src/HOL/Tools/simpdata.ML
author wenzelm
Thu Oct 29 23:56:33 2009 +0100 (2009-10-29)
changeset 33339 d41f77196338
parent 32177 bc02c5bfcb5b
child 35232 f588e1169c8b
permissions -rw-r--r--
eliminated some old folds;
haftmann@21163
     1
(*  Title:      HOL/simpdata.ML
haftmann@21163
     2
    Author:     Tobias Nipkow
haftmann@21163
     3
    Copyright   1991  University of Cambridge
haftmann@21163
     4
haftmann@21163
     5
Instantiation of the generic simplifier for HOL.
haftmann@21163
     6
*)
haftmann@21163
     7
haftmann@21163
     8
(** tools setup **)
haftmann@21163
     9
haftmann@21163
    10
structure Quantifier1 = Quantifier1Fun
haftmann@21163
    11
(struct
haftmann@21163
    12
  (*abstract syntax*)
haftmann@21163
    13
  fun dest_eq ((c as Const("op =",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    14
    | dest_eq _ = NONE;
haftmann@21163
    15
  fun dest_conj ((c as Const("op &",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    16
    | dest_conj _ = NONE;
haftmann@21163
    17
  fun dest_imp ((c as Const("op -->",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    18
    | dest_imp _ = NONE;
haftmann@21163
    19
  val conj = HOLogic.conj
haftmann@21163
    20
  val imp  = HOLogic.imp
haftmann@21163
    21
  (*rules*)
wenzelm@22147
    22
  val iff_reflection = @{thm eq_reflection}
wenzelm@22147
    23
  val iffI = @{thm iffI}
wenzelm@22147
    24
  val iff_trans = @{thm trans}
wenzelm@22147
    25
  val conjI= @{thm conjI}
wenzelm@22147
    26
  val conjE= @{thm conjE}
wenzelm@22147
    27
  val impI = @{thm impI}
wenzelm@22147
    28
  val mp   = @{thm mp}
wenzelm@22147
    29
  val uncurry = @{thm uncurry}
wenzelm@22147
    30
  val exI  = @{thm exI}
wenzelm@22147
    31
  val exE  = @{thm exE}
wenzelm@22147
    32
  val iff_allI = @{thm iff_allI}
wenzelm@22147
    33
  val iff_exI = @{thm iff_exI}
wenzelm@22147
    34
  val all_comm = @{thm all_comm}
wenzelm@22147
    35
  val ex_comm = @{thm ex_comm}
haftmann@21163
    36
end);
haftmann@21163
    37
haftmann@21551
    38
structure Simpdata =
haftmann@21163
    39
struct
haftmann@21163
    40
wenzelm@22147
    41
fun mk_meta_eq r = r RS @{thm eq_reflection};
haftmann@21163
    42
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r;
haftmann@21163
    43
wenzelm@22147
    44
fun mk_eq th = case concl_of th
haftmann@21163
    45
  (*expects Trueprop if not == *)
haftmann@21551
    46
  of Const ("==",_) $ _ $ _ => th
haftmann@21551
    47
   | _ $ (Const ("op =", _) $ _ $ _) => mk_meta_eq th
wenzelm@22147
    48
   | _ $ (Const ("Not", _) $ _) => th RS @{thm Eq_FalseI}
wenzelm@22147
    49
   | _ => th RS @{thm Eq_TrueI}
haftmann@21163
    50
wenzelm@22147
    51
fun mk_eq_True r =
wenzelm@22147
    52
  SOME (r RS @{thm meta_eq_to_obj_eq} RS @{thm Eq_TrueI}) handle Thm.THM _ => NONE;
haftmann@21163
    53
haftmann@21163
    54
(* Produce theorems of the form
haftmann@21163
    55
  (P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y)
haftmann@21163
    56
*)
haftmann@22838
    57
wenzelm@22147
    58
fun lift_meta_eq_to_obj_eq i st =
haftmann@21163
    59
  let
haftmann@21163
    60
    fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q
haftmann@21163
    61
      | count_imp _ = 0;
haftmann@21163
    62
    val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1)))
wenzelm@22147
    63
  in if j = 0 then @{thm meta_eq_to_obj_eq}
haftmann@21163
    64
    else
haftmann@21163
    65
      let
haftmann@21163
    66
        val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
wenzelm@33339
    67
        fun mk_simp_implies Q = fold_rev (fn R => fn S =>
wenzelm@33339
    68
          Const ("HOL.simp_implies", propT --> propT --> propT) $ R $ S) Ps Q
haftmann@21163
    69
        val aT = TFree ("'a", HOLogic.typeS);
haftmann@21163
    70
        val x = Free ("x", aT);
haftmann@21163
    71
        val y = Free ("y", aT)
haftmann@21163
    72
      in Goal.prove_global (Thm.theory_of_thm st) []
haftmann@21163
    73
        [mk_simp_implies (Logic.mk_equals (x, y))]
haftmann@21163
    74
        (mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y))))
wenzelm@26711
    75
        (fn {prems, ...} => EVERY
wenzelm@22147
    76
         [rewrite_goals_tac @{thms simp_implies_def},
wenzelm@22147
    77
          REPEAT (ares_tac (@{thm meta_eq_to_obj_eq} ::
wenzelm@22147
    78
            map (rewrite_rule @{thms simp_implies_def}) prems) 1)])
haftmann@21163
    79
      end
haftmann@21163
    80
  end;
haftmann@21163
    81
haftmann@21163
    82
(*Congruence rules for = (instead of ==)*)
haftmann@21163
    83
fun mk_meta_cong rl = zero_var_indexes
haftmann@21163
    84
  (let val rl' = Seq.hd (TRYALL (fn i => fn st =>
haftmann@21163
    85
     rtac (lift_meta_eq_to_obj_eq i st) i st) rl)
haftmann@21163
    86
   in mk_meta_eq rl' handle THM _ =>
haftmann@21163
    87
     if can Logic.dest_equals (concl_of rl') then rl'
haftmann@21163
    88
     else error "Conclusion of congruence rules must be =-equality"
haftmann@21163
    89
   end);
haftmann@21163
    90
haftmann@21163
    91
fun mk_atomize pairs =
haftmann@21163
    92
  let
wenzelm@21313
    93
    fun atoms thm =
wenzelm@21313
    94
      let
wenzelm@21313
    95
        fun res th = map (fn rl => th RS rl);   (*exception THM*)
wenzelm@21313
    96
        fun res_fixed rls =
wenzelm@21313
    97
          if Thm.maxidx_of (Thm.adjust_maxidx_thm ~1 thm) = ~1 then res thm rls
wenzelm@21313
    98
          else Variable.trade (K (fn [thm'] => res thm' rls)) (Variable.thm_context thm) [thm];
wenzelm@21313
    99
      in
wenzelm@21313
   100
        case concl_of thm
wenzelm@21313
   101
          of Const ("Trueprop", _) $ p => (case head_of p
wenzelm@21313
   102
            of Const (a, _) => (case AList.lookup (op =) pairs a
wenzelm@21313
   103
              of SOME rls => (maps atoms (res_fixed rls) handle THM _ => [thm])
wenzelm@21313
   104
              | NONE => [thm])
wenzelm@21313
   105
            | _ => [thm])
wenzelm@21313
   106
          | _ => [thm]
wenzelm@21313
   107
      end;
haftmann@21163
   108
  in atoms end;
haftmann@21163
   109
haftmann@21163
   110
fun mksimps pairs =
wenzelm@21313
   111
  map_filter (try mk_eq) o mk_atomize pairs o gen_all;
haftmann@21163
   112
wenzelm@22147
   113
fun unsafe_solver_tac prems =
wenzelm@22147
   114
  (fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
wenzelm@22147
   115
  FIRST' [resolve_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems), atac,
wenzelm@22147
   116
    etac @{thm FalseE}];
wenzelm@22147
   117
haftmann@21163
   118
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
haftmann@21163
   119
haftmann@22838
   120
haftmann@21163
   121
(*No premature instantiation of variables during simplification*)
wenzelm@22147
   122
fun safe_solver_tac prems =
wenzelm@22147
   123
  (fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
wenzelm@22147
   124
  FIRST' [match_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems),
wenzelm@22147
   125
         eq_assume_tac, ematch_tac @{thms FalseE}];
wenzelm@22147
   126
haftmann@21163
   127
val safe_solver = mk_solver "HOL safe" safe_solver_tac;
haftmann@21163
   128
wenzelm@32177
   129
structure Splitter = Splitter
wenzelm@32177
   130
(
wenzelm@32177
   131
  val thy = @{theory}
wenzelm@32177
   132
  val mk_eq = mk_eq
wenzelm@32177
   133
  val meta_eq_to_iff = @{thm meta_eq_to_obj_eq}
wenzelm@32177
   134
  val iffD = @{thm iffD2}
wenzelm@32177
   135
  val disjE = @{thm disjE}
wenzelm@32177
   136
  val conjE = @{thm conjE}
wenzelm@32177
   137
  val exE = @{thm exE}
wenzelm@32177
   138
  val contrapos = @{thm contrapos_nn}
wenzelm@32177
   139
  val contrapos2 = @{thm contrapos_pp}
wenzelm@32177
   140
  val notnotD = @{thm notnotD}
wenzelm@32177
   141
);
haftmann@21163
   142
wenzelm@32177
   143
val split_tac = Splitter.split_tac;
wenzelm@21674
   144
val split_inside_tac = Splitter.split_inside_tac;
wenzelm@21674
   145
wenzelm@32177
   146
val op addsplits = Splitter.addsplits;
wenzelm@32177
   147
val op delsplits = Splitter.delsplits;
wenzelm@21674
   148
wenzelm@21674
   149
haftmann@21163
   150
(* integration of simplifier with classical reasoner *)
haftmann@21163
   151
haftmann@21163
   152
structure Clasimp = ClasimpFun
haftmann@21163
   153
 (structure Simplifier = Simplifier and Splitter = Splitter
haftmann@21163
   154
  and Classical  = Classical and Blast = Blast
wenzelm@22147
   155
  val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val notE = @{thm notE});
wenzelm@21674
   156
open Clasimp;
haftmann@21163
   157
wenzelm@27338
   158
val _ = ML_Antiquote.value "clasimpset"
wenzelm@32149
   159
  (Scan.succeed "Clasimp.clasimpset_of (ML_Context.the_local_context ())");
wenzelm@22128
   160
haftmann@21163
   161
val mksimps_pairs =
wenzelm@22147
   162
  [("op -->", [@{thm mp}]), ("op &", [@{thm conjunct1}, @{thm conjunct2}]),
wenzelm@22147
   163
   ("All", [@{thm spec}]), ("True", []), ("False", []),
wenzelm@22147
   164
   ("HOL.If", [@{thm if_bool_eq_conj} RS @{thm iffD1}])];
haftmann@21163
   165
wenzelm@21674
   166
val HOL_basic_ss =
wenzelm@32155
   167
  Simplifier.theory_context @{theory} empty_ss
haftmann@21163
   168
    setsubgoaler asm_simp_tac
haftmann@21163
   169
    setSSolver safe_solver
haftmann@21163
   170
    setSolver unsafe_solver
haftmann@21163
   171
    setmksimps (mksimps mksimps_pairs)
haftmann@21163
   172
    setmkeqTrue mk_eq_True
haftmann@21163
   173
    setmkcong mk_meta_cong;
haftmann@21163
   174
wenzelm@21674
   175
fun hol_simplify rews = Simplifier.full_simplify (HOL_basic_ss addsimps rews);
haftmann@21163
   176
haftmann@21163
   177
fun unfold_tac ths =
wenzelm@21674
   178
  let val ss0 = Simplifier.clear_ss HOL_basic_ss addsimps ths
haftmann@21163
   179
  in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end;
haftmann@21163
   180
haftmann@21163
   181
val defALL_regroup =
wenzelm@32010
   182
  Simplifier.simproc @{theory}
haftmann@21163
   183
    "defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all;
haftmann@21163
   184
haftmann@21163
   185
val defEX_regroup =
wenzelm@32010
   186
  Simplifier.simproc @{theory}
haftmann@21163
   187
    "defined EX" ["EX x. P x"] Quantifier1.rearrange_ex;
haftmann@21163
   188
haftmann@21163
   189
wenzelm@24035
   190
val simpset_simprocs = HOL_basic_ss addsimprocs [defALL_regroup, defEX_regroup]
haftmann@21163
   191
wenzelm@21313
   192
end;
haftmann@21551
   193
haftmann@21551
   194
structure Splitter = Simpdata.Splitter;
haftmann@21551
   195
structure Clasimp = Simpdata.Clasimp;