src/HOL/NatBin.thy
author wenzelm
Mon Mar 16 18:24:30 2009 +0100 (2009-03-16)
changeset 30549 d2d7874648bd
parent 30497 45b434d8ef8d
child 30652 752329615264
permissions -rw-r--r--
simplified method setup;
wenzelm@23164
     1
(*  Title:      HOL/NatBin.thy
wenzelm@23164
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@23164
     3
    Copyright   1999  University of Cambridge
wenzelm@23164
     4
*)
wenzelm@23164
     5
wenzelm@23164
     6
header {* Binary arithmetic for the natural numbers *}
wenzelm@23164
     7
wenzelm@23164
     8
theory NatBin
wenzelm@23164
     9
imports IntDiv
wenzelm@23164
    10
begin
wenzelm@23164
    11
wenzelm@23164
    12
text {*
wenzelm@23164
    13
  Arithmetic for naturals is reduced to that for the non-negative integers.
wenzelm@23164
    14
*}
wenzelm@23164
    15
haftmann@25571
    16
instantiation nat :: number
haftmann@25571
    17
begin
haftmann@25571
    18
haftmann@25571
    19
definition
haftmann@28562
    20
  nat_number_of_def [code inline, code del]: "number_of v = nat (number_of v)"
haftmann@25571
    21
haftmann@25571
    22
instance ..
haftmann@25571
    23
haftmann@25571
    24
end
wenzelm@23164
    25
haftmann@25965
    26
lemma [code post]:
haftmann@25965
    27
  "nat (number_of v) = number_of v"
haftmann@25965
    28
  unfolding nat_number_of_def ..
haftmann@25965
    29
wenzelm@23164
    30
abbreviation (xsymbols)
huffman@29401
    31
  power2 :: "'a::power => 'a"  ("(_\<twosuperior>)" [1000] 999) where
wenzelm@23164
    32
  "x\<twosuperior> == x^2"
wenzelm@23164
    33
wenzelm@23164
    34
notation (latex output)
huffman@29401
    35
  power2  ("(_\<twosuperior>)" [1000] 999)
wenzelm@23164
    36
wenzelm@23164
    37
notation (HTML output)
huffman@29401
    38
  power2  ("(_\<twosuperior>)" [1000] 999)
wenzelm@23164
    39
wenzelm@23164
    40
huffman@29040
    41
subsection {* Predicate for negative binary numbers *}
huffman@29040
    42
huffman@29040
    43
definition
huffman@29040
    44
  neg  :: "int \<Rightarrow> bool"
huffman@29040
    45
where
huffman@29040
    46
  "neg Z \<longleftrightarrow> Z < 0"
huffman@29040
    47
huffman@29040
    48
lemma not_neg_int [simp]: "~ neg (of_nat n)"
huffman@29040
    49
by (simp add: neg_def)
huffman@29040
    50
huffman@29040
    51
lemma neg_zminus_int [simp]: "neg (- (of_nat (Suc n)))"
huffman@29040
    52
by (simp add: neg_def neg_less_0_iff_less del: of_nat_Suc)
huffman@29040
    53
huffman@29040
    54
lemmas neg_eq_less_0 = neg_def
huffman@29040
    55
huffman@29040
    56
lemma not_neg_eq_ge_0: "(~neg x) = (0 \<le> x)"
huffman@29040
    57
by (simp add: neg_def linorder_not_less)
huffman@29040
    58
huffman@29040
    59
text{*To simplify inequalities when Numeral1 can get simplified to 1*}
huffman@29040
    60
huffman@29040
    61
lemma not_neg_0: "~ neg 0"
huffman@29040
    62
by (simp add: One_int_def neg_def)
huffman@29040
    63
huffman@29040
    64
lemma not_neg_1: "~ neg 1"
huffman@29040
    65
by (simp add: neg_def linorder_not_less zero_le_one)
huffman@29040
    66
huffman@29040
    67
lemma neg_nat: "neg z ==> nat z = 0"
huffman@29040
    68
by (simp add: neg_def order_less_imp_le) 
huffman@29040
    69
huffman@29040
    70
lemma not_neg_nat: "~ neg z ==> of_nat (nat z) = z"
huffman@29040
    71
by (simp add: linorder_not_less neg_def)
huffman@29040
    72
huffman@29040
    73
text {*
huffman@29040
    74
  If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
huffman@29040
    75
  @{term Numeral0} IS @{term "number_of Pls"}
huffman@29040
    76
*}
huffman@29040
    77
huffman@29040
    78
lemma not_neg_number_of_Pls: "~ neg (number_of Int.Pls)"
huffman@29040
    79
  by (simp add: neg_def)
huffman@29040
    80
huffman@29040
    81
lemma neg_number_of_Min: "neg (number_of Int.Min)"
huffman@29040
    82
  by (simp add: neg_def)
huffman@29040
    83
huffman@29040
    84
lemma neg_number_of_Bit0:
huffman@29040
    85
  "neg (number_of (Int.Bit0 w)) = neg (number_of w)"
huffman@29040
    86
  by (simp add: neg_def)
huffman@29040
    87
huffman@29040
    88
lemma neg_number_of_Bit1:
huffman@29040
    89
  "neg (number_of (Int.Bit1 w)) = neg (number_of w)"
huffman@29040
    90
  by (simp add: neg_def)
huffman@29040
    91
huffman@29040
    92
lemmas neg_simps [simp] =
huffman@29040
    93
  not_neg_0 not_neg_1
huffman@29040
    94
  not_neg_number_of_Pls neg_number_of_Min
huffman@29040
    95
  neg_number_of_Bit0 neg_number_of_Bit1
huffman@29040
    96
huffman@29040
    97
wenzelm@23164
    98
subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}
wenzelm@23164
    99
wenzelm@23164
   100
declare nat_0 [simp] nat_1 [simp]
wenzelm@23164
   101
wenzelm@23164
   102
lemma nat_number_of [simp]: "nat (number_of w) = number_of w"
wenzelm@23164
   103
by (simp add: nat_number_of_def)
wenzelm@23164
   104
wenzelm@23164
   105
lemma nat_numeral_0_eq_0 [simp]: "Numeral0 = (0::nat)"
wenzelm@23164
   106
by (simp add: nat_number_of_def)
wenzelm@23164
   107
wenzelm@23164
   108
lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)"
wenzelm@23164
   109
by (simp add: nat_1 nat_number_of_def)
wenzelm@23164
   110
wenzelm@23164
   111
lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0"
wenzelm@23164
   112
by (simp add: nat_numeral_1_eq_1)
wenzelm@23164
   113
wenzelm@23164
   114
lemma numeral_2_eq_2: "2 = Suc (Suc 0)"
wenzelm@23164
   115
apply (unfold nat_number_of_def)
wenzelm@23164
   116
apply (rule nat_2)
wenzelm@23164
   117
done
wenzelm@23164
   118
wenzelm@23164
   119
wenzelm@23164
   120
subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}
wenzelm@23164
   121
wenzelm@23164
   122
lemma int_nat_number_of [simp]:
huffman@23365
   123
     "int (number_of v) =  
huffman@23307
   124
         (if neg (number_of v :: int) then 0  
huffman@23307
   125
          else (number_of v :: int))"
huffman@28984
   126
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28984
   127
  by simp
huffman@23307
   128
wenzelm@23164
   129
wenzelm@23164
   130
subsubsection{*Successor *}
wenzelm@23164
   131
wenzelm@23164
   132
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"
wenzelm@23164
   133
apply (rule sym)
wenzelm@23164
   134
apply (simp add: nat_eq_iff int_Suc)
wenzelm@23164
   135
done
wenzelm@23164
   136
wenzelm@23164
   137
lemma Suc_nat_number_of_add:
wenzelm@23164
   138
     "Suc (number_of v + n) =  
huffman@28984
   139
        (if neg (number_of v :: int) then 1+n else number_of (Int.succ v) + n)"
huffman@28984
   140
  unfolding nat_number_of_def number_of_is_id neg_def numeral_simps
huffman@28984
   141
  by (simp add: Suc_nat_eq_nat_zadd1 add_ac)
wenzelm@23164
   142
wenzelm@23164
   143
lemma Suc_nat_number_of [simp]:
wenzelm@23164
   144
     "Suc (number_of v) =  
haftmann@25919
   145
        (if neg (number_of v :: int) then 1 else number_of (Int.succ v))"
wenzelm@23164
   146
apply (cut_tac n = 0 in Suc_nat_number_of_add)
wenzelm@23164
   147
apply (simp cong del: if_weak_cong)
wenzelm@23164
   148
done
wenzelm@23164
   149
wenzelm@23164
   150
wenzelm@23164
   151
subsubsection{*Addition *}
wenzelm@23164
   152
wenzelm@23164
   153
lemma add_nat_number_of [simp]:
wenzelm@23164
   154
     "(number_of v :: nat) + number_of v' =  
huffman@29012
   155
         (if v < Int.Pls then number_of v'  
huffman@29012
   156
          else if v' < Int.Pls then number_of v  
wenzelm@23164
   157
          else number_of (v + v'))"
huffman@29012
   158
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@28984
   159
  by (simp add: nat_add_distrib)
wenzelm@23164
   160
huffman@30081
   161
lemma nat_number_of_add_1 [simp]:
huffman@30081
   162
  "number_of v + (1::nat) =
huffman@30081
   163
    (if v < Int.Pls then 1 else number_of (Int.succ v))"
huffman@30081
   164
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@30081
   165
  by (simp add: nat_add_distrib)
huffman@30081
   166
huffman@30081
   167
lemma nat_1_add_number_of [simp]:
huffman@30081
   168
  "(1::nat) + number_of v =
huffman@30081
   169
    (if v < Int.Pls then 1 else number_of (Int.succ v))"
huffman@30081
   170
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@30081
   171
  by (simp add: nat_add_distrib)
huffman@30081
   172
huffman@30081
   173
lemma nat_1_add_1 [simp]: "1 + 1 = (2::nat)"
huffman@30081
   174
  by (rule int_int_eq [THEN iffD1]) simp
huffman@30081
   175
wenzelm@23164
   176
wenzelm@23164
   177
subsubsection{*Subtraction *}
wenzelm@23164
   178
wenzelm@23164
   179
lemma diff_nat_eq_if:
wenzelm@23164
   180
     "nat z - nat z' =  
wenzelm@23164
   181
        (if neg z' then nat z   
wenzelm@23164
   182
         else let d = z-z' in     
wenzelm@23164
   183
              if neg d then 0 else nat d)"
haftmann@27651
   184
by (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0)
haftmann@27651
   185
wenzelm@23164
   186
wenzelm@23164
   187
lemma diff_nat_number_of [simp]: 
wenzelm@23164
   188
     "(number_of v :: nat) - number_of v' =  
huffman@29012
   189
        (if v' < Int.Pls then number_of v  
wenzelm@23164
   190
         else let d = number_of (v + uminus v') in     
wenzelm@23164
   191
              if neg d then 0 else nat d)"
huffman@29012
   192
  unfolding nat_number_of_def number_of_is_id numeral_simps neg_def
huffman@29012
   193
  by auto
wenzelm@23164
   194
huffman@30081
   195
lemma nat_number_of_diff_1 [simp]:
huffman@30081
   196
  "number_of v - (1::nat) =
huffman@30081
   197
    (if v \<le> Int.Pls then 0 else number_of (Int.pred v))"
huffman@30081
   198
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@30081
   199
  by auto
huffman@30081
   200
wenzelm@23164
   201
wenzelm@23164
   202
subsubsection{*Multiplication *}
wenzelm@23164
   203
wenzelm@23164
   204
lemma mult_nat_number_of [simp]:
wenzelm@23164
   205
     "(number_of v :: nat) * number_of v' =  
huffman@29012
   206
       (if v < Int.Pls then 0 else number_of (v * v'))"
huffman@29012
   207
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@28984
   208
  by (simp add: nat_mult_distrib)
wenzelm@23164
   209
wenzelm@23164
   210
wenzelm@23164
   211
subsubsection{*Quotient *}
wenzelm@23164
   212
wenzelm@23164
   213
lemma div_nat_number_of [simp]:
wenzelm@23164
   214
     "(number_of v :: nat)  div  number_of v' =  
wenzelm@23164
   215
          (if neg (number_of v :: int) then 0  
wenzelm@23164
   216
           else nat (number_of v div number_of v'))"
huffman@28984
   217
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28984
   218
  by (simp add: nat_div_distrib)
wenzelm@23164
   219
wenzelm@23164
   220
lemma one_div_nat_number_of [simp]:
haftmann@27651
   221
     "Suc 0 div number_of v' = nat (1 div number_of v')" 
wenzelm@23164
   222
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) 
wenzelm@23164
   223
wenzelm@23164
   224
wenzelm@23164
   225
subsubsection{*Remainder *}
wenzelm@23164
   226
wenzelm@23164
   227
lemma mod_nat_number_of [simp]:
wenzelm@23164
   228
     "(number_of v :: nat)  mod  number_of v' =  
wenzelm@23164
   229
        (if neg (number_of v :: int) then 0  
wenzelm@23164
   230
         else if neg (number_of v' :: int) then number_of v  
wenzelm@23164
   231
         else nat (number_of v mod number_of v'))"
huffman@28984
   232
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28984
   233
  by (simp add: nat_mod_distrib)
wenzelm@23164
   234
wenzelm@23164
   235
lemma one_mod_nat_number_of [simp]:
haftmann@27651
   236
     "Suc 0 mod number_of v' =  
wenzelm@23164
   237
        (if neg (number_of v' :: int) then Suc 0
wenzelm@23164
   238
         else nat (1 mod number_of v'))"
wenzelm@23164
   239
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) 
wenzelm@23164
   240
wenzelm@23164
   241
wenzelm@23164
   242
subsubsection{* Divisibility *}
wenzelm@23164
   243
wenzelm@23164
   244
lemmas dvd_eq_mod_eq_0_number_of =
wenzelm@23164
   245
  dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard]
wenzelm@23164
   246
wenzelm@23164
   247
declare dvd_eq_mod_eq_0_number_of [simp]
wenzelm@23164
   248
wenzelm@23164
   249
ML
wenzelm@23164
   250
{*
wenzelm@23164
   251
val nat_number_of_def = thm"nat_number_of_def";
wenzelm@23164
   252
wenzelm@23164
   253
val nat_number_of = thm"nat_number_of";
wenzelm@23164
   254
val nat_numeral_0_eq_0 = thm"nat_numeral_0_eq_0";
wenzelm@23164
   255
val nat_numeral_1_eq_1 = thm"nat_numeral_1_eq_1";
wenzelm@23164
   256
val numeral_1_eq_Suc_0 = thm"numeral_1_eq_Suc_0";
wenzelm@23164
   257
val numeral_2_eq_2 = thm"numeral_2_eq_2";
wenzelm@23164
   258
val nat_div_distrib = thm"nat_div_distrib";
wenzelm@23164
   259
val nat_mod_distrib = thm"nat_mod_distrib";
wenzelm@23164
   260
val int_nat_number_of = thm"int_nat_number_of";
wenzelm@23164
   261
val Suc_nat_eq_nat_zadd1 = thm"Suc_nat_eq_nat_zadd1";
wenzelm@23164
   262
val Suc_nat_number_of_add = thm"Suc_nat_number_of_add";
wenzelm@23164
   263
val Suc_nat_number_of = thm"Suc_nat_number_of";
wenzelm@23164
   264
val add_nat_number_of = thm"add_nat_number_of";
wenzelm@23164
   265
val diff_nat_eq_if = thm"diff_nat_eq_if";
wenzelm@23164
   266
val diff_nat_number_of = thm"diff_nat_number_of";
wenzelm@23164
   267
val mult_nat_number_of = thm"mult_nat_number_of";
wenzelm@23164
   268
val div_nat_number_of = thm"div_nat_number_of";
wenzelm@23164
   269
val mod_nat_number_of = thm"mod_nat_number_of";
wenzelm@23164
   270
*}
wenzelm@23164
   271
wenzelm@23164
   272
wenzelm@23164
   273
subsection{*Comparisons*}
wenzelm@23164
   274
wenzelm@23164
   275
subsubsection{*Equals (=) *}
wenzelm@23164
   276
wenzelm@23164
   277
lemma eq_nat_nat_iff:
wenzelm@23164
   278
     "[| (0::int) <= z;  0 <= z' |] ==> (nat z = nat z') = (z=z')"
wenzelm@23164
   279
by (auto elim!: nonneg_eq_int)
wenzelm@23164
   280
wenzelm@23164
   281
lemma eq_nat_number_of [simp]:
wenzelm@23164
   282
     "((number_of v :: nat) = number_of v') =  
huffman@28969
   283
      (if neg (number_of v :: int) then (number_of v' :: int) \<le> 0
huffman@28969
   284
       else if neg (number_of v' :: int) then (number_of v :: int) = 0
huffman@28969
   285
       else v = v')"
huffman@28969
   286
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28969
   287
  by auto
wenzelm@23164
   288
wenzelm@23164
   289
wenzelm@23164
   290
subsubsection{*Less-than (<) *}
wenzelm@23164
   291
wenzelm@23164
   292
lemma less_nat_number_of [simp]:
huffman@29011
   293
  "(number_of v :: nat) < number_of v' \<longleftrightarrow>
huffman@29011
   294
    (if v < v' then Int.Pls < v' else False)"
huffman@29011
   295
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@28961
   296
  by auto
wenzelm@23164
   297
wenzelm@23164
   298
huffman@29010
   299
subsubsection{*Less-than-or-equal *}
huffman@29010
   300
huffman@29010
   301
lemma le_nat_number_of [simp]:
huffman@29010
   302
  "(number_of v :: nat) \<le> number_of v' \<longleftrightarrow>
huffman@29010
   303
    (if v \<le> v' then True else v \<le> Int.Pls)"
huffman@29010
   304
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@29010
   305
  by auto
huffman@29010
   306
wenzelm@23164
   307
(*Maps #n to n for n = 0, 1, 2*)
wenzelm@23164
   308
lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2
wenzelm@23164
   309
wenzelm@23164
   310
wenzelm@23164
   311
subsection{*Powers with Numeric Exponents*}
wenzelm@23164
   312
wenzelm@23164
   313
text{*We cannot refer to the number @{term 2} in @{text Ring_and_Field.thy}.
wenzelm@23164
   314
We cannot prove general results about the numeral @{term "-1"}, so we have to
wenzelm@23164
   315
use @{term "- 1"} instead.*}
wenzelm@23164
   316
huffman@23277
   317
lemma power2_eq_square: "(a::'a::recpower)\<twosuperior> = a * a"
wenzelm@23164
   318
  by (simp add: numeral_2_eq_2 Power.power_Suc)
wenzelm@23164
   319
huffman@23277
   320
lemma zero_power2 [simp]: "(0::'a::{semiring_1,recpower})\<twosuperior> = 0"
wenzelm@23164
   321
  by (simp add: power2_eq_square)
wenzelm@23164
   322
huffman@23277
   323
lemma one_power2 [simp]: "(1::'a::{semiring_1,recpower})\<twosuperior> = 1"
wenzelm@23164
   324
  by (simp add: power2_eq_square)
wenzelm@23164
   325
wenzelm@23164
   326
lemma power3_eq_cube: "(x::'a::recpower) ^ 3 = x * x * x"
wenzelm@23164
   327
  apply (subgoal_tac "3 = Suc (Suc (Suc 0))")
wenzelm@23164
   328
  apply (erule ssubst)
wenzelm@23164
   329
  apply (simp add: power_Suc mult_ac)
wenzelm@23164
   330
  apply (unfold nat_number_of_def)
wenzelm@23164
   331
  apply (subst nat_eq_iff)
wenzelm@23164
   332
  apply simp
wenzelm@23164
   333
done
wenzelm@23164
   334
wenzelm@23164
   335
text{*Squares of literal numerals will be evaluated.*}
wenzelm@23164
   336
lemmas power2_eq_square_number_of =
wenzelm@23164
   337
    power2_eq_square [of "number_of w", standard]
wenzelm@23164
   338
declare power2_eq_square_number_of [simp]
wenzelm@23164
   339
wenzelm@23164
   340
wenzelm@23164
   341
lemma zero_le_power2[simp]: "0 \<le> (a\<twosuperior>::'a::{ordered_idom,recpower})"
wenzelm@23164
   342
  by (simp add: power2_eq_square)
wenzelm@23164
   343
wenzelm@23164
   344
lemma zero_less_power2[simp]:
wenzelm@23164
   345
     "(0 < a\<twosuperior>) = (a \<noteq> (0::'a::{ordered_idom,recpower}))"
wenzelm@23164
   346
  by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)
wenzelm@23164
   347
wenzelm@23164
   348
lemma power2_less_0[simp]:
wenzelm@23164
   349
  fixes a :: "'a::{ordered_idom,recpower}"
wenzelm@23164
   350
  shows "~ (a\<twosuperior> < 0)"
wenzelm@23164
   351
by (force simp add: power2_eq_square mult_less_0_iff) 
wenzelm@23164
   352
wenzelm@23164
   353
lemma zero_eq_power2[simp]:
wenzelm@23164
   354
     "(a\<twosuperior> = 0) = (a = (0::'a::{ordered_idom,recpower}))"
wenzelm@23164
   355
  by (force simp add: power2_eq_square mult_eq_0_iff)
wenzelm@23164
   356
wenzelm@23164
   357
lemma abs_power2[simp]:
wenzelm@23164
   358
     "abs(a\<twosuperior>) = (a\<twosuperior>::'a::{ordered_idom,recpower})"
wenzelm@23164
   359
  by (simp add: power2_eq_square abs_mult abs_mult_self)
wenzelm@23164
   360
wenzelm@23164
   361
lemma power2_abs[simp]:
wenzelm@23164
   362
     "(abs a)\<twosuperior> = (a\<twosuperior>::'a::{ordered_idom,recpower})"
wenzelm@23164
   363
  by (simp add: power2_eq_square abs_mult_self)
wenzelm@23164
   364
wenzelm@23164
   365
lemma power2_minus[simp]:
wenzelm@23164
   366
     "(- a)\<twosuperior> = (a\<twosuperior>::'a::{comm_ring_1,recpower})"
wenzelm@23164
   367
  by (simp add: power2_eq_square)
wenzelm@23164
   368
wenzelm@23164
   369
lemma power2_le_imp_le:
wenzelm@23164
   370
  fixes x y :: "'a::{ordered_semidom,recpower}"
wenzelm@23164
   371
  shows "\<lbrakk>x\<twosuperior> \<le> y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x \<le> y"
wenzelm@23164
   372
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)
wenzelm@23164
   373
wenzelm@23164
   374
lemma power2_less_imp_less:
wenzelm@23164
   375
  fixes x y :: "'a::{ordered_semidom,recpower}"
wenzelm@23164
   376
  shows "\<lbrakk>x\<twosuperior> < y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x < y"
wenzelm@23164
   377
by (rule power_less_imp_less_base)
wenzelm@23164
   378
wenzelm@23164
   379
lemma power2_eq_imp_eq:
wenzelm@23164
   380
  fixes x y :: "'a::{ordered_semidom,recpower}"
wenzelm@23164
   381
  shows "\<lbrakk>x\<twosuperior> = y\<twosuperior>; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> x = y"
wenzelm@23164
   382
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base, simp)
wenzelm@23164
   383
wenzelm@23164
   384
lemma power_minus1_even[simp]: "(- 1) ^ (2*n) = (1::'a::{comm_ring_1,recpower})"
paulson@29958
   385
proof (induct n)
paulson@29958
   386
  case 0 show ?case by simp
paulson@29958
   387
next
paulson@29958
   388
  case (Suc n) then show ?case by (simp add: power_Suc power_add)
paulson@29958
   389
qed
paulson@29958
   390
paulson@29958
   391
lemma power_minus1_odd: "(- 1) ^ Suc(2*n) = -(1::'a::{comm_ring_1,recpower})"
paulson@29958
   392
  by (simp add: power_Suc) 
wenzelm@23164
   393
wenzelm@23164
   394
lemma power_even_eq: "(a::'a::recpower) ^ (2*n) = (a^n)^2"
wenzelm@23164
   395
by (subst mult_commute) (simp add: power_mult)
wenzelm@23164
   396
wenzelm@23164
   397
lemma power_odd_eq: "(a::int) ^ Suc(2*n) = a * (a^n)^2"
wenzelm@23164
   398
by (simp add: power_even_eq) 
wenzelm@23164
   399
wenzelm@23164
   400
lemma power_minus_even [simp]:
wenzelm@23164
   401
     "(-a) ^ (2*n) = (a::'a::{comm_ring_1,recpower}) ^ (2*n)"
wenzelm@23164
   402
by (simp add: power_minus1_even power_minus [of a]) 
wenzelm@23164
   403
wenzelm@23164
   404
lemma zero_le_even_power'[simp]:
wenzelm@23164
   405
     "0 \<le> (a::'a::{ordered_idom,recpower}) ^ (2*n)"
wenzelm@23164
   406
proof (induct "n")
wenzelm@23164
   407
  case 0
wenzelm@23164
   408
    show ?case by (simp add: zero_le_one)
wenzelm@23164
   409
next
wenzelm@23164
   410
  case (Suc n)
wenzelm@23164
   411
    have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" 
wenzelm@23164
   412
      by (simp add: mult_ac power_add power2_eq_square)
wenzelm@23164
   413
    thus ?case
wenzelm@23164
   414
      by (simp add: prems zero_le_mult_iff)
wenzelm@23164
   415
qed
wenzelm@23164
   416
wenzelm@23164
   417
lemma odd_power_less_zero:
wenzelm@23164
   418
     "(a::'a::{ordered_idom,recpower}) < 0 ==> a ^ Suc(2*n) < 0"
wenzelm@23164
   419
proof (induct "n")
wenzelm@23164
   420
  case 0
huffman@30273
   421
  then show ?case by simp
wenzelm@23164
   422
next
wenzelm@23164
   423
  case (Suc n)
huffman@30273
   424
  have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"
huffman@30273
   425
    by (simp add: mult_ac power_add power2_eq_square)
wenzelm@23389
   426
  thus ?case
huffman@30273
   427
    by (simp del: power_Suc add: prems mult_less_0_iff mult_neg_neg)
wenzelm@23164
   428
qed
wenzelm@23164
   429
wenzelm@23164
   430
lemma odd_0_le_power_imp_0_le:
wenzelm@23164
   431
     "0 \<le> a  ^ Suc(2*n) ==> 0 \<le> (a::'a::{ordered_idom,recpower})"
wenzelm@23164
   432
apply (insert odd_power_less_zero [of a n]) 
wenzelm@23164
   433
apply (force simp add: linorder_not_less [symmetric]) 
wenzelm@23164
   434
done
wenzelm@23164
   435
wenzelm@23164
   436
text{*Simprules for comparisons where common factors can be cancelled.*}
wenzelm@23164
   437
lemmas zero_compare_simps =
wenzelm@23164
   438
    add_strict_increasing add_strict_increasing2 add_increasing
wenzelm@23164
   439
    zero_le_mult_iff zero_le_divide_iff 
wenzelm@23164
   440
    zero_less_mult_iff zero_less_divide_iff 
wenzelm@23164
   441
    mult_le_0_iff divide_le_0_iff 
wenzelm@23164
   442
    mult_less_0_iff divide_less_0_iff 
wenzelm@23164
   443
    zero_le_power2 power2_less_0
wenzelm@23164
   444
wenzelm@23164
   445
subsubsection{*Nat *}
wenzelm@23164
   446
wenzelm@23164
   447
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"
wenzelm@23164
   448
by (simp add: numerals)
wenzelm@23164
   449
wenzelm@23164
   450
(*Expresses a natural number constant as the Suc of another one.
wenzelm@23164
   451
  NOT suitable for rewriting because n recurs in the condition.*)
wenzelm@23164
   452
lemmas expand_Suc = Suc_pred' [of "number_of v", standard]
wenzelm@23164
   453
wenzelm@23164
   454
subsubsection{*Arith *}
wenzelm@23164
   455
wenzelm@23164
   456
lemma Suc_eq_add_numeral_1: "Suc n = n + 1"
wenzelm@23164
   457
by (simp add: numerals)
wenzelm@23164
   458
wenzelm@23164
   459
lemma Suc_eq_add_numeral_1_left: "Suc n = 1 + n"
wenzelm@23164
   460
by (simp add: numerals)
wenzelm@23164
   461
wenzelm@23164
   462
(* These two can be useful when m = number_of... *)
wenzelm@23164
   463
wenzelm@23164
   464
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"
huffman@30079
   465
  unfolding One_nat_def by (cases m) simp_all
wenzelm@23164
   466
wenzelm@23164
   467
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"
huffman@30079
   468
  unfolding One_nat_def by (cases m) simp_all
wenzelm@23164
   469
wenzelm@23164
   470
lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))"
huffman@30079
   471
  unfolding One_nat_def by (cases m) simp_all
wenzelm@23164
   472
wenzelm@23164
   473
wenzelm@23164
   474
subsection{*Comparisons involving (0::nat) *}
wenzelm@23164
   475
wenzelm@23164
   476
text{*Simplification already does @{term "n<0"}, @{term "n\<le>0"} and @{term "0\<le>n"}.*}
wenzelm@23164
   477
wenzelm@23164
   478
lemma eq_number_of_0 [simp]:
huffman@29012
   479
  "number_of v = (0::nat) \<longleftrightarrow> v \<le> Int.Pls"
huffman@29012
   480
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@29012
   481
  by auto
wenzelm@23164
   482
wenzelm@23164
   483
lemma eq_0_number_of [simp]:
huffman@29012
   484
  "(0::nat) = number_of v \<longleftrightarrow> v \<le> Int.Pls"
wenzelm@23164
   485
by (rule trans [OF eq_sym_conv eq_number_of_0])
wenzelm@23164
   486
wenzelm@23164
   487
lemma less_0_number_of [simp]:
huffman@29012
   488
   "(0::nat) < number_of v \<longleftrightarrow> Int.Pls < v"
huffman@29012
   489
  unfolding nat_number_of_def number_of_is_id numeral_simps
huffman@29012
   490
  by simp
wenzelm@23164
   491
wenzelm@23164
   492
lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)"
huffman@28969
   493
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric])
wenzelm@23164
   494
wenzelm@23164
   495
wenzelm@23164
   496
wenzelm@23164
   497
subsection{*Comparisons involving  @{term Suc} *}
wenzelm@23164
   498
wenzelm@23164
   499
lemma eq_number_of_Suc [simp]:
wenzelm@23164
   500
     "(number_of v = Suc n) =  
haftmann@25919
   501
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   502
         if neg pv then False else nat pv = n)"
wenzelm@23164
   503
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less 
wenzelm@23164
   504
                  number_of_pred nat_number_of_def 
wenzelm@23164
   505
            split add: split_if)
wenzelm@23164
   506
apply (rule_tac x = "number_of v" in spec)
wenzelm@23164
   507
apply (auto simp add: nat_eq_iff)
wenzelm@23164
   508
done
wenzelm@23164
   509
wenzelm@23164
   510
lemma Suc_eq_number_of [simp]:
wenzelm@23164
   511
     "(Suc n = number_of v) =  
haftmann@25919
   512
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   513
         if neg pv then False else nat pv = n)"
wenzelm@23164
   514
by (rule trans [OF eq_sym_conv eq_number_of_Suc])
wenzelm@23164
   515
wenzelm@23164
   516
lemma less_number_of_Suc [simp]:
wenzelm@23164
   517
     "(number_of v < Suc n) =  
haftmann@25919
   518
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   519
         if neg pv then True else nat pv < n)"
wenzelm@23164
   520
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less 
wenzelm@23164
   521
                  number_of_pred nat_number_of_def  
wenzelm@23164
   522
            split add: split_if)
wenzelm@23164
   523
apply (rule_tac x = "number_of v" in spec)
wenzelm@23164
   524
apply (auto simp add: nat_less_iff)
wenzelm@23164
   525
done
wenzelm@23164
   526
wenzelm@23164
   527
lemma less_Suc_number_of [simp]:
wenzelm@23164
   528
     "(Suc n < number_of v) =  
haftmann@25919
   529
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   530
         if neg pv then False else n < nat pv)"
wenzelm@23164
   531
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less 
wenzelm@23164
   532
                  number_of_pred nat_number_of_def
wenzelm@23164
   533
            split add: split_if)
wenzelm@23164
   534
apply (rule_tac x = "number_of v" in spec)
wenzelm@23164
   535
apply (auto simp add: zless_nat_eq_int_zless)
wenzelm@23164
   536
done
wenzelm@23164
   537
wenzelm@23164
   538
lemma le_number_of_Suc [simp]:
wenzelm@23164
   539
     "(number_of v <= Suc n) =  
haftmann@25919
   540
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   541
         if neg pv then True else nat pv <= n)"
wenzelm@23164
   542
by (simp add: Let_def less_Suc_number_of linorder_not_less [symmetric])
wenzelm@23164
   543
wenzelm@23164
   544
lemma le_Suc_number_of [simp]:
wenzelm@23164
   545
     "(Suc n <= number_of v) =  
haftmann@25919
   546
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   547
         if neg pv then False else n <= nat pv)"
wenzelm@23164
   548
by (simp add: Let_def less_number_of_Suc linorder_not_less [symmetric])
wenzelm@23164
   549
wenzelm@23164
   550
haftmann@25919
   551
lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Int.Min"
wenzelm@23164
   552
by auto
wenzelm@23164
   553
wenzelm@23164
   554
wenzelm@23164
   555
wenzelm@23164
   556
subsection{*Max and Min Combined with @{term Suc} *}
wenzelm@23164
   557
wenzelm@23164
   558
lemma max_number_of_Suc [simp]:
wenzelm@23164
   559
     "max (Suc n) (number_of v) =  
haftmann@25919
   560
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   561
         if neg pv then Suc n else Suc(max n (nat pv)))"
wenzelm@23164
   562
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def 
wenzelm@23164
   563
            split add: split_if nat.split)
wenzelm@23164
   564
apply (rule_tac x = "number_of v" in spec) 
wenzelm@23164
   565
apply auto
wenzelm@23164
   566
done
wenzelm@23164
   567
 
wenzelm@23164
   568
lemma max_Suc_number_of [simp]:
wenzelm@23164
   569
     "max (number_of v) (Suc n) =  
haftmann@25919
   570
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   571
         if neg pv then Suc n else Suc(max (nat pv) n))"
wenzelm@23164
   572
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def 
wenzelm@23164
   573
            split add: split_if nat.split)
wenzelm@23164
   574
apply (rule_tac x = "number_of v" in spec) 
wenzelm@23164
   575
apply auto
wenzelm@23164
   576
done
wenzelm@23164
   577
 
wenzelm@23164
   578
lemma min_number_of_Suc [simp]:
wenzelm@23164
   579
     "min (Suc n) (number_of v) =  
haftmann@25919
   580
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   581
         if neg pv then 0 else Suc(min n (nat pv)))"
wenzelm@23164
   582
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def 
wenzelm@23164
   583
            split add: split_if nat.split)
wenzelm@23164
   584
apply (rule_tac x = "number_of v" in spec) 
wenzelm@23164
   585
apply auto
wenzelm@23164
   586
done
wenzelm@23164
   587
 
wenzelm@23164
   588
lemma min_Suc_number_of [simp]:
wenzelm@23164
   589
     "min (number_of v) (Suc n) =  
haftmann@25919
   590
        (let pv = number_of (Int.pred v) in  
wenzelm@23164
   591
         if neg pv then 0 else Suc(min (nat pv) n))"
wenzelm@23164
   592
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def 
wenzelm@23164
   593
            split add: split_if nat.split)
wenzelm@23164
   594
apply (rule_tac x = "number_of v" in spec) 
wenzelm@23164
   595
apply auto
wenzelm@23164
   596
done
wenzelm@23164
   597
 
wenzelm@23164
   598
subsection{*Literal arithmetic involving powers*}
wenzelm@23164
   599
wenzelm@23164
   600
lemma nat_power_eq: "(0::int) <= z ==> nat (z^n) = nat z ^ n"
wenzelm@23164
   601
apply (induct "n")
wenzelm@23164
   602
apply (simp_all (no_asm_simp) add: nat_mult_distrib)
wenzelm@23164
   603
done
wenzelm@23164
   604
wenzelm@23164
   605
lemma power_nat_number_of:
wenzelm@23164
   606
     "(number_of v :: nat) ^ n =  
wenzelm@23164
   607
       (if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))"
wenzelm@23164
   608
by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq
wenzelm@23164
   609
         split add: split_if cong: imp_cong)
wenzelm@23164
   610
wenzelm@23164
   611
wenzelm@23164
   612
lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w", standard]
wenzelm@23164
   613
declare power_nat_number_of_number_of [simp]
wenzelm@23164
   614
wenzelm@23164
   615
wenzelm@23164
   616
huffman@23294
   617
text{*For arbitrary rings*}
wenzelm@23164
   618
huffman@23294
   619
lemma power_number_of_even:
huffman@23294
   620
  fixes z :: "'a::{number_ring,recpower}"
huffman@26086
   621
  shows "z ^ number_of (Int.Bit0 w) = (let w = z ^ (number_of w) in w * w)"
huffman@26086
   622
unfolding Let_def nat_number_of_def number_of_Bit0
wenzelm@23164
   623
apply (rule_tac x = "number_of w" in spec, clarify)
wenzelm@23164
   624
apply (case_tac " (0::int) <= x")
wenzelm@23164
   625
apply (auto simp add: nat_mult_distrib power_even_eq power2_eq_square)
wenzelm@23164
   626
done
wenzelm@23164
   627
huffman@23294
   628
lemma power_number_of_odd:
huffman@23294
   629
  fixes z :: "'a::{number_ring,recpower}"
huffman@26086
   630
  shows "z ^ number_of (Int.Bit1 w) = (if (0::int) <= number_of w
wenzelm@23164
   631
     then (let w = z ^ (number_of w) in z * w * w) else 1)"
huffman@26086
   632
unfolding Let_def nat_number_of_def number_of_Bit1
wenzelm@23164
   633
apply (rule_tac x = "number_of w" in spec, auto)
wenzelm@23164
   634
apply (simp only: nat_add_distrib nat_mult_distrib)
wenzelm@23164
   635
apply simp
huffman@23294
   636
apply (auto simp add: nat_add_distrib nat_mult_distrib power_even_eq power2_eq_square neg_nat power_Suc)
wenzelm@23164
   637
done
wenzelm@23164
   638
huffman@23294
   639
lemmas zpower_number_of_even = power_number_of_even [where 'a=int]
huffman@23294
   640
lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int]
wenzelm@23164
   641
huffman@23294
   642
lemmas power_number_of_even_number_of [simp] =
huffman@23294
   643
    power_number_of_even [of "number_of v", standard]
wenzelm@23164
   644
huffman@23294
   645
lemmas power_number_of_odd_number_of [simp] =
huffman@23294
   646
    power_number_of_odd [of "number_of v", standard]
wenzelm@23164
   647
wenzelm@23164
   648
wenzelm@23164
   649
wenzelm@23164
   650
ML
wenzelm@23164
   651
{*
wenzelm@26342
   652
val numeral_ss = @{simpset} addsimps @{thms numerals};
wenzelm@23164
   653
wenzelm@23164
   654
val nat_bin_arith_setup =
wenzelm@24093
   655
 LinArith.map_data
wenzelm@23164
   656
   (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
wenzelm@23164
   657
     {add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
wenzelm@23164
   658
      inj_thms = inj_thms,
wenzelm@23164
   659
      lessD = lessD, neqE = neqE,
huffman@29039
   660
      simpset = simpset addsimps @{thms neg_simps} @
huffman@29039
   661
        [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}]})
wenzelm@23164
   662
*}
wenzelm@23164
   663
wenzelm@24075
   664
declaration {* K nat_bin_arith_setup *}
wenzelm@23164
   665
wenzelm@23164
   666
(* Enable arith to deal with div/mod k where k is a numeral: *)
wenzelm@23164
   667
declare split_div[of _ _ "number_of k", standard, arith_split]
wenzelm@23164
   668
declare split_mod[of _ _ "number_of k", standard, arith_split]
wenzelm@23164
   669
wenzelm@23164
   670
lemma nat_number_of_Pls: "Numeral0 = (0::nat)"
wenzelm@23164
   671
  by (simp add: number_of_Pls nat_number_of_def)
wenzelm@23164
   672
haftmann@25919
   673
lemma nat_number_of_Min: "number_of Int.Min = (0::nat)"
wenzelm@23164
   674
  apply (simp only: number_of_Min nat_number_of_def nat_zminus_int)
wenzelm@23164
   675
  done
wenzelm@23164
   676
huffman@26086
   677
lemma nat_number_of_Bit0:
huffman@26086
   678
    "number_of (Int.Bit0 w) = (let n::nat = number_of w in n + n)"
huffman@28969
   679
  unfolding nat_number_of_def number_of_is_id numeral_simps Let_def
huffman@28969
   680
  by auto
huffman@26086
   681
huffman@26086
   682
lemma nat_number_of_Bit1:
huffman@26086
   683
  "number_of (Int.Bit1 w) =
wenzelm@23164
   684
    (if neg (number_of w :: int) then 0
wenzelm@23164
   685
     else let n = number_of w in Suc (n + n))"
huffman@28969
   686
  unfolding nat_number_of_def number_of_is_id numeral_simps neg_def Let_def
huffman@28968
   687
  by auto
wenzelm@23164
   688
wenzelm@23164
   689
lemmas nat_number =
wenzelm@23164
   690
  nat_number_of_Pls nat_number_of_Min
huffman@26086
   691
  nat_number_of_Bit0 nat_number_of_Bit1
wenzelm@23164
   692
wenzelm@23164
   693
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"
wenzelm@23164
   694
  by (simp add: Let_def)
wenzelm@23164
   695
wenzelm@23164
   696
lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring,recpower})"
huffman@23294
   697
by (simp add: power_mult power_Suc); 
wenzelm@23164
   698
wenzelm@23164
   699
lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring,recpower})"
wenzelm@23164
   700
by (simp add: power_mult power_Suc); 
wenzelm@23164
   701
wenzelm@23164
   702
wenzelm@23164
   703
subsection{*Literal arithmetic and @{term of_nat}*}
wenzelm@23164
   704
wenzelm@23164
   705
lemma of_nat_double:
wenzelm@23164
   706
     "0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)"
wenzelm@23164
   707
by (simp only: mult_2 nat_add_distrib of_nat_add) 
wenzelm@23164
   708
wenzelm@23164
   709
lemma nat_numeral_m1_eq_0: "-1 = (0::nat)"
wenzelm@23164
   710
by (simp only: nat_number_of_def)
wenzelm@23164
   711
wenzelm@23164
   712
lemma of_nat_number_of_lemma:
wenzelm@23164
   713
     "of_nat (number_of v :: nat) =  
wenzelm@23164
   714
         (if 0 \<le> (number_of v :: int) 
wenzelm@23164
   715
          then (number_of v :: 'a :: number_ring)
wenzelm@23164
   716
          else 0)"
wenzelm@23164
   717
by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat);
wenzelm@23164
   718
wenzelm@23164
   719
lemma of_nat_number_of_eq [simp]:
wenzelm@23164
   720
     "of_nat (number_of v :: nat) =  
wenzelm@23164
   721
         (if neg (number_of v :: int) then 0  
wenzelm@23164
   722
          else (number_of v :: 'a :: number_ring))"
wenzelm@23164
   723
by (simp only: of_nat_number_of_lemma neg_def, simp) 
wenzelm@23164
   724
wenzelm@23164
   725
wenzelm@23164
   726
subsection {*Lemmas for the Combination and Cancellation Simprocs*}
wenzelm@23164
   727
wenzelm@23164
   728
lemma nat_number_of_add_left:
wenzelm@23164
   729
     "number_of v + (number_of v' + (k::nat)) =  
wenzelm@23164
   730
         (if neg (number_of v :: int) then number_of v' + k  
wenzelm@23164
   731
          else if neg (number_of v' :: int) then number_of v + k  
wenzelm@23164
   732
          else number_of (v + v') + k)"
huffman@28968
   733
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@28968
   734
  by auto
wenzelm@23164
   735
wenzelm@23164
   736
lemma nat_number_of_mult_left:
wenzelm@23164
   737
     "number_of v * (number_of v' * (k::nat)) =  
huffman@29012
   738
         (if v < Int.Pls then 0
wenzelm@23164
   739
          else number_of (v * v') * k)"
wenzelm@23164
   740
by simp
wenzelm@23164
   741
wenzelm@23164
   742
wenzelm@23164
   743
subsubsection{*For @{text combine_numerals}*}
wenzelm@23164
   744
wenzelm@23164
   745
lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"
wenzelm@23164
   746
by (simp add: add_mult_distrib)
wenzelm@23164
   747
wenzelm@23164
   748
wenzelm@23164
   749
subsubsection{*For @{text cancel_numerals}*}
wenzelm@23164
   750
wenzelm@23164
   751
lemma nat_diff_add_eq1:
wenzelm@23164
   752
     "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"
wenzelm@23164
   753
by (simp split add: nat_diff_split add: add_mult_distrib)
wenzelm@23164
   754
wenzelm@23164
   755
lemma nat_diff_add_eq2:
wenzelm@23164
   756
     "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"
wenzelm@23164
   757
by (simp split add: nat_diff_split add: add_mult_distrib)
wenzelm@23164
   758
wenzelm@23164
   759
lemma nat_eq_add_iff1:
wenzelm@23164
   760
     "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"
wenzelm@23164
   761
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   762
wenzelm@23164
   763
lemma nat_eq_add_iff2:
wenzelm@23164
   764
     "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"
wenzelm@23164
   765
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   766
wenzelm@23164
   767
lemma nat_less_add_iff1:
wenzelm@23164
   768
     "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"
wenzelm@23164
   769
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   770
wenzelm@23164
   771
lemma nat_less_add_iff2:
wenzelm@23164
   772
     "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
wenzelm@23164
   773
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   774
wenzelm@23164
   775
lemma nat_le_add_iff1:
wenzelm@23164
   776
     "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"
wenzelm@23164
   777
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   778
wenzelm@23164
   779
lemma nat_le_add_iff2:
wenzelm@23164
   780
     "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"
wenzelm@23164
   781
by (auto split add: nat_diff_split simp add: add_mult_distrib)
wenzelm@23164
   782
wenzelm@23164
   783
wenzelm@23164
   784
subsubsection{*For @{text cancel_numeral_factors} *}
wenzelm@23164
   785
wenzelm@23164
   786
lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"
wenzelm@23164
   787
by auto
wenzelm@23164
   788
wenzelm@23164
   789
lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"
wenzelm@23164
   790
by auto
wenzelm@23164
   791
wenzelm@23164
   792
lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"
wenzelm@23164
   793
by auto
wenzelm@23164
   794
wenzelm@23164
   795
lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"
wenzelm@23164
   796
by auto
wenzelm@23164
   797
nipkow@23969
   798
lemma nat_mult_dvd_cancel_disj[simp]:
nipkow@23969
   799
  "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"
nipkow@23969
   800
by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])
nipkow@23969
   801
nipkow@23969
   802
lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"
nipkow@23969
   803
by(auto)
nipkow@23969
   804
wenzelm@23164
   805
wenzelm@23164
   806
subsubsection{*For @{text cancel_factor} *}
wenzelm@23164
   807
wenzelm@23164
   808
lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"
wenzelm@23164
   809
by auto
wenzelm@23164
   810
wenzelm@23164
   811
lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"
wenzelm@23164
   812
by auto
wenzelm@23164
   813
wenzelm@23164
   814
lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"
wenzelm@23164
   815
by auto
wenzelm@23164
   816
nipkow@23969
   817
lemma nat_mult_div_cancel_disj[simp]:
wenzelm@23164
   818
     "(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"
wenzelm@23164
   819
by (simp add: nat_mult_div_cancel1)
wenzelm@23164
   820
wenzelm@23164
   821
end