src/HOL/Real/HahnBanach/ZornLemma.thy
author wenzelm
Tue Jul 15 19:39:37 2008 +0200 (2008-07-15)
changeset 27612 d3eb431db035
parent 23378 1d138d6bb461
child 29234 60f7fb56f8cd
permissions -rw-r--r--
modernized specifications and proofs;
tuned document;
wenzelm@7917
     1
(*  Title:      HOL/Real/HahnBanach/ZornLemma.thy
wenzelm@7917
     2
    ID:         $Id$
wenzelm@7917
     3
    Author:     Gertrud Bauer, TU Munich
wenzelm@7917
     4
*)
wenzelm@7917
     5
wenzelm@9035
     6
header {* Zorn's Lemma *}
wenzelm@7917
     7
wenzelm@27612
     8
theory ZornLemma
wenzelm@27612
     9
imports Zorn
wenzelm@27612
    10
begin
wenzelm@7917
    11
wenzelm@10687
    12
text {*
wenzelm@10687
    13
  Zorn's Lemmas states: if every linear ordered subset of an ordered
wenzelm@10687
    14
  set @{text S} has an upper bound in @{text S}, then there exists a
wenzelm@10687
    15
  maximal element in @{text S}.  In our application, @{text S} is a
wenzelm@10687
    16
  set of sets ordered by set inclusion. Since the union of a chain of
wenzelm@10687
    17
  sets is an upper bound for all elements of the chain, the conditions
wenzelm@10687
    18
  of Zorn's lemma can be modified: if @{text S} is non-empty, it
wenzelm@10687
    19
  suffices to show that for every non-empty chain @{text c} in @{text
wenzelm@10687
    20
  S} the union of @{text c} also lies in @{text S}.
wenzelm@10687
    21
*}
wenzelm@7917
    22
wenzelm@10687
    23
theorem Zorn's_Lemma:
wenzelm@13515
    24
  assumes r: "\<And>c. c \<in> chain S \<Longrightarrow> \<exists>x. x \<in> c \<Longrightarrow> \<Union>c \<in> S"
wenzelm@13515
    25
    and aS: "a \<in> S"
wenzelm@13515
    26
  shows "\<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z \<longrightarrow> y = z"
wenzelm@9035
    27
proof (rule Zorn_Lemma2)
wenzelm@10687
    28
  show "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
wenzelm@9035
    29
  proof
wenzelm@10687
    30
    fix c assume "c \<in> chain S"
wenzelm@10687
    31
    show "\<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
wenzelm@9035
    32
    proof cases
wenzelm@13515
    33
wenzelm@10687
    34
      txt {* If @{text c} is an empty chain, then every element in
wenzelm@27612
    35
	@{text S} is an upper bound of @{text c}. *}
wenzelm@7917
    36
wenzelm@13515
    37
      assume "c = {}"
wenzelm@9035
    38
      with aS show ?thesis by fast
wenzelm@7917
    39
wenzelm@10687
    40
      txt {* If @{text c} is non-empty, then @{text "\<Union>c"} is an upper
wenzelm@27612
    41
	bound of @{text c}, lying in @{text S}. *}
wenzelm@7917
    42
wenzelm@9035
    43
    next
wenzelm@27612
    44
      assume "c \<noteq> {}"
wenzelm@13515
    45
      show ?thesis
wenzelm@13515
    46
      proof
wenzelm@10687
    47
        show "\<forall>z \<in> c. z \<subseteq> \<Union>c" by fast
wenzelm@13515
    48
        show "\<Union>c \<in> S"
wenzelm@9035
    49
        proof (rule r)
wenzelm@27612
    50
          from `c \<noteq> {}` show "\<exists>x. x \<in> c" by fast
wenzelm@23378
    51
	  show "c \<in> chain S" by fact
wenzelm@9035
    52
        qed
wenzelm@9035
    53
      qed
wenzelm@9035
    54
    qed
wenzelm@9035
    55
  qed
wenzelm@9035
    56
qed
wenzelm@7917
    57
wenzelm@10687
    58
end