   403
lemma Greatest_equality:
wenzelm@12298
   404
  "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k"
paulson@14760
   405
  apply (simp add: Greatest_def)
paulson@14208
   406
  apply (erule GreatestM_equality, blast)
wenzelm@12298
   407
  done
paulson@11451
   408
paulson@11451
   409
lemma ex_has_greatest_nat_lemma:
paulson@14760
   410
  "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x))
paulson@14760
   411
    ==> \<exists>y. P y & ~ (m y < m k + n)"
paulson@15251
   412
  apply (induct n, force)
wenzelm@12298
   413
  apply (force simp add: le_Suc_eq)
wenzelm@12298
   414
  done
paulson@11451
   415
wenzelm@12298
   416
lemma ex_has_greatest_nat:
paulson@14760
   417
  "P k ==> \<forall>y. P y --> m y < b
paulson@14760
   418
    ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)"
wenzelm@12298
   419
  apply (rule ccontr)
wenzelm@12298
   420
  apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)
paulson@14208
   421
    apply (subgoal_tac [3] "m k <= b", auto)
wenzelm@12298
   422
  done
paulson@11451
   423
wenzelm@12298
   424
lemma GreatestM_nat_lemma:
paulson@14760
   425
  "P k ==> \<forall>y. P y --> m y < b
paulson@14760
   426
    ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))"
paulson@14760
   427
  apply (simp add: GreatestM_def)
wenzelm@12298
   428
  apply (rule someI_ex)
paulson@14208
   429
  apply (erule ex_has_greatest_nat, assumption)
wenzelm@12298
   430
  done
paulson@11451
   431
paulson@11451
   432
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard]
paulson@11451
   433
wenzelm@12298
   434
lemma GreatestM_nat_le:
paulson@14760
   435
  "P x ==> \<forall>y. P y --> m y < b
wenzelm@12298
   436
    ==> (m x::nat) <= m (GreatestM m P)"
berghofe@21020
   437
  apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P])
wenzelm@12298
   438
  done
wenzelm@12298
   439
wenzelm@12298
   440
wenzelm@12298
   441
text {* \medskip Specialization to @{text GREATEST}. *}
wenzelm@12298
   442
paulson@14760
   443
lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)"
paulson@14760
   444
  apply (simp add: Greatest_def)
paulson@14208
   445
  apply (rule GreatestM_natI, auto)
wenzelm@12298
   446
  done
paulson@11451
   447
wenzelm@12298
   448
lemma Greatest_le:
paulson@14760
   449
    "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)"
paulson@14760
   450
  apply (simp add: Greatest_def)
paulson@14208
   451
  apply (rule GreatestM_nat_le, auto)
wenzelm@12298
   452
  done
wenzelm@12298
   453
wenzelm@12298
   454
wenzelm@12298
   455
subsection {* The Meson proof procedure *}
paulson@11451
   456
wenzelm@12298
   457
subsubsection {* Negation Normal Form *}
wenzelm@12298
   458
wenzelm@12298
   459
text {* de Morgan laws *}
wenzelm@12298
   460
wenzelm@12298
   461
lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q"
wenzelm@12298
   462
  and meson_not_disjD: "~(P|Q) ==> ~P & ~Q"
wenzelm@12298
   463
  and meson_not_notD: "~~P ==> P"
paulson@14760
   464
  and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)"
paulson@14760
   465
  and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)"
wenzelm@12298
   466
  by fast+
paulson@11451
   467
wenzelm@12298
   468
text {* Removal of @{text "-->"} and @{text "<->"} (positive and
wenzelm@12298
   469
negative occurrences) *}
wenzelm@12298
   470
wenzelm@12298
   471
lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q"
wenzelm@12298
   472
  and meson_not_impD: "~(P-->Q) ==> P & ~Q"
wenzelm@12298
   473
  and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
wenzelm@12298
   474
  and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
wenzelm@12298
   475
    -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
paulson@18389
   476
  and meson_not_refl_disj_D: "x ~= x | P ==> P"
wenzelm@12298
   477
  by fast+
wenzelm@12298
   478
wenzelm@12298
   479
wenzelm@12298
   480
subsubsection {* Pulling out the existential quantifiers *}
wenzelm@12298
   481
wenzelm@12298
   482
text {* Conjunction *}
wenzelm@12298
   483
paulson@14760
   484
lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q"
paulson@14760
   485
  and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)"
wenzelm@12298
   486
  by fast+
wenzelm@12298
   487
paulson@11451
   488
wenzelm@12298
   489
text {* Disjunction *}
wenzelm@12298
   490
paulson@14760
   491
lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)"
wenzelm@12298
   492
  -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
wenzelm@12298
   493
  -- {* With ex-Skolemization, makes fewer Skolem constants *}
paulson@14760
   494
  and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q"
paulson@14760
   495
  and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)"
wenzelm@12298
   496
  by fast+
wenzelm@12298
   497
paulson@11451
   498
wenzelm@12298
   499
subsubsection {* Generating clauses for the Meson Proof Procedure *}
wenzelm@12298
   500
wenzelm@12298
   501
text {* Disjunctions *}
wenzelm@12298
   502
wenzelm@12298
   503
lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)"
wenzelm@12298
   504
  and meson_disj_comm: "P|Q ==> Q|P"
wenzelm@12298
   505
  and meson_disj_FalseD1: "False|P ==> P"
wenzelm@12298
   506
  and meson_disj_FalseD2: "P|False ==> P"
wenzelm@12298
   507
  by fast+
paulson@11451
   508
paulson@14760
   509
paulson@14760
   510
subsection{*Lemmas for Meson, the Model Elimination Procedure*}
paulson@14760
   511
paulson@14760
   512
text{* Generation of contrapositives *}
paulson@14760
   513
paulson@14760
   514
text{*Inserts negated disjunct after removing the negation; P is a literal.
paulson@14760
   515
  Model elimination requires assuming the negation of every attempted subgoal,
paulson@14760
   516
  hence the negated disjuncts.*}
paulson@14760
   517
lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"
paulson@14760
   518
by blast
paulson@14760
   519
paulson@14760
   520
text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
paulson@14760
   521
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"
paulson@14760
   522
by blast
paulson@14760
   523
paulson@14760
   524
text{*@{term P} should be a literal*}
paulson@14760
   525
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"
paulson@14760
   526
by blast
paulson@14760
   527
paulson@14760
   528
text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
paulson@14760
   529
insert new assumptions, for ordinary resolution.*}
paulson@14760
   530
paulson@14760
   531
lemmas make_neg_rule' = make_refined_neg_rule
paulson@14760
   532
paulson@14760
   533
lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"
paulson@14760
   534
by blast
paulson@14760
   535
paulson@14760
   536
text{* Generation of a goal clause -- put away the final literal *}
paulson@14760
   537
paulson@14760
   538
lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"
paulson@14760
   539
by blast
paulson@14760
   540
paulson@14760
   541
lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"
paulson@14760
   542
by blast
paulson@14760
   543
paulson@14760
   544
paulson@14760
   545
subsubsection{* Lemmas for Forward Proof*}
paulson@14760
   546
paulson@14760
   547
text{*There is a similarity to congruence rules*}
paulson@14760
   548
paulson@14760
   549
(*NOTE: could handle conjunctions (faster?) by
paulson@14760
   550
    nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)
paulson@14760
   551
lemma conj_forward: "[| P'&Q';  P' ==> P;  Q' ==> Q |] ==> P&Q"
paulson@14760
   552
by blast
paulson@14760
   553
paulson@14760
   554
lemma disj_forward: "[| P'|Q';  P' ==> P;  Q' ==> Q |] ==> P|Q"
paulson@14760
   555
by blast
paulson@14760
   556
paulson@14760
   557
(*Version of @{text disj_forward} for removal of duplicate literals*)
paulson@14760
   558
lemma disj_forward2:
paulson@14760
   559
    "[| P'|Q';  P' ==> P;  [| Q'; P==>False |] ==> Q |] ==> P|Q"
paulson@14760
   560
apply blast 
paulson@14760
   561
done
paulson@14760
   562
paulson@14760
   563
lemma all_forward: "[| \<forall>x. P'(x);  !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)"
paulson@14760
   564
by blast
paulson@14760
   565
paulson@14760
   566
lemma ex_forward: "[| \<exists>x. P'(x);  !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)"
paulson@14760
   567
by blast
paulson@14760
   568
paulson@17420
   569
paulson@17420
   570
text{*Many of these bindings are used by the ATP linkup, and not just by
paulson@17420
   571
legacy proof scripts.*}
paulson@14760
   572
ML
paulson@14760
   573
{*
paulson@14760
   574
val inv_def = thm "inv_def";
paulson@14760
   575
val Inv_def = thm "Inv_def";
paulson@14760
   576
paulson@14760
   577
val someI = thm "someI";
paulson@14760
   578
val someI_ex = thm "someI_ex";
paulson@14760
   579
val someI2 = thm "someI2";
paulson@14760
   580
val someI2_ex = thm "someI2_ex";
paulson@14760
   581
val some_equality = thm "some_equality";
paulson@14760
   582
val some1_equality = thm "some1_equality";
paulson@14760
   583
val some_eq_ex = thm "some_eq_ex";
paulson@14760
   584
val some_eq_trivial = thm "some_eq_trivial";
paulson@14760
   585
val some_sym_eq_trivial = thm "some_sym_eq_trivial";
paulson@14760
   586
val choice = thm "choice";
paulson@14760
   587
val bchoice = thm "bchoice";
paulson@14760
   588
val inv_id = thm "inv_id";
paulson@14760
   589
val inv_f_f = thm "inv_f_f";
paulson@14760
   590
val inv_f_eq = thm "inv_f_eq";
paulson@14760
   591
val inj_imp_inv_eq = thm "inj_imp_inv_eq";
paulson@14760
   592
val inj_transfer = thm "inj_transfer";
paulson@14760
   593
val inj_iff = thm "inj_iff";
paulson@14760
   594
val inj_imp_surj_inv = thm "inj_imp_surj_inv";
paulson@14760
   595
val f_inv_f = thm "f_inv_f";
paulson@14760
   596
val surj_f_inv_f = thm "surj_f_inv_f";
paulson@14760
   597
val inv_injective = thm "inv_injective";
paulson@14760
   598
val inj_on_inv = thm "inj_on_inv";
paulson@14760
   599
val surj_imp_inj_inv = thm "surj_imp_inj_inv";
paulson@14760
   600
val surj_iff = thm "surj_iff";
paulson@14760
   601
val surj_imp_inv_eq = thm "surj_imp_inv_eq";
paulson@14760
   602
val bij_imp_bij_inv = thm "bij_imp_bij_inv";
paulson@14760
   603
val inv_equality = thm "inv_equality";
paulson@14760
   604
val inv_inv_eq = thm "inv_inv_eq";
paulson@14760
   605
val o_inv_distrib = thm "o_inv_distrib";
paulson@14760
   606
val image_surj_f_inv_f = thm "image_surj_f_inv_f";
paulson@14760
   607
val image_inv_f_f = thm "image_inv_f_f";
paulson@14760
   608
val inv_image_comp = thm "inv_image_comp";
paulson@14760
   609
val bij_image_Collect_eq = thm "bij_image_Collect_eq";
paulson@14760
   610
val bij_vimage_eq_inv_image = thm "bij_vimage_eq_inv_image";
paulson@14760
   611
val Inv_f_f = thm "Inv_f_f";
paulson@14760
   612
val f_Inv_f = thm "f_Inv_f";
paulson@14760
   613
val Inv_injective = thm "Inv_injective";
paulson@14760
   614
val inj_on_Inv = thm "inj_on_Inv";
paulson@14760
   615
val split_paired_Eps = thm "split_paired_Eps";
paulson@14760
   616
val Eps_split = thm "Eps_split";
paulson@14760
   617
val Eps_split_eq = thm "Eps_split_eq";
paulson@14760
   618
val wf_iff_no_infinite_down_chain = thm "wf_iff_no_infinite_down_chain";
paulson@14760
   619
val Inv_mem = thm "Inv_mem";
paulson@14760
   620
val Inv_f_eq = thm "Inv_f_eq";
paulson@14760
   621
val Inv_comp = thm "Inv_comp";
paulson@14760
   622
val tfl_some = thm "tfl_some";
paulson@14760
   623
val make_neg_rule = thm "make_neg_rule";
paulson@14760
   624
val make_refined_neg_rule = thm "make_refined_neg_rule";
paulson@14760
   625
val make_pos_rule = thm "make_pos_rule";
paulson@14760
   626
val make_neg_rule' = thm "make_neg_rule'";
paulson@14760
   627
val make_pos_rule' = thm "make_pos_rule'";
paulson@14760
   628
val make_neg_goal = thm "make_neg_goal";
paulson@14760
   629
val make_pos_goal = thm "make_pos_goal";
paulson@14760
   630
val conj_forward = thm "conj_forward";
paulson@14760
   631
val disj_forward = thm "disj_forward";
paulson@14760
   632
val disj_forward2 = thm "disj_forward2";
paulson@14760
   633
val all_forward = thm "all_forward";
paulson@14760
   634
val ex_forward = thm "ex_forward";
paulson@14760
   635
*}
paulson@14760
   636
paulson@14760
   637
paulson@21999
   638
subsection {* Meson package *}
wenzelm@17893
   639
paulson@11451
   640
use "Tools/meson.ML"
paulson@11451
   641
paulson@26562
   642
setup Meson.setup
paulson@26562
   643
wenzelm@17893
   644
wenzelm@17893
   645
subsection {* Specification package -- Hilbertized version *}
wenzelm@17893
   646
wenzelm@17893
   647
lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c"
wenzelm@17893
   648
  by (simp only: someI_ex)
wenzelm@17893
   649
skalberg@14115
   650
use "Tools/specification_package.ML"
skalberg@14115
   651
paulson@11451
   652
end