src/ZF/QPair.thy
author paulson
Wed Feb 19 10:53:27 2003 +0100 (2003-02-19)
changeset 13823 d49ffd9f9662
parent 13784 b9f6154427a4
child 14854 61bdf2ae4dc5
permissions -rw-r--r--
fixed anomalies in the installed classical rules
clasohm@1478
     1
(*  Title:      ZF/qpair.thy
clasohm@0
     2
    ID:         $Id$
clasohm@1478
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
paulson@13285
     6
Many proofs are borrowed from pair.thy and sum.thy
paulson@13285
     7
paulson@13285
     8
Do we EVER have rank(a) < rank(<a;b>) ?  Perhaps if the latter rank
paulson@13285
     9
    is not a limit ordinal? 
clasohm@0
    10
*)
clasohm@0
    11
paulson@13356
    12
header{*Quine-Inspired Ordered Pairs and Disjoint Sums*}
paulson@13356
    13
paulson@13357
    14
theory QPair = Sum + func:
paulson@13285
    15
paulson@13356
    16
text{*For non-well-founded data
paulson@13356
    17
structures in ZF.  Does not precisely follow Quine's construction.  Thanks
paulson@13356
    18
to Thomas Forster for suggesting this approach!
paulson@13356
    19
paulson@13356
    20
W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
paulson@13356
    21
1966.
paulson@13356
    22
*}
paulson@13356
    23
paulson@13285
    24
constdefs
paulson@13285
    25
  QPair     :: "[i, i] => i"                      ("<(_;/ _)>")
paulson@13285
    26
    "<a;b> == a+b"
wenzelm@3923
    27
paulson@13285
    28
  qfst :: "i => i"
paulson@13285
    29
    "qfst(p) == THE a. EX b. p=<a;b>"
paulson@13285
    30
paulson@13285
    31
  qsnd :: "i => i"
paulson@13285
    32
    "qsnd(p) == THE b. EX a. p=<a;b>"
paulson@13285
    33
paulson@13220
    34
  qsplit    :: "[[i, i] => 'a, i] => 'a::logic"  (*for pattern-matching*)
paulson@13285
    35
    "qsplit(c,p) == c(qfst(p), qsnd(p))"
clasohm@0
    36
paulson@13285
    37
  qconverse :: "i => i"
paulson@13285
    38
    "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
paulson@13285
    39
paulson@13285
    40
  QSigma    :: "[i, i => i] => i"
paulson@13615
    41
    "QSigma(A,B)  ==  \<Union>x\<in>A. \<Union>y\<in>B(x). {<x;y>}"
clasohm@0
    42
lcp@929
    43
syntax
paulson@13220
    44
  "@QSUM"   :: "[idt, i, i] => i"               ("(3QSUM _:_./ _)" 10)
paulson@13220
    45
  "<*>"     :: "[i, i] => i"                      (infixr 80)
lcp@929
    46
clasohm@0
    47
translations
clasohm@0
    48
  "QSUM x:A. B"  => "QSigma(A, %x. B)"
wenzelm@44
    49
  "A <*> B"      => "QSigma(A, _K(B))"
clasohm@0
    50
paulson@13285
    51
constdefs
paulson@13285
    52
  qsum    :: "[i,i]=>i"                         (infixr "<+>" 65)
paulson@13285
    53
    "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
wenzelm@3923
    54
paulson@13285
    55
  QInl :: "i=>i"
paulson@13285
    56
    "QInl(a)      == <0;a>"
paulson@13285
    57
paulson@13285
    58
  QInr :: "i=>i"
paulson@13285
    59
    "QInr(b)      == <1;b>"
paulson@13285
    60
paulson@13285
    61
  qcase     :: "[i=>i, i=>i, i]=>i"
paulson@13285
    62
    "qcase(c,d)   == qsplit(%y z. cond(y, d(z), c(z)))"
paulson@13285
    63
paulson@13285
    64
paulson@13285
    65
print_translation {* [("QSigma", dependent_tr' ("@QSUM", "op <*>"))] *}
paulson@13285
    66
paulson@13285
    67
paulson@13356
    68
subsection{*Quine ordered pairing*}
paulson@13285
    69
paulson@13285
    70
(** Lemmas for showing that <a;b> uniquely determines a and b **)
paulson@13285
    71
paulson@13285
    72
lemma QPair_empty [simp]: "<0;0> = 0"
paulson@13285
    73
by (simp add: QPair_def)
paulson@13285
    74
paulson@13285
    75
lemma QPair_iff [simp]: "<a;b> = <c;d> <-> a=c & b=d"
paulson@13285
    76
apply (simp add: QPair_def)
paulson@13285
    77
apply (rule sum_equal_iff)
paulson@13285
    78
done
paulson@13285
    79
paulson@13285
    80
lemmas QPair_inject = QPair_iff [THEN iffD1, THEN conjE, standard, elim!]
paulson@13285
    81
paulson@13285
    82
lemma QPair_inject1: "<a;b> = <c;d> ==> a=c"
paulson@13285
    83
by blast
paulson@13285
    84
paulson@13285
    85
lemma QPair_inject2: "<a;b> = <c;d> ==> b=d"
paulson@13285
    86
by blast
paulson@13285
    87
paulson@13285
    88
paulson@13356
    89
subsubsection{*QSigma: Disjoint union of a family of sets
paulson@13356
    90
     Generalizes Cartesian product*}
paulson@13285
    91
paulson@13285
    92
lemma QSigmaI [intro!]: "[| a:A;  b:B(a) |] ==> <a;b> : QSigma(A,B)"
paulson@13285
    93
by (simp add: QSigma_def)
paulson@13285
    94
paulson@13285
    95
paulson@13285
    96
(** Elimination rules for <a;b>:A*B -- introducing no eigenvariables **)
paulson@13285
    97
paulson@13285
    98
lemma QSigmaE [elim!]:
paulson@13285
    99
    "[| c: QSigma(A,B);   
paulson@13285
   100
        !!x y.[| x:A;  y:B(x);  c=<x;y> |] ==> P  
paulson@13285
   101
     |] ==> P"
paulson@13356
   102
by (simp add: QSigma_def, blast) 
paulson@13285
   103
paulson@13285
   104
lemma QSigmaE2 [elim!]:
paulson@13285
   105
    "[| <a;b>: QSigma(A,B); [| a:A;  b:B(a) |] ==> P |] ==> P"
paulson@13285
   106
by (simp add: QSigma_def) 
paulson@13285
   107
paulson@13285
   108
lemma QSigmaD1: "<a;b> : QSigma(A,B) ==> a : A"
paulson@13285
   109
by blast
paulson@13285
   110
paulson@13285
   111
lemma QSigmaD2: "<a;b> : QSigma(A,B) ==> b : B(a)"
paulson@13285
   112
by blast
paulson@13285
   113
paulson@13285
   114
lemma QSigma_cong:
paulson@13285
   115
    "[| A=A';  !!x. x:A' ==> B(x)=B'(x) |] ==>  
paulson@13285
   116
     QSigma(A,B) = QSigma(A',B')"
paulson@13285
   117
by (simp add: QSigma_def) 
paulson@13285
   118
paulson@13285
   119
lemma QSigma_empty1 [simp]: "QSigma(0,B) = 0"
paulson@13285
   120
by blast
paulson@13285
   121
paulson@13285
   122
lemma QSigma_empty2 [simp]: "A <*> 0 = 0"
paulson@13285
   123
by blast
paulson@13285
   124
paulson@13285
   125
paulson@13356
   126
subsubsection{*Projections: qfst, qsnd*}
paulson@13285
   127
paulson@13285
   128
lemma qfst_conv [simp]: "qfst(<a;b>) = a"
paulson@13544
   129
by (simp add: qfst_def)
paulson@13285
   130
paulson@13285
   131
lemma qsnd_conv [simp]: "qsnd(<a;b>) = b"
paulson@13544
   132
by (simp add: qsnd_def)
paulson@13285
   133
paulson@13285
   134
lemma qfst_type [TC]: "p:QSigma(A,B) ==> qfst(p) : A"
paulson@13285
   135
by auto
paulson@13285
   136
paulson@13285
   137
lemma qsnd_type [TC]: "p:QSigma(A,B) ==> qsnd(p) : B(qfst(p))"
paulson@13285
   138
by auto
paulson@13285
   139
paulson@13285
   140
lemma QPair_qfst_qsnd_eq: "a: QSigma(A,B) ==> <qfst(a); qsnd(a)> = a"
paulson@13285
   141
by auto
paulson@13285
   142
paulson@13285
   143
paulson@13356
   144
subsubsection{*Eliminator: qsplit*}
paulson@13285
   145
paulson@13285
   146
(*A META-equality, so that it applies to higher types as well...*)
paulson@13285
   147
lemma qsplit [simp]: "qsplit(%x y. c(x,y), <a;b>) == c(a,b)"
paulson@13285
   148
by (simp add: qsplit_def)
paulson@13285
   149
paulson@13285
   150
paulson@13285
   151
lemma qsplit_type [elim!]:
paulson@13285
   152
    "[|  p:QSigma(A,B);    
paulson@13285
   153
         !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x;y>)  
paulson@13285
   154
     |] ==> qsplit(%x y. c(x,y), p) : C(p)"
paulson@13285
   155
by auto 
paulson@13285
   156
paulson@13285
   157
lemma expand_qsplit: 
paulson@13285
   158
 "u: A<*>B ==> R(qsplit(c,u)) <-> (ALL x:A. ALL y:B. u = <x;y> --> R(c(x,y)))"
paulson@13285
   159
apply (simp add: qsplit_def, auto)
paulson@13285
   160
done
paulson@13285
   161
paulson@13285
   162
paulson@13356
   163
subsubsection{*qsplit for predicates: result type o*}
paulson@13285
   164
paulson@13285
   165
lemma qsplitI: "R(a,b) ==> qsplit(R, <a;b>)"
paulson@13285
   166
by (simp add: qsplit_def)
paulson@13285
   167
paulson@13285
   168
paulson@13285
   169
lemma qsplitE:
paulson@13285
   170
    "[| qsplit(R,z);  z:QSigma(A,B);                     
paulson@13285
   171
        !!x y. [| z = <x;y>;  R(x,y) |] ==> P            
paulson@13285
   172
    |] ==> P"
paulson@13356
   173
by (simp add: qsplit_def, auto) 
paulson@13285
   174
paulson@13285
   175
lemma qsplitD: "qsplit(R,<a;b>) ==> R(a,b)"
paulson@13285
   176
by (simp add: qsplit_def)
paulson@13285
   177
paulson@13285
   178
paulson@13356
   179
subsubsection{*qconverse*}
paulson@13285
   180
paulson@13285
   181
lemma qconverseI [intro!]: "<a;b>:r ==> <b;a>:qconverse(r)"
paulson@13285
   182
by (simp add: qconverse_def, blast)
paulson@13285
   183
paulson@13285
   184
lemma qconverseD [elim!]: "<a;b> : qconverse(r) ==> <b;a> : r"
paulson@13285
   185
by (simp add: qconverse_def, blast)
paulson@13285
   186
paulson@13285
   187
lemma qconverseE [elim!]:
paulson@13285
   188
    "[| yx : qconverse(r);   
paulson@13285
   189
        !!x y. [| yx=<y;x>;  <x;y>:r |] ==> P  
paulson@13285
   190
     |] ==> P"
paulson@13356
   191
by (simp add: qconverse_def, blast) 
paulson@13285
   192
paulson@13285
   193
lemma qconverse_qconverse: "r<=QSigma(A,B) ==> qconverse(qconverse(r)) = r"
paulson@13285
   194
by blast
paulson@13285
   195
paulson@13285
   196
lemma qconverse_type: "r <= A <*> B ==> qconverse(r) <= B <*> A"
paulson@13285
   197
by blast
paulson@13285
   198
paulson@13285
   199
lemma qconverse_prod: "qconverse(A <*> B) = B <*> A"
paulson@13285
   200
by blast
paulson@13285
   201
paulson@13285
   202
lemma qconverse_empty: "qconverse(0) = 0"
paulson@13285
   203
by blast
paulson@13285
   204
paulson@13285
   205
paulson@13356
   206
subsection{*The Quine-inspired notion of disjoint sum*}
paulson@13285
   207
paulson@13285
   208
lemmas qsum_defs = qsum_def QInl_def QInr_def qcase_def
paulson@13285
   209
paulson@13285
   210
(** Introduction rules for the injections **)
paulson@13285
   211
paulson@13285
   212
lemma QInlI [intro!]: "a : A ==> QInl(a) : A <+> B"
paulson@13285
   213
by (simp add: qsum_defs, blast)
lcp@1097
   214
paulson@13285
   215
lemma QInrI [intro!]: "b : B ==> QInr(b) : A <+> B"
paulson@13285
   216
by (simp add: qsum_defs, blast)
paulson@13285
   217
paulson@13285
   218
(** Elimination rules **)
paulson@13285
   219
paulson@13285
   220
lemma qsumE [elim!]:
paulson@13285
   221
    "[| u: A <+> B;   
paulson@13285
   222
        !!x. [| x:A;  u=QInl(x) |] ==> P;  
paulson@13285
   223
        !!y. [| y:B;  u=QInr(y) |] ==> P  
paulson@13285
   224
     |] ==> P"
paulson@13356
   225
by (simp add: qsum_defs, blast) 
paulson@13285
   226
paulson@13285
   227
paulson@13285
   228
(** Injection and freeness equivalences, for rewriting **)
paulson@13285
   229
paulson@13285
   230
lemma QInl_iff [iff]: "QInl(a)=QInl(b) <-> a=b"
paulson@13285
   231
by (simp add: qsum_defs )
paulson@13285
   232
paulson@13285
   233
lemma QInr_iff [iff]: "QInr(a)=QInr(b) <-> a=b"
paulson@13285
   234
by (simp add: qsum_defs )
paulson@13285
   235
paulson@13823
   236
lemma QInl_QInr_iff [simp]: "QInl(a)=QInr(b) <-> False"
paulson@13285
   237
by (simp add: qsum_defs )
paulson@13285
   238
paulson@13823
   239
lemma QInr_QInl_iff [simp]: "QInr(b)=QInl(a) <-> False"
paulson@13285
   240
by (simp add: qsum_defs )
paulson@13285
   241
paulson@13285
   242
lemma qsum_empty [simp]: "0<+>0 = 0"
paulson@13285
   243
by (simp add: qsum_defs )
paulson@13285
   244
paulson@13285
   245
(*Injection and freeness rules*)
paulson@13285
   246
paulson@13285
   247
lemmas QInl_inject = QInl_iff [THEN iffD1, standard]
paulson@13285
   248
lemmas QInr_inject = QInr_iff [THEN iffD1, standard]
paulson@13823
   249
lemmas QInl_neq_QInr = QInl_QInr_iff [THEN iffD1, THEN FalseE, elim!]
paulson@13823
   250
lemmas QInr_neq_QInl = QInr_QInl_iff [THEN iffD1, THEN FalseE, elim!]
paulson@13285
   251
paulson@13285
   252
lemma QInlD: "QInl(a): A<+>B ==> a: A"
paulson@13285
   253
by blast
paulson@13285
   254
paulson@13285
   255
lemma QInrD: "QInr(b): A<+>B ==> b: B"
paulson@13285
   256
by blast
paulson@13285
   257
paulson@13285
   258
(** <+> is itself injective... who cares?? **)
paulson@13285
   259
paulson@13285
   260
lemma qsum_iff:
paulson@13285
   261
     "u: A <+> B <-> (EX x. x:A & u=QInl(x)) | (EX y. y:B & u=QInr(y))"
paulson@13356
   262
by blast
paulson@13285
   263
paulson@13285
   264
lemma qsum_subset_iff: "A <+> B <= C <+> D <-> A<=C & B<=D"
paulson@13285
   265
by blast
paulson@13285
   266
paulson@13285
   267
lemma qsum_equal_iff: "A <+> B = C <+> D <-> A=C & B=D"
paulson@13285
   268
apply (simp (no_asm) add: extension qsum_subset_iff)
paulson@13285
   269
apply blast
paulson@13285
   270
done
paulson@13285
   271
paulson@13356
   272
subsubsection{*Eliminator -- qcase*}
paulson@13285
   273
paulson@13285
   274
lemma qcase_QInl [simp]: "qcase(c, d, QInl(a)) = c(a)"
paulson@13285
   275
by (simp add: qsum_defs )
paulson@13285
   276
paulson@13285
   277
paulson@13285
   278
lemma qcase_QInr [simp]: "qcase(c, d, QInr(b)) = d(b)"
paulson@13285
   279
by (simp add: qsum_defs )
paulson@13285
   280
paulson@13285
   281
lemma qcase_type:
paulson@13285
   282
    "[| u: A <+> B;  
paulson@13285
   283
        !!x. x: A ==> c(x): C(QInl(x));    
paulson@13285
   284
        !!y. y: B ==> d(y): C(QInr(y))  
paulson@13285
   285
     |] ==> qcase(c,d,u) : C(u)"
paulson@13784
   286
by (simp add: qsum_defs, auto) 
paulson@13285
   287
paulson@13285
   288
(** Rules for the Part primitive **)
paulson@13285
   289
paulson@13285
   290
lemma Part_QInl: "Part(A <+> B,QInl) = {QInl(x). x: A}"
paulson@13285
   291
by blast
paulson@13285
   292
paulson@13285
   293
lemma Part_QInr: "Part(A <+> B,QInr) = {QInr(y). y: B}"
paulson@13285
   294
by blast
paulson@13285
   295
paulson@13285
   296
lemma Part_QInr2: "Part(A <+> B, %x. QInr(h(x))) = {QInr(y). y: Part(B,h)}"
paulson@13285
   297
by blast
clasohm@0
   298
paulson@13285
   299
lemma Part_qsum_equality: "C <= A <+> B ==> Part(C,QInl) Un Part(C,QInr) = C"
paulson@13285
   300
by blast
paulson@13285
   301
paulson@13285
   302
paulson@13356
   303
subsubsection{*Monotonicity*}
paulson@13285
   304
paulson@13285
   305
lemma QPair_mono: "[| a<=c;  b<=d |] ==> <a;b> <= <c;d>"
paulson@13285
   306
by (simp add: QPair_def sum_mono)
paulson@13285
   307
paulson@13285
   308
lemma QSigma_mono [rule_format]:
paulson@13285
   309
     "[| A<=C;  ALL x:A. B(x) <= D(x) |] ==> QSigma(A,B) <= QSigma(C,D)"
paulson@13285
   310
by blast
paulson@13285
   311
paulson@13285
   312
lemma QInl_mono: "a<=b ==> QInl(a) <= QInl(b)"
paulson@13285
   313
by (simp add: QInl_def subset_refl [THEN QPair_mono])
paulson@13285
   314
paulson@13285
   315
lemma QInr_mono: "a<=b ==> QInr(a) <= QInr(b)"
paulson@13285
   316
by (simp add: QInr_def subset_refl [THEN QPair_mono])
paulson@13285
   317
paulson@13285
   318
lemma qsum_mono: "[| A<=C;  B<=D |] ==> A <+> B <= C <+> D"
paulson@13285
   319
by blast
paulson@13285
   320
paulson@13285
   321
ML
paulson@13285
   322
{*
paulson@13285
   323
val qsum_defs = thms "qsum_defs";
paulson@13285
   324
paulson@13285
   325
val QPair_empty = thm "QPair_empty";
paulson@13285
   326
val QPair_iff = thm "QPair_iff";
paulson@13285
   327
val QPair_inject = thm "QPair_inject";
paulson@13285
   328
val QPair_inject1 = thm "QPair_inject1";
paulson@13285
   329
val QPair_inject2 = thm "QPair_inject2";
paulson@13285
   330
val QSigmaI = thm "QSigmaI";
paulson@13285
   331
val QSigmaE = thm "QSigmaE";
paulson@13285
   332
val QSigmaE = thm "QSigmaE";
paulson@13285
   333
val QSigmaE2 = thm "QSigmaE2";
paulson@13285
   334
val QSigmaD1 = thm "QSigmaD1";
paulson@13285
   335
val QSigmaD2 = thm "QSigmaD2";
paulson@13285
   336
val QSigma_cong = thm "QSigma_cong";
paulson@13285
   337
val QSigma_empty1 = thm "QSigma_empty1";
paulson@13285
   338
val QSigma_empty2 = thm "QSigma_empty2";
paulson@13285
   339
val qfst_conv = thm "qfst_conv";
paulson@13285
   340
val qsnd_conv = thm "qsnd_conv";
paulson@13285
   341
val qfst_type = thm "qfst_type";
paulson@13285
   342
val qsnd_type = thm "qsnd_type";
paulson@13285
   343
val QPair_qfst_qsnd_eq = thm "QPair_qfst_qsnd_eq";
paulson@13285
   344
val qsplit = thm "qsplit";
paulson@13285
   345
val qsplit_type = thm "qsplit_type";
paulson@13285
   346
val expand_qsplit = thm "expand_qsplit";
paulson@13285
   347
val qsplitI = thm "qsplitI";
paulson@13285
   348
val qsplitE = thm "qsplitE";
paulson@13285
   349
val qsplitD = thm "qsplitD";
paulson@13285
   350
val qconverseI = thm "qconverseI";
paulson@13285
   351
val qconverseD = thm "qconverseD";
paulson@13285
   352
val qconverseE = thm "qconverseE";
paulson@13285
   353
val qconverse_qconverse = thm "qconverse_qconverse";
paulson@13285
   354
val qconverse_type = thm "qconverse_type";
paulson@13285
   355
val qconverse_prod = thm "qconverse_prod";
paulson@13285
   356
val qconverse_empty = thm "qconverse_empty";
paulson@13285
   357
val QInlI = thm "QInlI";
paulson@13285
   358
val QInrI = thm "QInrI";
paulson@13285
   359
val qsumE = thm "qsumE";
paulson@13285
   360
val QInl_iff = thm "QInl_iff";
paulson@13285
   361
val QInr_iff = thm "QInr_iff";
paulson@13285
   362
val QInl_QInr_iff = thm "QInl_QInr_iff";
paulson@13285
   363
val QInr_QInl_iff = thm "QInr_QInl_iff";
paulson@13285
   364
val qsum_empty = thm "qsum_empty";
paulson@13285
   365
val QInl_inject = thm "QInl_inject";
paulson@13285
   366
val QInr_inject = thm "QInr_inject";
paulson@13285
   367
val QInl_neq_QInr = thm "QInl_neq_QInr";
paulson@13285
   368
val QInr_neq_QInl = thm "QInr_neq_QInl";
paulson@13285
   369
val QInlD = thm "QInlD";
paulson@13285
   370
val QInrD = thm "QInrD";
paulson@13285
   371
val qsum_iff = thm "qsum_iff";
paulson@13285
   372
val qsum_subset_iff = thm "qsum_subset_iff";
paulson@13285
   373
val qsum_equal_iff = thm "qsum_equal_iff";
paulson@13285
   374
val qcase_QInl = thm "qcase_QInl";
paulson@13285
   375
val qcase_QInr = thm "qcase_QInr";
paulson@13285
   376
val qcase_type = thm "qcase_type";
paulson@13285
   377
val Part_QInl = thm "Part_QInl";
paulson@13285
   378
val Part_QInr = thm "Part_QInr";
paulson@13285
   379
val Part_QInr2 = thm "Part_QInr2";
paulson@13285
   380
val Part_qsum_equality = thm "Part_qsum_equality";
paulson@13285
   381
val QPair_mono = thm "QPair_mono";
paulson@13285
   382
val QSigma_mono = thm "QSigma_mono";
paulson@13285
   383
val QInl_mono = thm "QInl_mono";
paulson@13285
   384
val QInr_mono = thm "QInr_mono";
paulson@13285
   385
val qsum_mono = thm "qsum_mono";
paulson@13285
   386
*}
paulson@13285
   387
clasohm@0
   388
end
clasohm@0
   389