src/HOL/IntDiv.thy
author wenzelm
Mon Mar 16 18:24:30 2009 +0100 (2009-03-16)
changeset 30549 d2d7874648bd
parent 30517 51a39ed24c0f
child 30652 752329615264
permissions -rw-r--r--
simplified method setup;
wenzelm@23164
     1
(*  Title:      HOL/IntDiv.thy
wenzelm@23164
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@23164
     3
    Copyright   1999  University of Cambridge
wenzelm@23164
     4
wenzelm@23164
     5
*)
wenzelm@23164
     6
haftmann@29651
     7
header{* The Division Operators div and mod *}
wenzelm@23164
     8
wenzelm@23164
     9
theory IntDiv
haftmann@25919
    10
imports Int Divides FunDef
wenzelm@23164
    11
begin
wenzelm@23164
    12
haftmann@29651
    13
definition divmod_rel :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool" where
wenzelm@23164
    14
    --{*definition of quotient and remainder*}
haftmann@29651
    15
    [code]: "divmod_rel a b = (\<lambda>(q, r). a = b * q + r \<and>
haftmann@29651
    16
               (if 0 < b then 0 \<le> r \<and> r < b else b < r \<and> r \<le> 0))"
wenzelm@23164
    17
haftmann@29651
    18
definition adjust :: "int \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int" where
wenzelm@23164
    19
    --{*for the division algorithm*}
haftmann@29651
    20
    [code]: "adjust b = (\<lambda>(q, r). if 0 \<le> r - b then (2 * q + 1, r - b)
haftmann@29651
    21
                         else (2 * q, r))"
wenzelm@23164
    22
wenzelm@23164
    23
text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
haftmann@29651
    24
function posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@29651
    25
  "posDivAlg a b = (if a < b \<or>  b \<le> 0 then (0, a)
haftmann@29651
    26
     else adjust b (posDivAlg a (2 * b)))"
wenzelm@23164
    27
by auto
haftmann@29651
    28
termination by (relation "measure (\<lambda>(a, b). nat (a - b + 1))") auto
wenzelm@23164
    29
wenzelm@23164
    30
text{*algorithm for the case @{text "a<0, b>0"}*}
haftmann@29651
    31
function negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@29651
    32
  "negDivAlg a b = (if 0 \<le>a + b \<or> b \<le> 0  then (-1, a + b)
haftmann@29651
    33
     else adjust b (negDivAlg a (2 * b)))"
wenzelm@23164
    34
by auto
haftmann@29651
    35
termination by (relation "measure (\<lambda>(a, b). nat (- a - b))") auto
wenzelm@23164
    36
wenzelm@23164
    37
text{*algorithm for the general case @{term "b\<noteq>0"}*}
haftmann@29651
    38
definition negateSnd :: "int \<times> int \<Rightarrow> int \<times> int" where
haftmann@29651
    39
  [code inline]: "negateSnd = apsnd uminus"
wenzelm@23164
    40
haftmann@29651
    41
definition divmod :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
wenzelm@23164
    42
    --{*The full division algorithm considers all possible signs for a, b
wenzelm@23164
    43
       including the special case @{text "a=0, b<0"} because 
wenzelm@23164
    44
       @{term negDivAlg} requires @{term "a<0"}.*}
haftmann@29651
    45
  "divmod a b = (if 0 \<le> a then if 0 \<le> b then posDivAlg a b
haftmann@29651
    46
                  else if a = 0 then (0, 0)
wenzelm@23164
    47
                       else negateSnd (negDivAlg (-a) (-b))
wenzelm@23164
    48
               else 
haftmann@29651
    49
                  if 0 < b then negDivAlg a b
haftmann@29651
    50
                  else negateSnd (posDivAlg (-a) (-b)))"
wenzelm@23164
    51
haftmann@25571
    52
instantiation int :: Divides.div
haftmann@25571
    53
begin
haftmann@25571
    54
haftmann@25571
    55
definition
haftmann@29651
    56
  div_def: "a div b = fst (divmod a b)"
haftmann@25571
    57
haftmann@25571
    58
definition
haftmann@29651
    59
  mod_def: "a mod b = snd (divmod a b)"
haftmann@25571
    60
haftmann@25571
    61
instance ..
haftmann@25571
    62
haftmann@25571
    63
end
wenzelm@23164
    64
haftmann@29651
    65
lemma divmod_mod_div:
haftmann@29651
    66
  "divmod p q = (p div q, p mod q)"
wenzelm@23164
    67
  by (auto simp add: div_def mod_def)
wenzelm@23164
    68
wenzelm@23164
    69
text{*
wenzelm@23164
    70
Here is the division algorithm in ML:
wenzelm@23164
    71
wenzelm@23164
    72
\begin{verbatim}
wenzelm@23164
    73
    fun posDivAlg (a,b) =
wenzelm@23164
    74
      if a<b then (0,a)
wenzelm@23164
    75
      else let val (q,r) = posDivAlg(a, 2*b)
wenzelm@23164
    76
	       in  if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
wenzelm@23164
    77
	   end
wenzelm@23164
    78
wenzelm@23164
    79
    fun negDivAlg (a,b) =
wenzelm@23164
    80
      if 0\<le>a+b then (~1,a+b)
wenzelm@23164
    81
      else let val (q,r) = negDivAlg(a, 2*b)
wenzelm@23164
    82
	       in  if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
wenzelm@23164
    83
	   end;
wenzelm@23164
    84
wenzelm@23164
    85
    fun negateSnd (q,r:int) = (q,~r);
wenzelm@23164
    86
haftmann@29651
    87
    fun divmod (a,b) = if 0\<le>a then 
wenzelm@23164
    88
			  if b>0 then posDivAlg (a,b) 
wenzelm@23164
    89
			   else if a=0 then (0,0)
wenzelm@23164
    90
				else negateSnd (negDivAlg (~a,~b))
wenzelm@23164
    91
		       else 
wenzelm@23164
    92
			  if 0<b then negDivAlg (a,b)
wenzelm@23164
    93
			  else        negateSnd (posDivAlg (~a,~b));
wenzelm@23164
    94
\end{verbatim}
wenzelm@23164
    95
*}
wenzelm@23164
    96
wenzelm@23164
    97
wenzelm@23164
    98
wenzelm@23164
    99
subsection{*Uniqueness and Monotonicity of Quotients and Remainders*}
wenzelm@23164
   100
wenzelm@23164
   101
lemma unique_quotient_lemma:
wenzelm@23164
   102
     "[| b*q' + r'  \<le> b*q + r;  0 \<le> r';  r' < b;  r < b |]  
wenzelm@23164
   103
      ==> q' \<le> (q::int)"
wenzelm@23164
   104
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
wenzelm@23164
   105
 prefer 2 apply (simp add: right_diff_distrib)
wenzelm@23164
   106
apply (subgoal_tac "0 < b * (1 + q - q') ")
wenzelm@23164
   107
apply (erule_tac [2] order_le_less_trans)
wenzelm@23164
   108
 prefer 2 apply (simp add: right_diff_distrib right_distrib)
wenzelm@23164
   109
apply (subgoal_tac "b * q' < b * (1 + q) ")
wenzelm@23164
   110
 prefer 2 apply (simp add: right_diff_distrib right_distrib)
wenzelm@23164
   111
apply (simp add: mult_less_cancel_left)
wenzelm@23164
   112
done
wenzelm@23164
   113
wenzelm@23164
   114
lemma unique_quotient_lemma_neg:
wenzelm@23164
   115
     "[| b*q' + r' \<le> b*q + r;  r \<le> 0;  b < r;  b < r' |]  
wenzelm@23164
   116
      ==> q \<le> (q'::int)"
wenzelm@23164
   117
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, 
wenzelm@23164
   118
    auto)
wenzelm@23164
   119
wenzelm@23164
   120
lemma unique_quotient:
haftmann@29651
   121
     "[| divmod_rel a b (q, r); divmod_rel a b (q', r');  b \<noteq> 0 |]  
wenzelm@23164
   122
      ==> q = q'"
haftmann@29651
   123
apply (simp add: divmod_rel_def linorder_neq_iff split: split_if_asm)
wenzelm@23164
   124
apply (blast intro: order_antisym
wenzelm@23164
   125
             dest: order_eq_refl [THEN unique_quotient_lemma] 
wenzelm@23164
   126
             order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
wenzelm@23164
   127
done
wenzelm@23164
   128
wenzelm@23164
   129
wenzelm@23164
   130
lemma unique_remainder:
haftmann@29651
   131
     "[| divmod_rel a b (q, r); divmod_rel a b (q', r');  b \<noteq> 0 |]  
wenzelm@23164
   132
      ==> r = r'"
wenzelm@23164
   133
apply (subgoal_tac "q = q'")
haftmann@29651
   134
 apply (simp add: divmod_rel_def)
wenzelm@23164
   135
apply (blast intro: unique_quotient)
wenzelm@23164
   136
done
wenzelm@23164
   137
wenzelm@23164
   138
wenzelm@23164
   139
subsection{*Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends*}
wenzelm@23164
   140
wenzelm@23164
   141
text{*And positive divisors*}
wenzelm@23164
   142
wenzelm@23164
   143
lemma adjust_eq [simp]:
wenzelm@23164
   144
     "adjust b (q,r) = 
wenzelm@23164
   145
      (let diff = r-b in  
wenzelm@23164
   146
	if 0 \<le> diff then (2*q + 1, diff)   
wenzelm@23164
   147
                     else (2*q, r))"
wenzelm@23164
   148
by (simp add: Let_def adjust_def)
wenzelm@23164
   149
wenzelm@23164
   150
declare posDivAlg.simps [simp del]
wenzelm@23164
   151
wenzelm@23164
   152
text{*use with a simproc to avoid repeatedly proving the premise*}
wenzelm@23164
   153
lemma posDivAlg_eqn:
wenzelm@23164
   154
     "0 < b ==>  
wenzelm@23164
   155
      posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))"
wenzelm@23164
   156
by (rule posDivAlg.simps [THEN trans], simp)
wenzelm@23164
   157
wenzelm@23164
   158
text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
wenzelm@23164
   159
theorem posDivAlg_correct:
wenzelm@23164
   160
  assumes "0 \<le> a" and "0 < b"
haftmann@29651
   161
  shows "divmod_rel a b (posDivAlg a b)"
wenzelm@23164
   162
using prems apply (induct a b rule: posDivAlg.induct)
wenzelm@23164
   163
apply auto
haftmann@29651
   164
apply (simp add: divmod_rel_def)
wenzelm@23164
   165
apply (subst posDivAlg_eqn, simp add: right_distrib)
wenzelm@23164
   166
apply (case_tac "a < b")
wenzelm@23164
   167
apply simp_all
wenzelm@23164
   168
apply (erule splitE)
wenzelm@23164
   169
apply (auto simp add: right_distrib Let_def)
wenzelm@23164
   170
done
wenzelm@23164
   171
wenzelm@23164
   172
wenzelm@23164
   173
subsection{*Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends*}
wenzelm@23164
   174
wenzelm@23164
   175
text{*And positive divisors*}
wenzelm@23164
   176
wenzelm@23164
   177
declare negDivAlg.simps [simp del]
wenzelm@23164
   178
wenzelm@23164
   179
text{*use with a simproc to avoid repeatedly proving the premise*}
wenzelm@23164
   180
lemma negDivAlg_eqn:
wenzelm@23164
   181
     "0 < b ==>  
wenzelm@23164
   182
      negDivAlg a b =       
wenzelm@23164
   183
       (if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))"
wenzelm@23164
   184
by (rule negDivAlg.simps [THEN trans], simp)
wenzelm@23164
   185
wenzelm@23164
   186
(*Correctness of negDivAlg: it computes quotients correctly
wenzelm@23164
   187
  It doesn't work if a=0 because the 0/b equals 0, not -1*)
wenzelm@23164
   188
lemma negDivAlg_correct:
wenzelm@23164
   189
  assumes "a < 0" and "b > 0"
haftmann@29651
   190
  shows "divmod_rel a b (negDivAlg a b)"
wenzelm@23164
   191
using prems apply (induct a b rule: negDivAlg.induct)
wenzelm@23164
   192
apply (auto simp add: linorder_not_le)
haftmann@29651
   193
apply (simp add: divmod_rel_def)
wenzelm@23164
   194
apply (subst negDivAlg_eqn, assumption)
wenzelm@23164
   195
apply (case_tac "a + b < (0\<Colon>int)")
wenzelm@23164
   196
apply simp_all
wenzelm@23164
   197
apply (erule splitE)
wenzelm@23164
   198
apply (auto simp add: right_distrib Let_def)
wenzelm@23164
   199
done
wenzelm@23164
   200
wenzelm@23164
   201
wenzelm@23164
   202
subsection{*Existence Shown by Proving the Division Algorithm to be Correct*}
wenzelm@23164
   203
wenzelm@23164
   204
(*the case a=0*)
haftmann@29651
   205
lemma divmod_rel_0: "b \<noteq> 0 ==> divmod_rel 0 b (0, 0)"
haftmann@29651
   206
by (auto simp add: divmod_rel_def linorder_neq_iff)
wenzelm@23164
   207
wenzelm@23164
   208
lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)"
wenzelm@23164
   209
by (subst posDivAlg.simps, auto)
wenzelm@23164
   210
wenzelm@23164
   211
lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)"
wenzelm@23164
   212
by (subst negDivAlg.simps, auto)
wenzelm@23164
   213
wenzelm@23164
   214
lemma negateSnd_eq [simp]: "negateSnd(q,r) = (q,-r)"
wenzelm@23164
   215
by (simp add: negateSnd_def)
wenzelm@23164
   216
haftmann@29651
   217
lemma divmod_rel_neg: "divmod_rel (-a) (-b) qr ==> divmod_rel a b (negateSnd qr)"
haftmann@29651
   218
by (auto simp add: split_ifs divmod_rel_def)
wenzelm@23164
   219
haftmann@29651
   220
lemma divmod_correct: "b \<noteq> 0 ==> divmod_rel a b (divmod a b)"
haftmann@29651
   221
by (force simp add: linorder_neq_iff divmod_rel_0 divmod_def divmod_rel_neg
wenzelm@23164
   222
                    posDivAlg_correct negDivAlg_correct)
wenzelm@23164
   223
wenzelm@23164
   224
text{*Arbitrary definitions for division by zero.  Useful to simplify 
wenzelm@23164
   225
    certain equations.*}
wenzelm@23164
   226
wenzelm@23164
   227
lemma DIVISION_BY_ZERO [simp]: "a div (0::int) = 0 & a mod (0::int) = a"
haftmann@29651
   228
by (simp add: div_def mod_def divmod_def posDivAlg.simps)  
wenzelm@23164
   229
wenzelm@23164
   230
wenzelm@23164
   231
text{*Basic laws about division and remainder*}
wenzelm@23164
   232
wenzelm@23164
   233
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
wenzelm@23164
   234
apply (case_tac "b = 0", simp)
haftmann@29651
   235
apply (cut_tac a = a and b = b in divmod_correct)
haftmann@29651
   236
apply (auto simp add: divmod_rel_def div_def mod_def)
wenzelm@23164
   237
done
wenzelm@23164
   238
wenzelm@23164
   239
lemma zdiv_zmod_equality: "(b * (a div b) + (a mod b)) + k = (a::int)+k"
wenzelm@23164
   240
by(simp add: zmod_zdiv_equality[symmetric])
wenzelm@23164
   241
wenzelm@23164
   242
lemma zdiv_zmod_equality2: "((a div b) * b + (a mod b)) + k = (a::int)+k"
wenzelm@23164
   243
by(simp add: mult_commute zmod_zdiv_equality[symmetric])
wenzelm@23164
   244
wenzelm@23164
   245
text {* Tool setup *}
wenzelm@23164
   246
wenzelm@26480
   247
ML {*
wenzelm@23164
   248
local 
wenzelm@23164
   249
wenzelm@23164
   250
structure CancelDivMod = CancelDivModFun(
wenzelm@23164
   251
struct
wenzelm@23164
   252
  val div_name = @{const_name Divides.div};
wenzelm@23164
   253
  val mod_name = @{const_name Divides.mod};
wenzelm@23164
   254
  val mk_binop = HOLogic.mk_binop;
wenzelm@23164
   255
  val mk_sum = Int_Numeral_Simprocs.mk_sum HOLogic.intT;
wenzelm@23164
   256
  val dest_sum = Int_Numeral_Simprocs.dest_sum;
wenzelm@23164
   257
  val div_mod_eqs =
wenzelm@23164
   258
    map mk_meta_eq [@{thm zdiv_zmod_equality},
wenzelm@23164
   259
      @{thm zdiv_zmod_equality2}];
wenzelm@23164
   260
  val trans = trans;
wenzelm@23164
   261
  val prove_eq_sums =
wenzelm@23164
   262
    let
huffman@23365
   263
      val simps = @{thm diff_int_def} :: Int_Numeral_Simprocs.add_0s @ @{thms zadd_ac}
haftmann@30496
   264
    in Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac simps) end;
wenzelm@23164
   265
end)
wenzelm@23164
   266
wenzelm@23164
   267
in
wenzelm@23164
   268
wenzelm@28262
   269
val cancel_zdiv_zmod_proc = Simplifier.simproc (the_context ())
haftmann@26101
   270
  "cancel_zdiv_zmod" ["(m::int) + n"] (K CancelDivMod.proc)
wenzelm@23164
   271
wenzelm@23164
   272
end;
wenzelm@23164
   273
wenzelm@23164
   274
Addsimprocs [cancel_zdiv_zmod_proc]
wenzelm@23164
   275
*}
wenzelm@23164
   276
wenzelm@23164
   277
lemma pos_mod_conj : "(0::int) < b ==> 0 \<le> a mod b & a mod b < b"
haftmann@29651
   278
apply (cut_tac a = a and b = b in divmod_correct)
haftmann@29651
   279
apply (auto simp add: divmod_rel_def mod_def)
wenzelm@23164
   280
done
wenzelm@23164
   281
wenzelm@23164
   282
lemmas pos_mod_sign  [simp] = pos_mod_conj [THEN conjunct1, standard]
wenzelm@23164
   283
   and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2, standard]
wenzelm@23164
   284
wenzelm@23164
   285
lemma neg_mod_conj : "b < (0::int) ==> a mod b \<le> 0 & b < a mod b"
haftmann@29651
   286
apply (cut_tac a = a and b = b in divmod_correct)
haftmann@29651
   287
apply (auto simp add: divmod_rel_def div_def mod_def)
wenzelm@23164
   288
done
wenzelm@23164
   289
wenzelm@23164
   290
lemmas neg_mod_sign  [simp] = neg_mod_conj [THEN conjunct1, standard]
wenzelm@23164
   291
   and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2, standard]
wenzelm@23164
   292
wenzelm@23164
   293
wenzelm@23164
   294
wenzelm@23164
   295
subsection{*General Properties of div and mod*}
wenzelm@23164
   296
haftmann@29651
   297
lemma divmod_rel_div_mod: "b \<noteq> 0 ==> divmod_rel a b (a div b, a mod b)"
wenzelm@23164
   298
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@29651
   299
apply (force simp add: divmod_rel_def linorder_neq_iff)
wenzelm@23164
   300
done
wenzelm@23164
   301
haftmann@29651
   302
lemma divmod_rel_div: "[| divmod_rel a b (q, r);  b \<noteq> 0 |] ==> a div b = q"
haftmann@29651
   303
by (simp add: divmod_rel_div_mod [THEN unique_quotient])
wenzelm@23164
   304
haftmann@29651
   305
lemma divmod_rel_mod: "[| divmod_rel a b (q, r);  b \<noteq> 0 |] ==> a mod b = r"
haftmann@29651
   306
by (simp add: divmod_rel_div_mod [THEN unique_remainder])
wenzelm@23164
   307
wenzelm@23164
   308
lemma div_pos_pos_trivial: "[| (0::int) \<le> a;  a < b |] ==> a div b = 0"
haftmann@29651
   309
apply (rule divmod_rel_div)
haftmann@29651
   310
apply (auto simp add: divmod_rel_def)
wenzelm@23164
   311
done
wenzelm@23164
   312
wenzelm@23164
   313
lemma div_neg_neg_trivial: "[| a \<le> (0::int);  b < a |] ==> a div b = 0"
haftmann@29651
   314
apply (rule divmod_rel_div)
haftmann@29651
   315
apply (auto simp add: divmod_rel_def)
wenzelm@23164
   316
done
wenzelm@23164
   317
wenzelm@23164
   318
lemma div_pos_neg_trivial: "[| (0::int) < a;  a+b \<le> 0 |] ==> a div b = -1"
haftmann@29651
   319
apply (rule divmod_rel_div)
haftmann@29651
   320
apply (auto simp add: divmod_rel_def)
wenzelm@23164
   321
done
wenzelm@23164
   322
wenzelm@23164
   323
(*There is no div_neg_pos_trivial because  0 div b = 0 would supersede it*)
wenzelm@23164
   324
wenzelm@23164
   325
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a;  a < b |] ==> a mod b = a"
haftmann@29651
   326
apply (rule_tac q = 0 in divmod_rel_mod)
haftmann@29651
   327
apply (auto simp add: divmod_rel_def)
wenzelm@23164
   328
done
wenzelm@23164
   329
wenzelm@23164
   330
lemma mod_neg_neg_trivial: "[| a \<le> (0::int);  b < a |] ==> a mod b = a"
haftmann@29651
   331
apply (rule_tac q = 0 in divmod_rel_mod)
haftmann@29651
   332
apply (auto simp add: divmod_rel_def)
wenzelm@23164
   333
done
wenzelm@23164
   334
wenzelm@23164
   335
lemma mod_pos_neg_trivial: "[| (0::int) < a;  a+b \<le> 0 |] ==> a mod b = a+b"
haftmann@29651
   336
apply (rule_tac q = "-1" in divmod_rel_mod)
haftmann@29651
   337
apply (auto simp add: divmod_rel_def)
wenzelm@23164
   338
done
wenzelm@23164
   339
wenzelm@23164
   340
text{*There is no @{text mod_neg_pos_trivial}.*}
wenzelm@23164
   341
wenzelm@23164
   342
wenzelm@23164
   343
(*Simpler laws such as -a div b = -(a div b) FAIL, but see just below*)
wenzelm@23164
   344
lemma zdiv_zminus_zminus [simp]: "(-a) div (-b) = a div (b::int)"
wenzelm@23164
   345
apply (case_tac "b = 0", simp)
haftmann@29651
   346
apply (simp add: divmod_rel_div_mod [THEN divmod_rel_neg, simplified, 
haftmann@29651
   347
                                 THEN divmod_rel_div, THEN sym])
wenzelm@23164
   348
wenzelm@23164
   349
done
wenzelm@23164
   350
wenzelm@23164
   351
(*Simpler laws such as -a mod b = -(a mod b) FAIL, but see just below*)
wenzelm@23164
   352
lemma zmod_zminus_zminus [simp]: "(-a) mod (-b) = - (a mod (b::int))"
wenzelm@23164
   353
apply (case_tac "b = 0", simp)
haftmann@29651
   354
apply (subst divmod_rel_div_mod [THEN divmod_rel_neg, simplified, THEN divmod_rel_mod],
wenzelm@23164
   355
       auto)
wenzelm@23164
   356
done
wenzelm@23164
   357
wenzelm@23164
   358
wenzelm@23164
   359
subsection{*Laws for div and mod with Unary Minus*}
wenzelm@23164
   360
wenzelm@23164
   361
lemma zminus1_lemma:
haftmann@29651
   362
     "divmod_rel a b (q, r)
haftmann@29651
   363
      ==> divmod_rel (-a) b (if r=0 then -q else -q - 1,  
haftmann@29651
   364
                          if r=0 then 0 else b-r)"
haftmann@29651
   365
by (force simp add: split_ifs divmod_rel_def linorder_neq_iff right_diff_distrib)
wenzelm@23164
   366
wenzelm@23164
   367
wenzelm@23164
   368
lemma zdiv_zminus1_eq_if:
wenzelm@23164
   369
     "b \<noteq> (0::int)  
wenzelm@23164
   370
      ==> (-a) div b =  
wenzelm@23164
   371
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
haftmann@29651
   372
by (blast intro: divmod_rel_div_mod [THEN zminus1_lemma, THEN divmod_rel_div])
wenzelm@23164
   373
wenzelm@23164
   374
lemma zmod_zminus1_eq_if:
wenzelm@23164
   375
     "(-a::int) mod b = (if a mod b = 0 then 0 else  b - (a mod b))"
wenzelm@23164
   376
apply (case_tac "b = 0", simp)
haftmann@29651
   377
apply (blast intro: divmod_rel_div_mod [THEN zminus1_lemma, THEN divmod_rel_mod])
wenzelm@23164
   378
done
wenzelm@23164
   379
haftmann@29936
   380
lemma zmod_zminus1_not_zero:
haftmann@29936
   381
  fixes k l :: int
haftmann@29936
   382
  shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
haftmann@29936
   383
  unfolding zmod_zminus1_eq_if by auto
haftmann@29936
   384
wenzelm@23164
   385
lemma zdiv_zminus2: "a div (-b) = (-a::int) div b"
wenzelm@23164
   386
by (cut_tac a = "-a" in zdiv_zminus_zminus, auto)
wenzelm@23164
   387
wenzelm@23164
   388
lemma zmod_zminus2: "a mod (-b) = - ((-a::int) mod b)"
wenzelm@23164
   389
by (cut_tac a = "-a" and b = b in zmod_zminus_zminus, auto)
wenzelm@23164
   390
wenzelm@23164
   391
lemma zdiv_zminus2_eq_if:
wenzelm@23164
   392
     "b \<noteq> (0::int)  
wenzelm@23164
   393
      ==> a div (-b) =  
wenzelm@23164
   394
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
wenzelm@23164
   395
by (simp add: zdiv_zminus1_eq_if zdiv_zminus2)
wenzelm@23164
   396
wenzelm@23164
   397
lemma zmod_zminus2_eq_if:
wenzelm@23164
   398
     "a mod (-b::int) = (if a mod b = 0 then 0 else  (a mod b) - b)"
wenzelm@23164
   399
by (simp add: zmod_zminus1_eq_if zmod_zminus2)
wenzelm@23164
   400
haftmann@29936
   401
lemma zmod_zminus2_not_zero:
haftmann@29936
   402
  fixes k l :: int
haftmann@29936
   403
  shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
haftmann@29936
   404
  unfolding zmod_zminus2_eq_if by auto 
haftmann@29936
   405
wenzelm@23164
   406
wenzelm@23164
   407
subsection{*Division of a Number by Itself*}
wenzelm@23164
   408
wenzelm@23164
   409
lemma self_quotient_aux1: "[| (0::int) < a; a = r + a*q; r < a |] ==> 1 \<le> q"
wenzelm@23164
   410
apply (subgoal_tac "0 < a*q")
wenzelm@23164
   411
 apply (simp add: zero_less_mult_iff, arith)
wenzelm@23164
   412
done
wenzelm@23164
   413
wenzelm@23164
   414
lemma self_quotient_aux2: "[| (0::int) < a; a = r + a*q; 0 \<le> r |] ==> q \<le> 1"
wenzelm@23164
   415
apply (subgoal_tac "0 \<le> a* (1-q) ")
wenzelm@23164
   416
 apply (simp add: zero_le_mult_iff)
wenzelm@23164
   417
apply (simp add: right_diff_distrib)
wenzelm@23164
   418
done
wenzelm@23164
   419
haftmann@29651
   420
lemma self_quotient: "[| divmod_rel a a (q, r);  a \<noteq> (0::int) |] ==> q = 1"
haftmann@29651
   421
apply (simp add: split_ifs divmod_rel_def linorder_neq_iff)
wenzelm@23164
   422
apply (rule order_antisym, safe, simp_all)
wenzelm@23164
   423
apply (rule_tac [3] a = "-a" and r = "-r" in self_quotient_aux1)
wenzelm@23164
   424
apply (rule_tac a = "-a" and r = "-r" in self_quotient_aux2)
wenzelm@23164
   425
apply (force intro: self_quotient_aux1 self_quotient_aux2 simp add: add_commute)+
wenzelm@23164
   426
done
wenzelm@23164
   427
haftmann@29651
   428
lemma self_remainder: "[| divmod_rel a a (q, r);  a \<noteq> (0::int) |] ==> r = 0"
wenzelm@23164
   429
apply (frule self_quotient, assumption)
haftmann@29651
   430
apply (simp add: divmod_rel_def)
wenzelm@23164
   431
done
wenzelm@23164
   432
wenzelm@23164
   433
lemma zdiv_self [simp]: "a \<noteq> 0 ==> a div a = (1::int)"
haftmann@29651
   434
by (simp add: divmod_rel_div_mod [THEN self_quotient])
wenzelm@23164
   435
wenzelm@23164
   436
(*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *)
wenzelm@23164
   437
lemma zmod_self [simp]: "a mod a = (0::int)"
wenzelm@23164
   438
apply (case_tac "a = 0", simp)
haftmann@29651
   439
apply (simp add: divmod_rel_div_mod [THEN self_remainder])
wenzelm@23164
   440
done
wenzelm@23164
   441
wenzelm@23164
   442
wenzelm@23164
   443
subsection{*Computation of Division and Remainder*}
wenzelm@23164
   444
wenzelm@23164
   445
lemma zdiv_zero [simp]: "(0::int) div b = 0"
haftmann@29651
   446
by (simp add: div_def divmod_def)
wenzelm@23164
   447
wenzelm@23164
   448
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
haftmann@29651
   449
by (simp add: div_def divmod_def)
wenzelm@23164
   450
wenzelm@23164
   451
lemma zmod_zero [simp]: "(0::int) mod b = 0"
haftmann@29651
   452
by (simp add: mod_def divmod_def)
wenzelm@23164
   453
wenzelm@23164
   454
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
haftmann@29651
   455
by (simp add: mod_def divmod_def)
wenzelm@23164
   456
wenzelm@23164
   457
text{*a positive, b positive *}
wenzelm@23164
   458
wenzelm@23164
   459
lemma div_pos_pos: "[| 0 < a;  0 \<le> b |] ==> a div b = fst (posDivAlg a b)"
haftmann@29651
   460
by (simp add: div_def divmod_def)
wenzelm@23164
   461
wenzelm@23164
   462
lemma mod_pos_pos: "[| 0 < a;  0 \<le> b |] ==> a mod b = snd (posDivAlg a b)"
haftmann@29651
   463
by (simp add: mod_def divmod_def)
wenzelm@23164
   464
wenzelm@23164
   465
text{*a negative, b positive *}
wenzelm@23164
   466
wenzelm@23164
   467
lemma div_neg_pos: "[| a < 0;  0 < b |] ==> a div b = fst (negDivAlg a b)"
haftmann@29651
   468
by (simp add: div_def divmod_def)
wenzelm@23164
   469
wenzelm@23164
   470
lemma mod_neg_pos: "[| a < 0;  0 < b |] ==> a mod b = snd (negDivAlg a b)"
haftmann@29651
   471
by (simp add: mod_def divmod_def)
wenzelm@23164
   472
wenzelm@23164
   473
text{*a positive, b negative *}
wenzelm@23164
   474
wenzelm@23164
   475
lemma div_pos_neg:
wenzelm@23164
   476
     "[| 0 < a;  b < 0 |] ==> a div b = fst (negateSnd (negDivAlg (-a) (-b)))"
haftmann@29651
   477
by (simp add: div_def divmod_def)
wenzelm@23164
   478
wenzelm@23164
   479
lemma mod_pos_neg:
wenzelm@23164
   480
     "[| 0 < a;  b < 0 |] ==> a mod b = snd (negateSnd (negDivAlg (-a) (-b)))"
haftmann@29651
   481
by (simp add: mod_def divmod_def)
wenzelm@23164
   482
wenzelm@23164
   483
text{*a negative, b negative *}
wenzelm@23164
   484
wenzelm@23164
   485
lemma div_neg_neg:
wenzelm@23164
   486
     "[| a < 0;  b \<le> 0 |] ==> a div b = fst (negateSnd (posDivAlg (-a) (-b)))"
haftmann@29651
   487
by (simp add: div_def divmod_def)
wenzelm@23164
   488
wenzelm@23164
   489
lemma mod_neg_neg:
wenzelm@23164
   490
     "[| a < 0;  b \<le> 0 |] ==> a mod b = snd (negateSnd (posDivAlg (-a) (-b)))"
haftmann@29651
   491
by (simp add: mod_def divmod_def)
wenzelm@23164
   492
wenzelm@23164
   493
text {*Simplify expresions in which div and mod combine numerical constants*}
wenzelm@23164
   494
haftmann@29651
   495
lemma divmod_relI:
huffman@24481
   496
  "\<lbrakk>a == b * q + r; if 0 < b then 0 \<le> r \<and> r < b else b < r \<and> r \<le> 0\<rbrakk>
haftmann@29651
   497
    \<Longrightarrow> divmod_rel a b (q, r)"
haftmann@29651
   498
  unfolding divmod_rel_def by simp
huffman@24481
   499
haftmann@29651
   500
lemmas divmod_rel_div_eq = divmod_relI [THEN divmod_rel_div, THEN eq_reflection]
haftmann@29651
   501
lemmas divmod_rel_mod_eq = divmod_relI [THEN divmod_rel_mod, THEN eq_reflection]
huffman@24481
   502
lemmas arithmetic_simps =
huffman@24481
   503
  arith_simps
huffman@24481
   504
  add_special
huffman@24481
   505
  OrderedGroup.add_0_left
huffman@24481
   506
  OrderedGroup.add_0_right
huffman@24481
   507
  mult_zero_left
huffman@24481
   508
  mult_zero_right
huffman@24481
   509
  mult_1_left
huffman@24481
   510
  mult_1_right
huffman@24481
   511
huffman@24481
   512
(* simprocs adapted from HOL/ex/Binary.thy *)
huffman@24481
   513
ML {*
huffman@24481
   514
local
haftmann@30517
   515
  val mk_number = HOLogic.mk_number HOLogic.intT;
haftmann@30517
   516
  fun mk_cert u k l = @{term "plus :: int \<Rightarrow> int \<Rightarrow> int"} $
haftmann@30517
   517
    (@{term "times :: int \<Rightarrow> int \<Rightarrow> int"} $ u $ mk_number k) $
haftmann@30517
   518
      mk_number l;
haftmann@30517
   519
  fun prove ctxt prop = Goal.prove ctxt [] [] prop
haftmann@30517
   520
    (K (ALLGOALS (full_simp_tac (HOL_basic_ss addsimps @{thms arithmetic_simps}))));
huffman@24481
   521
  fun binary_proc proc ss ct =
huffman@24481
   522
    (case Thm.term_of ct of
huffman@24481
   523
      _ $ t $ u =>
huffman@24481
   524
      (case try (pairself (`(snd o HOLogic.dest_number))) (t, u) of
huffman@24481
   525
        SOME args => proc (Simplifier.the_context ss) args
huffman@24481
   526
      | NONE => NONE)
huffman@24481
   527
    | _ => NONE);
huffman@24481
   528
in
haftmann@30517
   529
  fun divmod_proc rule = binary_proc (fn ctxt => fn ((m, t), (n, u)) =>
haftmann@30517
   530
    if n = 0 then NONE
haftmann@30517
   531
    else let val (k, l) = Integer.div_mod m n;
haftmann@30517
   532
    in SOME (rule OF [prove ctxt (Logic.mk_equals (t, mk_cert u k l))]) end);
haftmann@30517
   533
end
huffman@24481
   534
*}
huffman@24481
   535
huffman@24481
   536
simproc_setup binary_int_div ("number_of m div number_of n :: int") =
haftmann@29651
   537
  {* K (divmod_proc (@{thm divmod_rel_div_eq})) *}
huffman@24481
   538
huffman@24481
   539
simproc_setup binary_int_mod ("number_of m mod number_of n :: int") =
haftmann@29651
   540
  {* K (divmod_proc (@{thm divmod_rel_mod_eq})) *}
huffman@24481
   541
wenzelm@23164
   542
lemmas posDivAlg_eqn_number_of [simp] =
wenzelm@23164
   543
    posDivAlg_eqn [of "number_of v" "number_of w", standard]
wenzelm@23164
   544
wenzelm@23164
   545
lemmas negDivAlg_eqn_number_of [simp] =
wenzelm@23164
   546
    negDivAlg_eqn [of "number_of v" "number_of w", standard]
wenzelm@23164
   547
wenzelm@23164
   548
wenzelm@23164
   549
text{*Special-case simplification *}
wenzelm@23164
   550
wenzelm@23164
   551
lemma zmod_minus1_right [simp]: "a mod (-1::int) = 0"
wenzelm@23164
   552
apply (cut_tac a = a and b = "-1" in neg_mod_sign)
wenzelm@23164
   553
apply (cut_tac [2] a = a and b = "-1" in neg_mod_bound)
wenzelm@23164
   554
apply (auto simp del: neg_mod_sign neg_mod_bound)
wenzelm@23164
   555
done
wenzelm@23164
   556
wenzelm@23164
   557
lemma zdiv_minus1_right [simp]: "a div (-1::int) = -a"
wenzelm@23164
   558
by (cut_tac a = a and b = "-1" in zmod_zdiv_equality, auto)
wenzelm@23164
   559
wenzelm@23164
   560
(** The last remaining special cases for constant arithmetic:
wenzelm@23164
   561
    1 div z and 1 mod z **)
wenzelm@23164
   562
wenzelm@23164
   563
lemmas div_pos_pos_1_number_of [simp] =
wenzelm@23164
   564
    div_pos_pos [OF int_0_less_1, of "number_of w", standard]
wenzelm@23164
   565
wenzelm@23164
   566
lemmas div_pos_neg_1_number_of [simp] =
wenzelm@23164
   567
    div_pos_neg [OF int_0_less_1, of "number_of w", standard]
wenzelm@23164
   568
wenzelm@23164
   569
lemmas mod_pos_pos_1_number_of [simp] =
wenzelm@23164
   570
    mod_pos_pos [OF int_0_less_1, of "number_of w", standard]
wenzelm@23164
   571
wenzelm@23164
   572
lemmas mod_pos_neg_1_number_of [simp] =
wenzelm@23164
   573
    mod_pos_neg [OF int_0_less_1, of "number_of w", standard]
wenzelm@23164
   574
wenzelm@23164
   575
wenzelm@23164
   576
lemmas posDivAlg_eqn_1_number_of [simp] =
wenzelm@23164
   577
    posDivAlg_eqn [of concl: 1 "number_of w", standard]
wenzelm@23164
   578
wenzelm@23164
   579
lemmas negDivAlg_eqn_1_number_of [simp] =
wenzelm@23164
   580
    negDivAlg_eqn [of concl: 1 "number_of w", standard]
wenzelm@23164
   581
wenzelm@23164
   582
wenzelm@23164
   583
wenzelm@23164
   584
subsection{*Monotonicity in the First Argument (Dividend)*}
wenzelm@23164
   585
wenzelm@23164
   586
lemma zdiv_mono1: "[| a \<le> a';  0 < (b::int) |] ==> a div b \<le> a' div b"
wenzelm@23164
   587
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
wenzelm@23164
   588
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
wenzelm@23164
   589
apply (rule unique_quotient_lemma)
wenzelm@23164
   590
apply (erule subst)
wenzelm@23164
   591
apply (erule subst, simp_all)
wenzelm@23164
   592
done
wenzelm@23164
   593
wenzelm@23164
   594
lemma zdiv_mono1_neg: "[| a \<le> a';  (b::int) < 0 |] ==> a' div b \<le> a div b"
wenzelm@23164
   595
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
wenzelm@23164
   596
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
wenzelm@23164
   597
apply (rule unique_quotient_lemma_neg)
wenzelm@23164
   598
apply (erule subst)
wenzelm@23164
   599
apply (erule subst, simp_all)
wenzelm@23164
   600
done
wenzelm@23164
   601
wenzelm@23164
   602
wenzelm@23164
   603
subsection{*Monotonicity in the Second Argument (Divisor)*}
wenzelm@23164
   604
wenzelm@23164
   605
lemma q_pos_lemma:
wenzelm@23164
   606
     "[| 0 \<le> b'*q' + r'; r' < b';  0 < b' |] ==> 0 \<le> (q'::int)"
wenzelm@23164
   607
apply (subgoal_tac "0 < b'* (q' + 1) ")
wenzelm@23164
   608
 apply (simp add: zero_less_mult_iff)
wenzelm@23164
   609
apply (simp add: right_distrib)
wenzelm@23164
   610
done
wenzelm@23164
   611
wenzelm@23164
   612
lemma zdiv_mono2_lemma:
wenzelm@23164
   613
     "[| b*q + r = b'*q' + r';  0 \<le> b'*q' + r';   
wenzelm@23164
   614
         r' < b';  0 \<le> r;  0 < b';  b' \<le> b |]   
wenzelm@23164
   615
      ==> q \<le> (q'::int)"
wenzelm@23164
   616
apply (frule q_pos_lemma, assumption+) 
wenzelm@23164
   617
apply (subgoal_tac "b*q < b* (q' + 1) ")
wenzelm@23164
   618
 apply (simp add: mult_less_cancel_left)
wenzelm@23164
   619
apply (subgoal_tac "b*q = r' - r + b'*q'")
wenzelm@23164
   620
 prefer 2 apply simp
wenzelm@23164
   621
apply (simp (no_asm_simp) add: right_distrib)
wenzelm@23164
   622
apply (subst add_commute, rule zadd_zless_mono, arith)
wenzelm@23164
   623
apply (rule mult_right_mono, auto)
wenzelm@23164
   624
done
wenzelm@23164
   625
wenzelm@23164
   626
lemma zdiv_mono2:
wenzelm@23164
   627
     "[| (0::int) \<le> a;  0 < b';  b' \<le> b |] ==> a div b \<le> a div b'"
wenzelm@23164
   628
apply (subgoal_tac "b \<noteq> 0")
wenzelm@23164
   629
 prefer 2 apply arith
wenzelm@23164
   630
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
wenzelm@23164
   631
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
wenzelm@23164
   632
apply (rule zdiv_mono2_lemma)
wenzelm@23164
   633
apply (erule subst)
wenzelm@23164
   634
apply (erule subst, simp_all)
wenzelm@23164
   635
done
wenzelm@23164
   636
wenzelm@23164
   637
lemma q_neg_lemma:
wenzelm@23164
   638
     "[| b'*q' + r' < 0;  0 \<le> r';  0 < b' |] ==> q' \<le> (0::int)"
wenzelm@23164
   639
apply (subgoal_tac "b'*q' < 0")
wenzelm@23164
   640
 apply (simp add: mult_less_0_iff, arith)
wenzelm@23164
   641
done
wenzelm@23164
   642
wenzelm@23164
   643
lemma zdiv_mono2_neg_lemma:
wenzelm@23164
   644
     "[| b*q + r = b'*q' + r';  b'*q' + r' < 0;   
wenzelm@23164
   645
         r < b;  0 \<le> r';  0 < b';  b' \<le> b |]   
wenzelm@23164
   646
      ==> q' \<le> (q::int)"
wenzelm@23164
   647
apply (frule q_neg_lemma, assumption+) 
wenzelm@23164
   648
apply (subgoal_tac "b*q' < b* (q + 1) ")
wenzelm@23164
   649
 apply (simp add: mult_less_cancel_left)
wenzelm@23164
   650
apply (simp add: right_distrib)
wenzelm@23164
   651
apply (subgoal_tac "b*q' \<le> b'*q'")
wenzelm@23164
   652
 prefer 2 apply (simp add: mult_right_mono_neg, arith)
wenzelm@23164
   653
done
wenzelm@23164
   654
wenzelm@23164
   655
lemma zdiv_mono2_neg:
wenzelm@23164
   656
     "[| a < (0::int);  0 < b';  b' \<le> b |] ==> a div b' \<le> a div b"
wenzelm@23164
   657
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
wenzelm@23164
   658
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
wenzelm@23164
   659
apply (rule zdiv_mono2_neg_lemma)
wenzelm@23164
   660
apply (erule subst)
wenzelm@23164
   661
apply (erule subst, simp_all)
wenzelm@23164
   662
done
wenzelm@23164
   663
haftmann@25942
   664
wenzelm@23164
   665
subsection{*More Algebraic Laws for div and mod*}
wenzelm@23164
   666
wenzelm@23164
   667
text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
wenzelm@23164
   668
wenzelm@23164
   669
lemma zmult1_lemma:
haftmann@29651
   670
     "[| divmod_rel b c (q, r);  c \<noteq> 0 |]  
haftmann@29651
   671
      ==> divmod_rel (a * b) c (a*q + a*r div c, a*r mod c)"
haftmann@29651
   672
by (force simp add: split_ifs divmod_rel_def linorder_neq_iff right_distrib)
wenzelm@23164
   673
wenzelm@23164
   674
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
wenzelm@23164
   675
apply (case_tac "c = 0", simp)
haftmann@29651
   676
apply (blast intro: divmod_rel_div_mod [THEN zmult1_lemma, THEN divmod_rel_div])
wenzelm@23164
   677
done
wenzelm@23164
   678
wenzelm@23164
   679
lemma zmod_zmult1_eq: "(a*b) mod c = a*(b mod c) mod (c::int)"
wenzelm@23164
   680
apply (case_tac "c = 0", simp)
haftmann@29651
   681
apply (blast intro: divmod_rel_div_mod [THEN zmult1_lemma, THEN divmod_rel_mod])
wenzelm@23164
   682
done
wenzelm@23164
   683
huffman@29403
   684
lemma zmod_zdiv_trivial: "(a mod b) div b = (0::int)"
haftmann@27651
   685
apply (case_tac "b = 0", simp)
haftmann@27651
   686
apply (auto simp add: linorder_neq_iff div_pos_pos_trivial div_neg_neg_trivial)
haftmann@27651
   687
done
haftmann@27651
   688
haftmann@27651
   689
text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
haftmann@27651
   690
haftmann@27651
   691
lemma zadd1_lemma:
haftmann@29651
   692
     "[| divmod_rel a c (aq, ar);  divmod_rel b c (bq, br);  c \<noteq> 0 |]  
haftmann@29651
   693
      ==> divmod_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)"
haftmann@29651
   694
by (force simp add: split_ifs divmod_rel_def linorder_neq_iff right_distrib)
haftmann@27651
   695
haftmann@27651
   696
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
haftmann@27651
   697
lemma zdiv_zadd1_eq:
haftmann@27651
   698
     "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
haftmann@27651
   699
apply (case_tac "c = 0", simp)
haftmann@29651
   700
apply (blast intro: zadd1_lemma [OF divmod_rel_div_mod divmod_rel_div_mod] divmod_rel_div)
haftmann@27651
   701
done
haftmann@27651
   702
huffman@29405
   703
instance int :: ring_div
haftmann@27651
   704
proof
haftmann@27651
   705
  fix a b c :: int
haftmann@27651
   706
  assume not0: "b \<noteq> 0"
haftmann@27651
   707
  show "(a + c * b) div b = c + a div b"
haftmann@27651
   708
    unfolding zdiv_zadd1_eq [of a "c * b"] using not0 
nipkow@30181
   709
      by (simp add: zmod_zmult1_eq zmod_zdiv_trivial zdiv_zmult1_eq)
haftmann@27651
   710
qed auto
haftmann@25942
   711
haftmann@29651
   712
lemma posDivAlg_div_mod:
haftmann@29651
   713
  assumes "k \<ge> 0"
haftmann@29651
   714
  and "l \<ge> 0"
haftmann@29651
   715
  shows "posDivAlg k l = (k div l, k mod l)"
haftmann@29651
   716
proof (cases "l = 0")
haftmann@29651
   717
  case True then show ?thesis by (simp add: posDivAlg.simps)
haftmann@29651
   718
next
haftmann@29651
   719
  case False with assms posDivAlg_correct
haftmann@29651
   720
    have "divmod_rel k l (fst (posDivAlg k l), snd (posDivAlg k l))"
haftmann@29651
   721
    by simp
haftmann@29651
   722
  from divmod_rel_div [OF this `l \<noteq> 0`] divmod_rel_mod [OF this `l \<noteq> 0`]
haftmann@29651
   723
  show ?thesis by simp
haftmann@29651
   724
qed
haftmann@29651
   725
haftmann@29651
   726
lemma negDivAlg_div_mod:
haftmann@29651
   727
  assumes "k < 0"
haftmann@29651
   728
  and "l > 0"
haftmann@29651
   729
  shows "negDivAlg k l = (k div l, k mod l)"
haftmann@29651
   730
proof -
haftmann@29651
   731
  from assms have "l \<noteq> 0" by simp
haftmann@29651
   732
  from assms negDivAlg_correct
haftmann@29651
   733
    have "divmod_rel k l (fst (negDivAlg k l), snd (negDivAlg k l))"
haftmann@29651
   734
    by simp
haftmann@29651
   735
  from divmod_rel_div [OF this `l \<noteq> 0`] divmod_rel_mod [OF this `l \<noteq> 0`]
haftmann@29651
   736
  show ?thesis by simp
haftmann@29651
   737
qed
haftmann@29651
   738
wenzelm@23164
   739
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
huffman@29403
   740
by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
wenzelm@23164
   741
huffman@29403
   742
(* REVISIT: should this be generalized to all semiring_div types? *)
wenzelm@23164
   743
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
wenzelm@23164
   744
nipkow@23983
   745
wenzelm@23164
   746
subsection{*Proving  @{term "a div (b*c) = (a div b) div c"} *}
wenzelm@23164
   747
wenzelm@23164
   748
(*The condition c>0 seems necessary.  Consider that 7 div ~6 = ~2 but
wenzelm@23164
   749
  7 div 2 div ~3 = 3 div ~3 = ~1.  The subcase (a div b) mod c = 0 seems
wenzelm@23164
   750
  to cause particular problems.*)
wenzelm@23164
   751
wenzelm@23164
   752
text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
wenzelm@23164
   753
wenzelm@23164
   754
lemma zmult2_lemma_aux1: "[| (0::int) < c;  b < r;  r \<le> 0 |] ==> b*c < b*(q mod c) + r"
wenzelm@23164
   755
apply (subgoal_tac "b * (c - q mod c) < r * 1")
nipkow@29667
   756
 apply (simp add: algebra_simps)
wenzelm@23164
   757
apply (rule order_le_less_trans)
nipkow@29667
   758
 apply (erule_tac [2] mult_strict_right_mono)
nipkow@29667
   759
 apply (rule mult_left_mono_neg)
nipkow@29667
   760
  using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps pos_mod_bound)
nipkow@29667
   761
 apply (simp)
nipkow@29667
   762
apply (simp)
wenzelm@23164
   763
done
wenzelm@23164
   764
wenzelm@23164
   765
lemma zmult2_lemma_aux2:
wenzelm@23164
   766
     "[| (0::int) < c;   b < r;  r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
wenzelm@23164
   767
apply (subgoal_tac "b * (q mod c) \<le> 0")
wenzelm@23164
   768
 apply arith
wenzelm@23164
   769
apply (simp add: mult_le_0_iff)
wenzelm@23164
   770
done
wenzelm@23164
   771
wenzelm@23164
   772
lemma zmult2_lemma_aux3: "[| (0::int) < c;  0 \<le> r;  r < b |] ==> 0 \<le> b * (q mod c) + r"
wenzelm@23164
   773
apply (subgoal_tac "0 \<le> b * (q mod c) ")
wenzelm@23164
   774
apply arith
wenzelm@23164
   775
apply (simp add: zero_le_mult_iff)
wenzelm@23164
   776
done
wenzelm@23164
   777
wenzelm@23164
   778
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
wenzelm@23164
   779
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
nipkow@29667
   780
 apply (simp add: right_diff_distrib)
wenzelm@23164
   781
apply (rule order_less_le_trans)
nipkow@29667
   782
 apply (erule mult_strict_right_mono)
nipkow@29667
   783
 apply (rule_tac [2] mult_left_mono)
nipkow@29667
   784
  apply simp
nipkow@29667
   785
 using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps pos_mod_bound)
nipkow@29667
   786
apply simp
wenzelm@23164
   787
done
wenzelm@23164
   788
haftmann@29651
   789
lemma zmult2_lemma: "[| divmod_rel a b (q, r);  b \<noteq> 0;  0 < c |]  
haftmann@29651
   790
      ==> divmod_rel a (b * c) (q div c, b*(q mod c) + r)"
haftmann@29651
   791
by (auto simp add: mult_ac divmod_rel_def linorder_neq_iff
wenzelm@23164
   792
                   zero_less_mult_iff right_distrib [symmetric] 
wenzelm@23164
   793
                   zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4)
wenzelm@23164
   794
wenzelm@23164
   795
lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c"
wenzelm@23164
   796
apply (case_tac "b = 0", simp)
haftmann@29651
   797
apply (force simp add: divmod_rel_div_mod [THEN zmult2_lemma, THEN divmod_rel_div])
wenzelm@23164
   798
done
wenzelm@23164
   799
wenzelm@23164
   800
lemma zmod_zmult2_eq:
wenzelm@23164
   801
     "(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b"
wenzelm@23164
   802
apply (case_tac "b = 0", simp)
haftmann@29651
   803
apply (force simp add: divmod_rel_div_mod [THEN zmult2_lemma, THEN divmod_rel_mod])
wenzelm@23164
   804
done
wenzelm@23164
   805
wenzelm@23164
   806
wenzelm@23164
   807
subsection{*Cancellation of Common Factors in div*}
wenzelm@23164
   808
wenzelm@23164
   809
lemma zdiv_zmult_zmult1_aux1:
wenzelm@23164
   810
     "[| (0::int) < b;  c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b"
wenzelm@23164
   811
by (subst zdiv_zmult2_eq, auto)
wenzelm@23164
   812
wenzelm@23164
   813
lemma zdiv_zmult_zmult1_aux2:
wenzelm@23164
   814
     "[| b < (0::int);  c \<noteq> 0 |] ==> (c*a) div (c*b) = a div b"
wenzelm@23164
   815
apply (subgoal_tac " (c * (-a)) div (c * (-b)) = (-a) div (-b) ")
wenzelm@23164
   816
apply (rule_tac [2] zdiv_zmult_zmult1_aux1, auto)
wenzelm@23164
   817
done
wenzelm@23164
   818
wenzelm@23164
   819
lemma zdiv_zmult_zmult1: "c \<noteq> (0::int) ==> (c*a) div (c*b) = a div b"
wenzelm@23164
   820
apply (case_tac "b = 0", simp)
wenzelm@23164
   821
apply (auto simp add: linorder_neq_iff zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2)
wenzelm@23164
   822
done
wenzelm@23164
   823
nipkow@23401
   824
lemma zdiv_zmult_zmult1_if[simp]:
nipkow@23401
   825
  "(k*m) div (k*n) = (if k = (0::int) then 0 else m div n)"
nipkow@23401
   826
by (simp add:zdiv_zmult_zmult1)
nipkow@23401
   827
wenzelm@23164
   828
wenzelm@23164
   829
subsection{*Distribution of Factors over mod*}
wenzelm@23164
   830
wenzelm@23164
   831
lemma zmod_zmult_zmult1_aux1:
wenzelm@23164
   832
     "[| (0::int) < b;  c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)"
wenzelm@23164
   833
by (subst zmod_zmult2_eq, auto)
wenzelm@23164
   834
wenzelm@23164
   835
lemma zmod_zmult_zmult1_aux2:
wenzelm@23164
   836
     "[| b < (0::int);  c \<noteq> 0 |] ==> (c*a) mod (c*b) = c * (a mod b)"
wenzelm@23164
   837
apply (subgoal_tac " (c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))")
wenzelm@23164
   838
apply (rule_tac [2] zmod_zmult_zmult1_aux1, auto)
wenzelm@23164
   839
done
wenzelm@23164
   840
wenzelm@23164
   841
lemma zmod_zmult_zmult1: "(c*a) mod (c*b) = (c::int) * (a mod b)"
wenzelm@23164
   842
apply (case_tac "b = 0", simp)
wenzelm@23164
   843
apply (case_tac "c = 0", simp)
wenzelm@23164
   844
apply (auto simp add: linorder_neq_iff zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2)
wenzelm@23164
   845
done
wenzelm@23164
   846
wenzelm@23164
   847
lemma zmod_zmult_zmult2: "(a*c) mod (b*c) = (a mod b) * (c::int)"
wenzelm@23164
   848
apply (cut_tac c = c in zmod_zmult_zmult1)
wenzelm@23164
   849
apply (auto simp add: mult_commute)
wenzelm@23164
   850
done
wenzelm@23164
   851
wenzelm@23164
   852
wenzelm@23164
   853
subsection {*Splitting Rules for div and mod*}
wenzelm@23164
   854
wenzelm@23164
   855
text{*The proofs of the two lemmas below are essentially identical*}
wenzelm@23164
   856
wenzelm@23164
   857
lemma split_pos_lemma:
wenzelm@23164
   858
 "0<k ==> 
wenzelm@23164
   859
    P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
wenzelm@23164
   860
apply (rule iffI, clarify)
wenzelm@23164
   861
 apply (erule_tac P="P ?x ?y" in rev_mp)  
nipkow@29948
   862
 apply (subst mod_add_eq) 
wenzelm@23164
   863
 apply (subst zdiv_zadd1_eq) 
wenzelm@23164
   864
 apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)  
wenzelm@23164
   865
txt{*converse direction*}
wenzelm@23164
   866
apply (drule_tac x = "n div k" in spec) 
wenzelm@23164
   867
apply (drule_tac x = "n mod k" in spec, simp)
wenzelm@23164
   868
done
wenzelm@23164
   869
wenzelm@23164
   870
lemma split_neg_lemma:
wenzelm@23164
   871
 "k<0 ==>
wenzelm@23164
   872
    P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
wenzelm@23164
   873
apply (rule iffI, clarify)
wenzelm@23164
   874
 apply (erule_tac P="P ?x ?y" in rev_mp)  
nipkow@29948
   875
 apply (subst mod_add_eq) 
wenzelm@23164
   876
 apply (subst zdiv_zadd1_eq) 
wenzelm@23164
   877
 apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)  
wenzelm@23164
   878
txt{*converse direction*}
wenzelm@23164
   879
apply (drule_tac x = "n div k" in spec) 
wenzelm@23164
   880
apply (drule_tac x = "n mod k" in spec, simp)
wenzelm@23164
   881
done
wenzelm@23164
   882
wenzelm@23164
   883
lemma split_zdiv:
wenzelm@23164
   884
 "P(n div k :: int) =
wenzelm@23164
   885
  ((k = 0 --> P 0) & 
wenzelm@23164
   886
   (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) & 
wenzelm@23164
   887
   (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
wenzelm@23164
   888
apply (case_tac "k=0", simp)
wenzelm@23164
   889
apply (simp only: linorder_neq_iff)
wenzelm@23164
   890
apply (erule disjE) 
wenzelm@23164
   891
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] 
wenzelm@23164
   892
                      split_neg_lemma [of concl: "%x y. P x"])
wenzelm@23164
   893
done
wenzelm@23164
   894
wenzelm@23164
   895
lemma split_zmod:
wenzelm@23164
   896
 "P(n mod k :: int) =
wenzelm@23164
   897
  ((k = 0 --> P n) & 
wenzelm@23164
   898
   (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) & 
wenzelm@23164
   899
   (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
wenzelm@23164
   900
apply (case_tac "k=0", simp)
wenzelm@23164
   901
apply (simp only: linorder_neq_iff)
wenzelm@23164
   902
apply (erule disjE) 
wenzelm@23164
   903
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] 
wenzelm@23164
   904
                      split_neg_lemma [of concl: "%x y. P y"])
wenzelm@23164
   905
done
wenzelm@23164
   906
wenzelm@23164
   907
(* Enable arith to deal with div 2 and mod 2: *)
wenzelm@23164
   908
declare split_zdiv [of _ _ "number_of k", simplified, standard, arith_split]
wenzelm@23164
   909
declare split_zmod [of _ _ "number_of k", simplified, standard, arith_split]
wenzelm@23164
   910
wenzelm@23164
   911
wenzelm@23164
   912
subsection{*Speeding up the Division Algorithm with Shifting*}
wenzelm@23164
   913
wenzelm@23164
   914
text{*computing div by shifting *}
wenzelm@23164
   915
wenzelm@23164
   916
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
wenzelm@23164
   917
proof cases
wenzelm@23164
   918
  assume "a=0"
wenzelm@23164
   919
    thus ?thesis by simp
wenzelm@23164
   920
next
wenzelm@23164
   921
  assume "a\<noteq>0" and le_a: "0\<le>a"   
wenzelm@23164
   922
  hence a_pos: "1 \<le> a" by arith
wenzelm@23164
   923
  hence one_less_a2: "1 < 2*a" by arith
wenzelm@23164
   924
  hence le_2a: "2 * (1 + b mod a) \<le> 2 * a"
wenzelm@23164
   925
    by (simp add: mult_le_cancel_left add_commute [of 1] add1_zle_eq)
wenzelm@23164
   926
  with a_pos have "0 \<le> b mod a" by simp
wenzelm@23164
   927
  hence le_addm: "0 \<le> 1 mod (2*a) + 2*(b mod a)"
wenzelm@23164
   928
    by (simp add: mod_pos_pos_trivial one_less_a2)
wenzelm@23164
   929
  with  le_2a
wenzelm@23164
   930
  have "(1 mod (2*a) + 2*(b mod a)) div (2*a) = 0"
wenzelm@23164
   931
    by (simp add: div_pos_pos_trivial le_addm mod_pos_pos_trivial one_less_a2
wenzelm@23164
   932
                  right_distrib) 
wenzelm@23164
   933
  thus ?thesis
wenzelm@23164
   934
    by (subst zdiv_zadd1_eq,
wenzelm@23164
   935
        simp add: zdiv_zmult_zmult1 zmod_zmult_zmult1 one_less_a2
wenzelm@23164
   936
                  div_pos_pos_trivial)
wenzelm@23164
   937
qed
wenzelm@23164
   938
wenzelm@23164
   939
lemma neg_zdiv_mult_2: "a \<le> (0::int) ==> (1 + 2*b) div (2*a) = (b+1) div a"
wenzelm@23164
   940
apply (subgoal_tac " (1 + 2* (-b - 1)) div (2 * (-a)) = (-b - 1) div (-a) ")
wenzelm@23164
   941
apply (rule_tac [2] pos_zdiv_mult_2)
wenzelm@23164
   942
apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib)
wenzelm@23164
   943
apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))")
wenzelm@23164
   944
apply (simp only: zdiv_zminus_zminus diff_minus minus_add_distrib [symmetric],
wenzelm@23164
   945
       simp) 
wenzelm@23164
   946
done
wenzelm@23164
   947
huffman@26086
   948
lemma zdiv_number_of_Bit0 [simp]:
huffman@26086
   949
     "number_of (Int.Bit0 v) div number_of (Int.Bit0 w) =  
huffman@26086
   950
          number_of v div (number_of w :: int)"
huffman@26086
   951
by (simp only: number_of_eq numeral_simps) simp
huffman@26086
   952
huffman@26086
   953
lemma zdiv_number_of_Bit1 [simp]:
huffman@26086
   954
     "number_of (Int.Bit1 v) div number_of (Int.Bit0 w) =  
huffman@26086
   955
          (if (0::int) \<le> number_of w                    
wenzelm@23164
   956
           then number_of v div (number_of w)     
wenzelm@23164
   957
           else (number_of v + (1::int)) div (number_of w))"
wenzelm@23164
   958
apply (simp only: number_of_eq numeral_simps UNIV_I split: split_if) 
huffman@26086
   959
apply (simp add: zdiv_zmult_zmult1 pos_zdiv_mult_2 neg_zdiv_mult_2 add_ac)
wenzelm@23164
   960
done
wenzelm@23164
   961
wenzelm@23164
   962
wenzelm@23164
   963
subsection{*Computing mod by Shifting (proofs resemble those for div)*}
wenzelm@23164
   964
wenzelm@23164
   965
lemma pos_zmod_mult_2:
wenzelm@23164
   966
     "(0::int) \<le> a ==> (1 + 2*b) mod (2*a) = 1 + 2 * (b mod a)"
wenzelm@23164
   967
apply (case_tac "a = 0", simp)
wenzelm@23164
   968
apply (subgoal_tac "1 < a * 2")
wenzelm@23164
   969
 prefer 2 apply arith
wenzelm@23164
   970
apply (subgoal_tac "2* (1 + b mod a) \<le> 2*a")
wenzelm@23164
   971
 apply (rule_tac [2] mult_left_mono)
wenzelm@23164
   972
apply (auto simp add: add_commute [of 1] mult_commute add1_zle_eq 
wenzelm@23164
   973
                      pos_mod_bound)
nipkow@29948
   974
apply (subst mod_add_eq)
wenzelm@23164
   975
apply (simp add: zmod_zmult_zmult2 mod_pos_pos_trivial)
wenzelm@23164
   976
apply (rule mod_pos_pos_trivial)
huffman@26086
   977
apply (auto simp add: mod_pos_pos_trivial ring_distribs)
wenzelm@23164
   978
apply (subgoal_tac "0 \<le> b mod a", arith, simp)
wenzelm@23164
   979
done
wenzelm@23164
   980
wenzelm@23164
   981
lemma neg_zmod_mult_2:
wenzelm@23164
   982
     "a \<le> (0::int) ==> (1 + 2*b) mod (2*a) = 2 * ((b+1) mod a) - 1"
wenzelm@23164
   983
apply (subgoal_tac "(1 + 2* (-b - 1)) mod (2* (-a)) = 
wenzelm@23164
   984
                    1 + 2* ((-b - 1) mod (-a))")
wenzelm@23164
   985
apply (rule_tac [2] pos_zmod_mult_2)
nipkow@30042
   986
apply (auto simp add: right_diff_distrib)
wenzelm@23164
   987
apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))")
wenzelm@23164
   988
 prefer 2 apply simp 
wenzelm@23164
   989
apply (simp only: zmod_zminus_zminus diff_minus minus_add_distrib [symmetric])
wenzelm@23164
   990
done
wenzelm@23164
   991
huffman@26086
   992
lemma zmod_number_of_Bit0 [simp]:
huffman@26086
   993
     "number_of (Int.Bit0 v) mod number_of (Int.Bit0 w) =  
huffman@26086
   994
      (2::int) * (number_of v mod number_of w)"
huffman@26086
   995
apply (simp only: number_of_eq numeral_simps) 
huffman@26086
   996
apply (simp add: zmod_zmult_zmult1 pos_zmod_mult_2 
nipkow@29948
   997
                 neg_zmod_mult_2 add_ac)
huffman@26086
   998
done
huffman@26086
   999
huffman@26086
  1000
lemma zmod_number_of_Bit1 [simp]:
huffman@26086
  1001
     "number_of (Int.Bit1 v) mod number_of (Int.Bit0 w) =  
huffman@26086
  1002
      (if (0::int) \<le> number_of w  
wenzelm@23164
  1003
                then 2 * (number_of v mod number_of w) + 1     
wenzelm@23164
  1004
                else 2 * ((number_of v + (1::int)) mod number_of w) - 1)"
huffman@26086
  1005
apply (simp only: number_of_eq numeral_simps) 
wenzelm@23164
  1006
apply (simp add: zmod_zmult_zmult1 pos_zmod_mult_2 
nipkow@29948
  1007
                 neg_zmod_mult_2 add_ac)
wenzelm@23164
  1008
done
wenzelm@23164
  1009
wenzelm@23164
  1010
wenzelm@23164
  1011
subsection{*Quotients of Signs*}
wenzelm@23164
  1012
wenzelm@23164
  1013
lemma div_neg_pos_less0: "[| a < (0::int);  0 < b |] ==> a div b < 0"
wenzelm@23164
  1014
apply (subgoal_tac "a div b \<le> -1", force)
wenzelm@23164
  1015
apply (rule order_trans)
wenzelm@23164
  1016
apply (rule_tac a' = "-1" in zdiv_mono1)
nipkow@29948
  1017
apply (auto simp add: div_eq_minus1)
wenzelm@23164
  1018
done
wenzelm@23164
  1019
nipkow@30323
  1020
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
wenzelm@23164
  1021
by (drule zdiv_mono1_neg, auto)
wenzelm@23164
  1022
nipkow@30323
  1023
lemma div_nonpos_pos_le0: "[| (a::int) \<le> 0; b > 0 |] ==> a div b \<le> 0"
nipkow@30323
  1024
by (drule zdiv_mono1, auto)
nipkow@30323
  1025
wenzelm@23164
  1026
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
wenzelm@23164
  1027
apply auto
wenzelm@23164
  1028
apply (drule_tac [2] zdiv_mono1)
wenzelm@23164
  1029
apply (auto simp add: linorder_neq_iff)
wenzelm@23164
  1030
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
wenzelm@23164
  1031
apply (blast intro: div_neg_pos_less0)
wenzelm@23164
  1032
done
wenzelm@23164
  1033
wenzelm@23164
  1034
lemma neg_imp_zdiv_nonneg_iff:
wenzelm@23164
  1035
     "b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
wenzelm@23164
  1036
apply (subst zdiv_zminus_zminus [symmetric])
wenzelm@23164
  1037
apply (subst pos_imp_zdiv_nonneg_iff, auto)
wenzelm@23164
  1038
done
wenzelm@23164
  1039
wenzelm@23164
  1040
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
wenzelm@23164
  1041
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
wenzelm@23164
  1042
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
wenzelm@23164
  1043
wenzelm@23164
  1044
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
wenzelm@23164
  1045
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
wenzelm@23164
  1046
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
wenzelm@23164
  1047
wenzelm@23164
  1048
wenzelm@23164
  1049
subsection {* The Divides Relation *}
wenzelm@23164
  1050
wenzelm@23164
  1051
lemmas zdvd_iff_zmod_eq_0_number_of [simp] =
nipkow@30042
  1052
  dvd_eq_mod_eq_0 [of "number_of x::int" "number_of y::int", standard]
wenzelm@23164
  1053
wenzelm@23164
  1054
lemma zdvd_anti_sym:
wenzelm@23164
  1055
    "0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)"
wenzelm@23164
  1056
  apply (simp add: dvd_def, auto)
wenzelm@23164
  1057
  apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff)
wenzelm@23164
  1058
  done
wenzelm@23164
  1059
nipkow@30042
  1060
lemma zdvd_dvd_eq: assumes "a \<noteq> 0" and "(a::int) dvd b" and "b dvd a" 
wenzelm@23164
  1061
  shows "\<bar>a\<bar> = \<bar>b\<bar>"
wenzelm@23164
  1062
proof-
nipkow@30042
  1063
  from `a dvd b` obtain k where k:"b = a*k" unfolding dvd_def by blast 
nipkow@30042
  1064
  from `b dvd a` obtain k' where k':"a = b*k'" unfolding dvd_def by blast 
wenzelm@23164
  1065
  from k k' have "a = a*k*k'" by simp
wenzelm@23164
  1066
  with mult_cancel_left1[where c="a" and b="k*k'"]
nipkow@30042
  1067
  have kk':"k*k' = 1" using `a\<noteq>0` by (simp add: mult_assoc)
wenzelm@23164
  1068
  hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff)
wenzelm@23164
  1069
  thus ?thesis using k k' by auto
wenzelm@23164
  1070
qed
wenzelm@23164
  1071
wenzelm@23164
  1072
lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)"
wenzelm@23164
  1073
  apply (subgoal_tac "m = n + (m - n)")
wenzelm@23164
  1074
   apply (erule ssubst)
nipkow@30042
  1075
   apply (blast intro: dvd_add, simp)
wenzelm@23164
  1076
  done
wenzelm@23164
  1077
wenzelm@23164
  1078
lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))"
nipkow@30042
  1079
apply (rule iffI)
nipkow@30042
  1080
 apply (erule_tac [2] dvd_add)
nipkow@30042
  1081
 apply (subgoal_tac "n = (n + k * m) - k * m")
nipkow@30042
  1082
  apply (erule ssubst)
nipkow@30042
  1083
  apply (erule dvd_diff)
nipkow@30042
  1084
  apply(simp_all)
nipkow@30042
  1085
done
wenzelm@23164
  1086
wenzelm@23164
  1087
lemma zdvd_zmod: "f dvd m ==> f dvd (n::int) ==> f dvd m mod n"
wenzelm@23164
  1088
  apply (simp add: dvd_def)
wenzelm@23164
  1089
  apply (auto simp add: zmod_zmult_zmult1)
wenzelm@23164
  1090
  done
wenzelm@23164
  1091
wenzelm@23164
  1092
lemma zdvd_zmod_imp_zdvd: "k dvd m mod n ==> k dvd n ==> k dvd (m::int)"
wenzelm@23164
  1093
  apply (subgoal_tac "k dvd n * (m div n) + m mod n")
wenzelm@23164
  1094
   apply (simp add: zmod_zdiv_equality [symmetric])
nipkow@30042
  1095
  apply (simp only: dvd_add dvd_mult2)
wenzelm@23164
  1096
  done
wenzelm@23164
  1097
wenzelm@23164
  1098
lemma zdvd_not_zless: "0 < m ==> m < n ==> \<not> n dvd (m::int)"
haftmann@27651
  1099
  apply (auto elim!: dvdE)
wenzelm@23164
  1100
  apply (subgoal_tac "0 < n")
wenzelm@23164
  1101
   prefer 2
wenzelm@23164
  1102
   apply (blast intro: order_less_trans)
wenzelm@23164
  1103
  apply (simp add: zero_less_mult_iff)
wenzelm@23164
  1104
  apply (subgoal_tac "n * k < n * 1")
wenzelm@23164
  1105
   apply (drule mult_less_cancel_left [THEN iffD1], auto)
wenzelm@23164
  1106
  done
haftmann@27651
  1107
wenzelm@23164
  1108
lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)"
wenzelm@23164
  1109
  using zmod_zdiv_equality[where a="m" and b="n"]
nipkow@29667
  1110
  by (simp add: algebra_simps)
wenzelm@23164
  1111
wenzelm@23164
  1112
lemma zdvd_mult_div_cancel:"(n::int) dvd m \<Longrightarrow> n * (m div n) = m"
wenzelm@23164
  1113
apply (subgoal_tac "m mod n = 0")
wenzelm@23164
  1114
 apply (simp add: zmult_div_cancel)
nipkow@30042
  1115
apply (simp only: dvd_eq_mod_eq_0)
wenzelm@23164
  1116
done
wenzelm@23164
  1117
wenzelm@23164
  1118
lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)"
wenzelm@23164
  1119
  shows "m dvd n"
wenzelm@23164
  1120
proof-
wenzelm@23164
  1121
  from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast
wenzelm@23164
  1122
  {assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
wenzelm@23164
  1123
    with h have False by (simp add: mult_assoc)}
wenzelm@23164
  1124
  hence "n = m * h" by blast
huffman@29410
  1125
  thus ?thesis by simp
wenzelm@23164
  1126
qed
wenzelm@23164
  1127
nipkow@23969
  1128
wenzelm@23164
  1129
theorem ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))"
nipkow@25134
  1130
apply (simp split add: split_nat)
nipkow@25134
  1131
apply (rule iffI)
nipkow@25134
  1132
apply (erule exE)
nipkow@25134
  1133
apply (rule_tac x = "int x" in exI)
nipkow@25134
  1134
apply simp
nipkow@25134
  1135
apply (erule exE)
nipkow@25134
  1136
apply (rule_tac x = "nat x" in exI)
nipkow@25134
  1137
apply (erule conjE)
nipkow@25134
  1138
apply (erule_tac x = "nat x" in allE)
nipkow@25134
  1139
apply simp
nipkow@25134
  1140
done
wenzelm@23164
  1141
huffman@23365
  1142
theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
haftmann@27651
  1143
proof -
haftmann@27651
  1144
  have "\<And>k. int y = int x * k \<Longrightarrow> x dvd y"
haftmann@27651
  1145
  proof -
haftmann@27651
  1146
    fix k
haftmann@27651
  1147
    assume A: "int y = int x * k"
haftmann@27651
  1148
    then show "x dvd y" proof (cases k)
haftmann@27651
  1149
      case (1 n) with A have "y = x * n" by (simp add: zmult_int)
haftmann@27651
  1150
      then show ?thesis ..
haftmann@27651
  1151
    next
haftmann@27651
  1152
      case (2 n) with A have "int y = int x * (- int (Suc n))" by simp
haftmann@27651
  1153
      also have "\<dots> = - (int x * int (Suc n))" by (simp only: mult_minus_right)
haftmann@27651
  1154
      also have "\<dots> = - int (x * Suc n)" by (simp only: zmult_int)
haftmann@27651
  1155
      finally have "- int (x * Suc n) = int y" ..
haftmann@27651
  1156
      then show ?thesis by (simp only: negative_eq_positive) auto
haftmann@27651
  1157
    qed
haftmann@27651
  1158
  qed
nipkow@30042
  1159
  then show ?thesis by (auto elim!: dvdE simp only: dvd_triv_left int_mult)
huffman@29410
  1160
qed
wenzelm@23164
  1161
wenzelm@23164
  1162
lemma zdvd1_eq[simp]: "(x::int) dvd 1 = ( \<bar>x\<bar> = 1)"
wenzelm@23164
  1163
proof
nipkow@30042
  1164
  assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by simp
wenzelm@23164
  1165
  hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int)
wenzelm@23164
  1166
  hence "nat \<bar>x\<bar> = 1"  by simp
wenzelm@23164
  1167
  thus "\<bar>x\<bar> = 1" by (cases "x < 0", auto)
wenzelm@23164
  1168
next
wenzelm@23164
  1169
  assume "\<bar>x\<bar>=1" thus "x dvd 1" 
nipkow@30042
  1170
    by(cases "x < 0",simp_all add: minus_equation_iff dvd_eq_mod_eq_0)
wenzelm@23164
  1171
qed
wenzelm@23164
  1172
lemma zdvd_mult_cancel1: 
wenzelm@23164
  1173
  assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)"
wenzelm@23164
  1174
proof
wenzelm@23164
  1175
  assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m" 
nipkow@30042
  1176
    by (cases "n >0", auto simp add: minus_dvd_iff minus_equation_iff)
wenzelm@23164
  1177
next
wenzelm@23164
  1178
  assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp
wenzelm@23164
  1179
  from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq)
wenzelm@23164
  1180
qed
wenzelm@23164
  1181
huffman@23365
  1182
lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))"
nipkow@30042
  1183
  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
huffman@23306
  1184
huffman@23365
  1185
lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)"
nipkow@30042
  1186
  unfolding zdvd_int by (cases "z \<ge> 0") simp_all
wenzelm@23164
  1187
wenzelm@23164
  1188
lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)"
haftmann@27651
  1189
  by (auto simp add: dvd_int_iff)
wenzelm@23164
  1190
wenzelm@23164
  1191
lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)"
huffman@23365
  1192
  apply (rule_tac z=n in int_cases)
huffman@23365
  1193
  apply (auto simp add: dvd_int_iff)
huffman@23365
  1194
  apply (rule_tac z=z in int_cases)
huffman@23307
  1195
  apply (auto simp add: dvd_imp_le)
wenzelm@23164
  1196
  done
wenzelm@23164
  1197
wenzelm@23164
  1198
lemma zpower_zmod: "((x::int) mod m)^y mod m = x^y mod m"
wenzelm@23164
  1199
apply (induct "y", auto)
wenzelm@23164
  1200
apply (rule zmod_zmult1_eq [THEN trans])
wenzelm@23164
  1201
apply (simp (no_asm_simp))
nipkow@29948
  1202
apply (rule mod_mult_eq [symmetric])
wenzelm@23164
  1203
done
wenzelm@23164
  1204
huffman@23365
  1205
lemma zdiv_int: "int (a div b) = (int a) div (int b)"
wenzelm@23164
  1206
apply (subst split_div, auto)
wenzelm@23164
  1207
apply (subst split_zdiv, auto)
huffman@23365
  1208
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient)
haftmann@29651
  1209
apply (auto simp add: IntDiv.divmod_rel_def of_nat_mult)
wenzelm@23164
  1210
done
wenzelm@23164
  1211
wenzelm@23164
  1212
lemma zmod_int: "int (a mod b) = (int a) mod (int b)"
huffman@23365
  1213
apply (subst split_mod, auto)
huffman@23365
  1214
apply (subst split_zmod, auto)
huffman@23365
  1215
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia 
huffman@23365
  1216
       in unique_remainder)
haftmann@29651
  1217
apply (auto simp add: IntDiv.divmod_rel_def of_nat_mult)
huffman@23365
  1218
done
wenzelm@23164
  1219
nipkow@30180
  1220
lemma abs_div: "(y::int) dvd x \<Longrightarrow> abs (x div y) = abs x div abs y"
nipkow@30180
  1221
by (unfold dvd_def, cases "y=0", auto simp add: abs_mult)
nipkow@30180
  1222
wenzelm@23164
  1223
text{*Suggested by Matthias Daum*}
wenzelm@23164
  1224
lemma int_power_div_base:
wenzelm@23164
  1225
     "\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
huffman@30079
  1226
apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)")
wenzelm@23164
  1227
 apply (erule ssubst)
wenzelm@23164
  1228
 apply (simp only: power_add)
wenzelm@23164
  1229
 apply simp_all
wenzelm@23164
  1230
done
wenzelm@23164
  1231
haftmann@23853
  1232
text {* by Brian Huffman *}
haftmann@23853
  1233
lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m"
huffman@29405
  1234
by (rule mod_minus_eq [symmetric])
haftmann@23853
  1235
haftmann@23853
  1236
lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)"
huffman@29405
  1237
by (rule mod_diff_left_eq [symmetric])
haftmann@23853
  1238
haftmann@23853
  1239
lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)"
huffman@29405
  1240
by (rule mod_diff_right_eq [symmetric])
haftmann@23853
  1241
haftmann@23853
  1242
lemmas zmod_simps =
nipkow@30034
  1243
  mod_add_left_eq  [symmetric]
nipkow@30034
  1244
  mod_add_right_eq [symmetric]
haftmann@23853
  1245
  IntDiv.zmod_zmult1_eq     [symmetric]
nipkow@29948
  1246
  mod_mult_left_eq          [symmetric]
haftmann@23853
  1247
  IntDiv.zpower_zmod
haftmann@23853
  1248
  zminus_zmod zdiff_zmod_left zdiff_zmod_right
haftmann@23853
  1249
huffman@29045
  1250
text {* Distributive laws for function @{text nat}. *}
huffman@29045
  1251
huffman@29045
  1252
lemma nat_div_distrib: "0 \<le> x \<Longrightarrow> nat (x div y) = nat x div nat y"
huffman@29045
  1253
apply (rule linorder_cases [of y 0])
huffman@29045
  1254
apply (simp add: div_nonneg_neg_le0)
huffman@29045
  1255
apply simp
huffman@29045
  1256
apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int)
huffman@29045
  1257
done
huffman@29045
  1258
huffman@29045
  1259
(*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*)
huffman@29045
  1260
lemma nat_mod_distrib:
huffman@29045
  1261
  "\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x mod y) = nat x mod nat y"
huffman@29045
  1262
apply (case_tac "y = 0", simp add: DIVISION_BY_ZERO)
huffman@29045
  1263
apply (simp add: nat_eq_iff zmod_int)
huffman@29045
  1264
done
huffman@29045
  1265
huffman@29045
  1266
text{*Suggested by Matthias Daum*}
huffman@29045
  1267
lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)"
huffman@29045
  1268
apply (subgoal_tac "nat x div nat k < nat x")
huffman@29045
  1269
 apply (simp (asm_lr) add: nat_div_distrib [symmetric])
huffman@29045
  1270
apply (rule Divides.div_less_dividend, simp_all)
huffman@29045
  1271
done
huffman@29045
  1272
haftmann@23853
  1273
text {* code generator setup *}
wenzelm@23164
  1274
haftmann@26507
  1275
context ring_1
haftmann@26507
  1276
begin
haftmann@26507
  1277
haftmann@28562
  1278
lemma of_int_num [code]:
haftmann@26507
  1279
  "of_int k = (if k = 0 then 0 else if k < 0 then
haftmann@26507
  1280
     - of_int (- k) else let
haftmann@29651
  1281
       (l, m) = divmod k 2;
haftmann@26507
  1282
       l' = of_int l
haftmann@26507
  1283
     in if m = 0 then l' + l' else l' + l' + 1)"
haftmann@26507
  1284
proof -
haftmann@26507
  1285
  have aux1: "k mod (2\<Colon>int) \<noteq> (0\<Colon>int) \<Longrightarrow> 
haftmann@26507
  1286
    of_int k = of_int (k div 2 * 2 + 1)"
haftmann@26507
  1287
  proof -
haftmann@26507
  1288
    have "k mod 2 < 2" by (auto intro: pos_mod_bound)
haftmann@26507
  1289
    moreover have "0 \<le> k mod 2" by (auto intro: pos_mod_sign)
haftmann@26507
  1290
    moreover assume "k mod 2 \<noteq> 0"
haftmann@26507
  1291
    ultimately have "k mod 2 = 1" by arith
haftmann@26507
  1292
    moreover have "of_int k = of_int (k div 2 * 2 + k mod 2)" by simp
haftmann@26507
  1293
    ultimately show ?thesis by auto
haftmann@26507
  1294
  qed
haftmann@26507
  1295
  have aux2: "\<And>x. of_int 2 * x = x + x"
haftmann@26507
  1296
  proof -
haftmann@26507
  1297
    fix x
haftmann@26507
  1298
    have int2: "(2::int) = 1 + 1" by arith
haftmann@26507
  1299
    show "of_int 2 * x = x + x"
haftmann@26507
  1300
    unfolding int2 of_int_add left_distrib by simp
haftmann@26507
  1301
  qed
haftmann@26507
  1302
  have aux3: "\<And>x. x * of_int 2 = x + x"
haftmann@26507
  1303
  proof -
haftmann@26507
  1304
    fix x
haftmann@26507
  1305
    have int2: "(2::int) = 1 + 1" by arith
haftmann@26507
  1306
    show "x * of_int 2 = x + x" 
haftmann@26507
  1307
    unfolding int2 of_int_add right_distrib by simp
haftmann@26507
  1308
  qed
haftmann@29651
  1309
  from aux1 show ?thesis by (auto simp add: divmod_mod_div Let_def aux2 aux3)
haftmann@26507
  1310
qed
haftmann@26507
  1311
haftmann@26507
  1312
end
haftmann@26507
  1313
chaieb@27667
  1314
lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \<longleftrightarrow> n dvd x - y"
chaieb@27667
  1315
proof
chaieb@27667
  1316
  assume H: "x mod n = y mod n"
chaieb@27667
  1317
  hence "x mod n - y mod n = 0" by simp
chaieb@27667
  1318
  hence "(x mod n - y mod n) mod n = 0" by simp 
nipkow@30034
  1319
  hence "(x - y) mod n = 0" by (simp add: mod_diff_eq[symmetric])
nipkow@30042
  1320
  thus "n dvd x - y" by (simp add: dvd_eq_mod_eq_0)
chaieb@27667
  1321
next
chaieb@27667
  1322
  assume H: "n dvd x - y"
chaieb@27667
  1323
  then obtain k where k: "x-y = n*k" unfolding dvd_def by blast
chaieb@27667
  1324
  hence "x = n*k + y" by simp
chaieb@27667
  1325
  hence "x mod n = (n*k + y) mod n" by simp
nipkow@30034
  1326
  thus "x mod n = y mod n" by (simp add: mod_add_left_eq)
chaieb@27667
  1327
qed
chaieb@27667
  1328
chaieb@27667
  1329
lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y  mod n" and xy:"y \<le> x"
chaieb@27667
  1330
  shows "\<exists>q. x = y + n * q"
chaieb@27667
  1331
proof-
chaieb@27667
  1332
  from xy have th: "int x - int y = int (x - y)" by simp 
chaieb@27667
  1333
  from xyn have "int x mod int n = int y mod int n" 
chaieb@27667
  1334
    by (simp add: zmod_int[symmetric])
chaieb@27667
  1335
  hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric]) 
chaieb@27667
  1336
  hence "n dvd x - y" by (simp add: th zdvd_int)
chaieb@27667
  1337
  then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith
chaieb@27667
  1338
qed
chaieb@27667
  1339
chaieb@27667
  1340
lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)" 
chaieb@27667
  1341
  (is "?lhs = ?rhs")
chaieb@27667
  1342
proof
chaieb@27667
  1343
  assume H: "x mod n = y mod n"
chaieb@27667
  1344
  {assume xy: "x \<le> y"
chaieb@27667
  1345
    from H have th: "y mod n = x mod n" by simp
chaieb@27667
  1346
    from nat_mod_eq_lemma[OF th xy] have ?rhs 
chaieb@27667
  1347
      apply clarify  apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)}
chaieb@27667
  1348
  moreover
chaieb@27667
  1349
  {assume xy: "y \<le> x"
chaieb@27667
  1350
    from nat_mod_eq_lemma[OF H xy] have ?rhs 
chaieb@27667
  1351
      apply clarify  apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)}
chaieb@27667
  1352
  ultimately  show ?rhs using linear[of x y] by blast  
chaieb@27667
  1353
next
chaieb@27667
  1354
  assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast
chaieb@27667
  1355
  hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp
chaieb@27667
  1356
  thus  ?lhs by simp
chaieb@27667
  1357
qed
chaieb@27667
  1358
haftmann@29936
  1359
haftmann@29936
  1360
subsection {* Code generation *}
haftmann@29936
  1361
haftmann@29936
  1362
definition pdivmod :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@29936
  1363
  "pdivmod k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)"
haftmann@29936
  1364
haftmann@29936
  1365
lemma pdivmod_posDivAlg [code]:
haftmann@29936
  1366
  "pdivmod k l = (if l = 0 then (0, \<bar>k\<bar>) else posDivAlg \<bar>k\<bar> \<bar>l\<bar>)"
haftmann@29936
  1367
by (subst posDivAlg_div_mod) (simp_all add: pdivmod_def)
haftmann@29936
  1368
haftmann@29936
  1369
lemma divmod_pdivmod: "divmod k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else
haftmann@29936
  1370
  apsnd ((op *) (sgn l)) (if 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0
haftmann@29936
  1371
    then pdivmod k l
haftmann@29936
  1372
    else (let (r, s) = pdivmod k l in
haftmann@29936
  1373
      if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
haftmann@29936
  1374
proof -
haftmann@29936
  1375
  have aux: "\<And>q::int. - k = l * q \<longleftrightarrow> k = l * - q" by auto
haftmann@29936
  1376
  show ?thesis
haftmann@29936
  1377
    by (simp add: divmod_mod_div pdivmod_def)
haftmann@29936
  1378
      (auto simp add: aux not_less not_le zdiv_zminus1_eq_if
haftmann@29936
  1379
      zmod_zminus1_eq_if zdiv_zminus2_eq_if zmod_zminus2_eq_if)
haftmann@29936
  1380
qed
haftmann@29936
  1381
haftmann@29936
  1382
lemma divmod_code [code]: "divmod k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else
haftmann@29936
  1383
  apsnd ((op *) (sgn l)) (if sgn k = sgn l
haftmann@29936
  1384
    then pdivmod k l
haftmann@29936
  1385
    else (let (r, s) = pdivmod k l in
haftmann@29936
  1386
      if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
haftmann@29936
  1387
proof -
haftmann@29936
  1388
  have "k \<noteq> 0 \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0 \<longleftrightarrow> sgn k = sgn l"
haftmann@29936
  1389
    by (auto simp add: not_less sgn_if)
haftmann@29936
  1390
  then show ?thesis by (simp add: divmod_pdivmod)
haftmann@29936
  1391
qed
haftmann@29936
  1392
wenzelm@23164
  1393
code_modulename SML
wenzelm@23164
  1394
  IntDiv Integer
wenzelm@23164
  1395
wenzelm@23164
  1396
code_modulename OCaml
wenzelm@23164
  1397
  IntDiv Integer
wenzelm@23164
  1398
wenzelm@23164
  1399
code_modulename Haskell
haftmann@24195
  1400
  IntDiv Integer
wenzelm@23164
  1401
wenzelm@23164
  1402
end