src/HOL/OrderedGroup.thy
author haftmann
Thu May 17 19:49:40 2007 +0200 (2007-05-17)
changeset 22997 d4f3b015b50b
parent 22986 d21d3539f6bb
child 23085 fd30d75a6614
permissions -rw-r--r--
canonical prefixing of class constants
wenzelm@14770
     1
(*  Title:   HOL/OrderedGroup.thy
obua@14738
     2
    ID:      $Id$
avigad@16775
     3
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel,
avigad@16775
     4
             with contributions by Jeremy Avigad
obua@14738
     5
*)
obua@14738
     6
obua@14738
     7
header {* Ordered Groups *}
obua@14738
     8
nipkow@15131
     9
theory OrderedGroup
haftmann@22452
    10
imports Lattices
wenzelm@19798
    11
uses "~~/src/Provers/Arith/abel_cancel.ML"
nipkow@15131
    12
begin
obua@14738
    13
obua@14738
    14
text {*
obua@14738
    15
  The theory of partially ordered groups is taken from the books:
obua@14738
    16
  \begin{itemize}
obua@14738
    17
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
obua@14738
    18
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
obua@14738
    19
  \end{itemize}
obua@14738
    20
  Most of the used notions can also be looked up in 
obua@14738
    21
  \begin{itemize}
wenzelm@14770
    22
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
obua@14738
    23
  \item \emph{Algebra I} by van der Waerden, Springer.
obua@14738
    24
  \end{itemize}
obua@14738
    25
*}
obua@14738
    26
obua@14738
    27
subsection {* Semigroups, Groups *}
obua@14738
    28
haftmann@22390
    29
class semigroup_add = plus +
haftmann@22390
    30
  assumes add_assoc: "(a \<^loc>+ b) \<^loc>+ c = a \<^loc>+ (b \<^loc>+ c)"
haftmann@22390
    31
haftmann@22390
    32
class ab_semigroup_add = semigroup_add +
haftmann@22390
    33
  assumes add_commute: "a \<^loc>+ b = b \<^loc>+ a"
obua@14738
    34
obua@14738
    35
lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::ab_semigroup_add))"
obua@14738
    36
  by (rule mk_left_commute [of "op +", OF add_assoc add_commute])
obua@14738
    37
obua@14738
    38
theorems add_ac = add_assoc add_commute add_left_commute
obua@14738
    39
haftmann@22390
    40
class semigroup_mult = times +
haftmann@22390
    41
  assumes mult_assoc: "(a \<^loc>* b) \<^loc>* c = a \<^loc>* (b \<^loc>* c)"
obua@14738
    42
haftmann@22390
    43
class ab_semigroup_mult = semigroup_mult +
haftmann@22390
    44
  assumes mult_commute: "a \<^loc>* b = b \<^loc>* a"
obua@14738
    45
obua@14738
    46
lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::ab_semigroup_mult))"
obua@14738
    47
  by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute])
obua@14738
    48
obua@14738
    49
theorems mult_ac = mult_assoc mult_commute mult_left_commute
obua@14738
    50
haftmann@22390
    51
class comm_monoid_add = zero + ab_semigroup_add +
haftmann@22390
    52
  assumes add_0 [simp]: "\<^loc>0 \<^loc>+ a = a"
obua@14738
    53
haftmann@22390
    54
class monoid_mult = one + semigroup_mult +
haftmann@22390
    55
  assumes mult_1_left [simp]: "\<^loc>1 \<^loc>* a  = a"
haftmann@22390
    56
  assumes mult_1_right [simp]: "a \<^loc>* \<^loc>1 = a"
obua@14738
    57
haftmann@22390
    58
class comm_monoid_mult = one + ab_semigroup_mult +
haftmann@22390
    59
  assumes mult_1: "\<^loc>1 \<^loc>* a = a"
obua@14738
    60
obua@14738
    61
instance comm_monoid_mult \<subseteq> monoid_mult
haftmann@22390
    62
  by intro_classes (insert mult_1, simp_all add: mult_commute, auto)
obua@14738
    63
haftmann@22390
    64
class cancel_semigroup_add = semigroup_add +
haftmann@22390
    65
  assumes add_left_imp_eq: "a \<^loc>+ b = a \<^loc>+ c \<Longrightarrow> b = c"
haftmann@22390
    66
  assumes add_right_imp_eq: "b \<^loc>+ a = c \<^loc>+ a \<Longrightarrow> b = c"
obua@14738
    67
haftmann@22390
    68
class cancel_ab_semigroup_add = ab_semigroup_add +
haftmann@22390
    69
  assumes add_imp_eq: "a \<^loc>+ b = a \<^loc>+ c \<Longrightarrow> b = c"
obua@14738
    70
obua@14738
    71
instance cancel_ab_semigroup_add \<subseteq> cancel_semigroup_add
haftmann@22390
    72
proof intro_classes
haftmann@22390
    73
  fix a b c :: 'a
haftmann@22390
    74
  assume "a + b = a + c" 
haftmann@22390
    75
  then show "b = c" by (rule add_imp_eq)
haftmann@22390
    76
next
obua@14738
    77
  fix a b c :: 'a
obua@14738
    78
  assume "b + a = c + a"
haftmann@22390
    79
  then have "a + b = a + c" by (simp only: add_commute)
haftmann@22390
    80
  then show "b = c" by (rule add_imp_eq)
obua@14738
    81
qed
obua@14738
    82
haftmann@22390
    83
class ab_group_add = minus + comm_monoid_add +
haftmann@22390
    84
  assumes left_minus [simp]: "uminus a \<^loc>+ a = \<^loc>0"
haftmann@22390
    85
  assumes diff_minus: "a \<^loc>- b = a \<^loc>+ (uminus b)"
obua@14738
    86
obua@14738
    87
instance ab_group_add \<subseteq> cancel_ab_semigroup_add
haftmann@22390
    88
proof intro_classes
obua@14738
    89
  fix a b c :: 'a
obua@14738
    90
  assume "a + b = a + c"
haftmann@22390
    91
  then have "uminus a + a + b = uminus a + a + c" unfolding add_assoc by simp
haftmann@22390
    92
  then show "b = c" by simp 
obua@14738
    93
qed
obua@14738
    94
obua@14738
    95
lemma add_0_right [simp]: "a + 0 = (a::'a::comm_monoid_add)"
obua@14738
    96
proof -
obua@14738
    97
  have "a + 0 = 0 + a" by (simp only: add_commute)
obua@14738
    98
  also have "... = a" by simp
obua@14738
    99
  finally show ?thesis .
obua@14738
   100
qed
obua@14738
   101
wenzelm@21245
   102
lemmas add_zero_left = add_0
wenzelm@21245
   103
  and add_zero_right = add_0_right
wenzelm@21245
   104
obua@14738
   105
lemma add_left_cancel [simp]:
haftmann@22390
   106
  "a + b = a + c \<longleftrightarrow> b = (c \<Colon> 'a\<Colon>cancel_semigroup_add)"
haftmann@22390
   107
  by (blast dest: add_left_imp_eq) 
obua@14738
   108
obua@14738
   109
lemma add_right_cancel [simp]:
haftmann@22390
   110
  "b + a = c + a \<longleftrightarrow> b = (c \<Colon> 'a\<Colon>cancel_semigroup_add)"
obua@14738
   111
  by (blast dest: add_right_imp_eq)
obua@14738
   112
obua@14738
   113
lemma right_minus [simp]: "a + -(a::'a::ab_group_add) = 0"
obua@14738
   114
proof -
obua@14738
   115
  have "a + -a = -a + a" by (simp add: add_ac)
obua@14738
   116
  also have "... = 0" by simp
obua@14738
   117
  finally show ?thesis .
obua@14738
   118
qed
obua@14738
   119
obua@14738
   120
lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::ab_group_add))"
obua@14738
   121
proof
obua@14738
   122
  have "a = a - b + b" by (simp add: diff_minus add_ac)
obua@14738
   123
  also assume "a - b = 0"
obua@14738
   124
  finally show "a = b" by simp
obua@14738
   125
next
obua@14738
   126
  assume "a = b"
obua@14738
   127
  thus "a - b = 0" by (simp add: diff_minus)
obua@14738
   128
qed
obua@14738
   129
obua@14738
   130
lemma minus_minus [simp]: "- (- (a::'a::ab_group_add)) = a"
obua@14738
   131
proof (rule add_left_cancel [of "-a", THEN iffD1])
obua@14738
   132
  show "(-a + -(-a) = -a + a)"
obua@14738
   133
  by simp
obua@14738
   134
qed
obua@14738
   135
obua@14738
   136
lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::ab_group_add)"
obua@14738
   137
apply (rule right_minus_eq [THEN iffD1, symmetric])
obua@14738
   138
apply (simp add: diff_minus add_commute) 
obua@14738
   139
done
obua@14738
   140
obua@14738
   141
lemma minus_zero [simp]: "- 0 = (0::'a::ab_group_add)"
obua@14738
   142
by (simp add: equals_zero_I)
obua@14738
   143
obua@14738
   144
lemma diff_self [simp]: "a - (a::'a::ab_group_add) = 0"
obua@14738
   145
  by (simp add: diff_minus)
obua@14738
   146
obua@14738
   147
lemma diff_0 [simp]: "(0::'a::ab_group_add) - a = -a"
obua@14738
   148
by (simp add: diff_minus)
obua@14738
   149
obua@14738
   150
lemma diff_0_right [simp]: "a - (0::'a::ab_group_add) = a" 
obua@14738
   151
by (simp add: diff_minus)
obua@14738
   152
obua@14738
   153
lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::ab_group_add)"
obua@14738
   154
by (simp add: diff_minus)
obua@14738
   155
obua@14738
   156
lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::ab_group_add))" 
obua@14738
   157
proof 
obua@14738
   158
  assume "- a = - b"
obua@14738
   159
  hence "- (- a) = - (- b)"
obua@14738
   160
    by simp
obua@14738
   161
  thus "a=b" by simp
obua@14738
   162
next
obua@14738
   163
  assume "a=b"
obua@14738
   164
  thus "-a = -b" by simp
obua@14738
   165
qed
obua@14738
   166
obua@14738
   167
lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::ab_group_add))"
obua@14738
   168
by (subst neg_equal_iff_equal [symmetric], simp)
obua@14738
   169
obua@14738
   170
lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::ab_group_add))"
obua@14738
   171
by (subst neg_equal_iff_equal [symmetric], simp)
obua@14738
   172
obua@14738
   173
text{*The next two equations can make the simplifier loop!*}
obua@14738
   174
obua@14738
   175
lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::ab_group_add))"
obua@14738
   176
proof -
obua@14738
   177
  have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal)
obua@14738
   178
  thus ?thesis by (simp add: eq_commute)
obua@14738
   179
qed
obua@14738
   180
obua@14738
   181
lemma minus_equation_iff: "(- a = b) = (- (b::'a::ab_group_add) = a)"
obua@14738
   182
proof -
obua@14738
   183
  have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal)
obua@14738
   184
  thus ?thesis by (simp add: eq_commute)
obua@14738
   185
qed
obua@14738
   186
obua@14738
   187
lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::ab_group_add)"
obua@14738
   188
apply (rule equals_zero_I)
obua@14738
   189
apply (simp add: add_ac) 
obua@14738
   190
done
obua@14738
   191
obua@14738
   192
lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ab_group_add)"
obua@14738
   193
by (simp add: diff_minus add_commute)
obua@14738
   194
obua@14738
   195
subsection {* (Partially) Ordered Groups *} 
obua@14738
   196
haftmann@22390
   197
class pordered_ab_semigroup_add = order + ab_semigroup_add +
haftmann@22390
   198
  assumes add_left_mono: "a \<sqsubseteq> b \<Longrightarrow> c \<^loc>+ a \<sqsubseteq> c \<^loc>+ b"
obua@14738
   199
haftmann@22390
   200
class pordered_cancel_ab_semigroup_add =
haftmann@22390
   201
  pordered_ab_semigroup_add + cancel_ab_semigroup_add
obua@14738
   202
haftmann@22390
   203
class pordered_ab_semigroup_add_imp_le = pordered_cancel_ab_semigroup_add +
haftmann@22452
   204
  assumes add_le_imp_le_left: "c \<^loc>+ a \<sqsubseteq> c \<^loc>+ b \<Longrightarrow> a \<sqsubseteq> b"
obua@14738
   205
haftmann@22390
   206
class pordered_ab_group_add = ab_group_add + pordered_ab_semigroup_add
obua@14738
   207
obua@14738
   208
instance pordered_ab_group_add \<subseteq> pordered_ab_semigroup_add_imp_le
obua@14738
   209
proof
obua@14738
   210
  fix a b c :: 'a
obua@14738
   211
  assume "c + a \<le> c + b"
obua@14738
   212
  hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
obua@14738
   213
  hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
obua@14738
   214
  thus "a \<le> b" by simp
obua@14738
   215
qed
obua@14738
   216
haftmann@22390
   217
class ordered_cancel_ab_semigroup_add = pordered_cancel_ab_semigroup_add + linorder
obua@14738
   218
obua@14738
   219
instance ordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add_imp_le
obua@14738
   220
proof
obua@14738
   221
  fix a b c :: 'a
obua@14738
   222
  assume le: "c + a <= c + b"  
obua@14738
   223
  show "a <= b"
obua@14738
   224
  proof (rule ccontr)
obua@14738
   225
    assume w: "~ a \<le> b"
obua@14738
   226
    hence "b <= a" by (simp add: linorder_not_le)
obua@14738
   227
    hence le2: "c+b <= c+a" by (rule add_left_mono)
obua@14738
   228
    have "a = b" 
obua@14738
   229
      apply (insert le)
obua@14738
   230
      apply (insert le2)
obua@14738
   231
      apply (drule order_antisym, simp_all)
obua@14738
   232
      done
obua@14738
   233
    with w  show False 
obua@14738
   234
      by (simp add: linorder_not_le [symmetric])
obua@14738
   235
  qed
obua@14738
   236
qed
obua@14738
   237
obua@14738
   238
lemma add_right_mono: "a \<le> (b::'a::pordered_ab_semigroup_add) ==> a + c \<le> b + c"
haftmann@22390
   239
  by (simp add: add_commute [of _ c] add_left_mono)
obua@14738
   240
obua@14738
   241
text {* non-strict, in both arguments *}
obua@14738
   242
lemma add_mono:
obua@14738
   243
     "[|a \<le> b;  c \<le> d|] ==> a + c \<le> b + (d::'a::pordered_ab_semigroup_add)"
obua@14738
   244
  apply (erule add_right_mono [THEN order_trans])
obua@14738
   245
  apply (simp add: add_commute add_left_mono)
obua@14738
   246
  done
obua@14738
   247
obua@14738
   248
lemma add_strict_left_mono:
obua@14738
   249
     "a < b ==> c + a < c + (b::'a::pordered_cancel_ab_semigroup_add)"
obua@14738
   250
 by (simp add: order_less_le add_left_mono) 
obua@14738
   251
obua@14738
   252
lemma add_strict_right_mono:
obua@14738
   253
     "a < b ==> a + c < b + (c::'a::pordered_cancel_ab_semigroup_add)"
obua@14738
   254
 by (simp add: add_commute [of _ c] add_strict_left_mono)
obua@14738
   255
obua@14738
   256
text{*Strict monotonicity in both arguments*}
obua@14738
   257
lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
obua@14738
   258
apply (erule add_strict_right_mono [THEN order_less_trans])
obua@14738
   259
apply (erule add_strict_left_mono)
obua@14738
   260
done
obua@14738
   261
obua@14738
   262
lemma add_less_le_mono:
obua@14738
   263
     "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
obua@14738
   264
apply (erule add_strict_right_mono [THEN order_less_le_trans])
obua@14738
   265
apply (erule add_left_mono) 
obua@14738
   266
done
obua@14738
   267
obua@14738
   268
lemma add_le_less_mono:
obua@14738
   269
     "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"
obua@14738
   270
apply (erule add_right_mono [THEN order_le_less_trans])
obua@14738
   271
apply (erule add_strict_left_mono) 
obua@14738
   272
done
obua@14738
   273
obua@14738
   274
lemma add_less_imp_less_left:
obua@14738
   275
      assumes less: "c + a < c + b"  shows "a < (b::'a::pordered_ab_semigroup_add_imp_le)"
obua@14738
   276
proof -
obua@14738
   277
  from less have le: "c + a <= c + b" by (simp add: order_le_less)
obua@14738
   278
  have "a <= b" 
obua@14738
   279
    apply (insert le)
obua@14738
   280
    apply (drule add_le_imp_le_left)
obua@14738
   281
    by (insert le, drule add_le_imp_le_left, assumption)
obua@14738
   282
  moreover have "a \<noteq> b"
obua@14738
   283
  proof (rule ccontr)
obua@14738
   284
    assume "~(a \<noteq> b)"
obua@14738
   285
    then have "a = b" by simp
obua@14738
   286
    then have "c + a = c + b" by simp
obua@14738
   287
    with less show "False"by simp
obua@14738
   288
  qed
obua@14738
   289
  ultimately show "a < b" by (simp add: order_le_less)
obua@14738
   290
qed
obua@14738
   291
obua@14738
   292
lemma add_less_imp_less_right:
obua@14738
   293
      "a + c < b + c ==> a < (b::'a::pordered_ab_semigroup_add_imp_le)"
obua@14738
   294
apply (rule add_less_imp_less_left [of c])
obua@14738
   295
apply (simp add: add_commute)  
obua@14738
   296
done
obua@14738
   297
obua@14738
   298
lemma add_less_cancel_left [simp]:
obua@14738
   299
    "(c+a < c+b) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"
obua@14738
   300
by (blast intro: add_less_imp_less_left add_strict_left_mono) 
obua@14738
   301
obua@14738
   302
lemma add_less_cancel_right [simp]:
obua@14738
   303
    "(a+c < b+c) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"
obua@14738
   304
by (blast intro: add_less_imp_less_right add_strict_right_mono)
obua@14738
   305
obua@14738
   306
lemma add_le_cancel_left [simp]:
obua@14738
   307
    "(c+a \<le> c+b) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"
obua@14738
   308
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
obua@14738
   309
obua@14738
   310
lemma add_le_cancel_right [simp]:
obua@14738
   311
    "(a+c \<le> b+c) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"
obua@14738
   312
by (simp add: add_commute[of a c] add_commute[of b c])
obua@14738
   313
obua@14738
   314
lemma add_le_imp_le_right:
obua@14738
   315
      "a + c \<le> b + c ==> a \<le> (b::'a::pordered_ab_semigroup_add_imp_le)"
obua@14738
   316
by simp
obua@14738
   317
paulson@15234
   318
lemma add_increasing:
paulson@15234
   319
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
paulson@15234
   320
  shows  "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"
obua@14738
   321
by (insert add_mono [of 0 a b c], simp)
obua@14738
   322
nipkow@15539
   323
lemma add_increasing2:
nipkow@15539
   324
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
nipkow@15539
   325
  shows  "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"
nipkow@15539
   326
by (simp add:add_increasing add_commute[of a])
nipkow@15539
   327
paulson@15234
   328
lemma add_strict_increasing:
paulson@15234
   329
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
paulson@15234
   330
  shows "[|0<a; b\<le>c|] ==> b < a + c"
paulson@15234
   331
by (insert add_less_le_mono [of 0 a b c], simp)
paulson@15234
   332
paulson@15234
   333
lemma add_strict_increasing2:
paulson@15234
   334
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
paulson@15234
   335
  shows "[|0\<le>a; b<c|] ==> b < a + c"
paulson@15234
   336
by (insert add_le_less_mono [of 0 a b c], simp)
paulson@15234
   337
paulson@19527
   338
lemma max_add_distrib_left:
paulson@19527
   339
  fixes z :: "'a::pordered_ab_semigroup_add_imp_le"
paulson@19527
   340
  shows  "(max x y) + z = max (x+z) (y+z)"
paulson@19527
   341
by (rule max_of_mono [THEN sym], rule add_le_cancel_right)
paulson@19527
   342
paulson@19527
   343
lemma min_add_distrib_left:
paulson@19527
   344
  fixes z :: "'a::pordered_ab_semigroup_add_imp_le"
paulson@19527
   345
  shows  "(min x y) + z = min (x+z) (y+z)"
paulson@19527
   346
by (rule min_of_mono [THEN sym], rule add_le_cancel_right)
paulson@19527
   347
paulson@19527
   348
lemma max_diff_distrib_left:
paulson@19527
   349
  fixes z :: "'a::pordered_ab_group_add"
paulson@19527
   350
  shows  "(max x y) - z = max (x-z) (y-z)"
paulson@19527
   351
by (simp add: diff_minus, rule max_add_distrib_left) 
paulson@19527
   352
paulson@19527
   353
lemma min_diff_distrib_left:
paulson@19527
   354
  fixes z :: "'a::pordered_ab_group_add"
paulson@19527
   355
  shows  "(min x y) - z = min (x-z) (y-z)"
paulson@19527
   356
by (simp add: diff_minus, rule min_add_distrib_left) 
paulson@19527
   357
paulson@15234
   358
obua@14738
   359
subsection {* Ordering Rules for Unary Minus *}
obua@14738
   360
obua@14738
   361
lemma le_imp_neg_le:
obua@14738
   362
      assumes "a \<le> (b::'a::{pordered_ab_semigroup_add_imp_le, ab_group_add})" shows "-b \<le> -a"
obua@14738
   363
proof -
obua@14738
   364
  have "-a+a \<le> -a+b"
obua@14738
   365
    by (rule add_left_mono) 
obua@14738
   366
  hence "0 \<le> -a+b"
obua@14738
   367
    by simp
obua@14738
   368
  hence "0 + (-b) \<le> (-a + b) + (-b)"
obua@14738
   369
    by (rule add_right_mono) 
obua@14738
   370
  thus ?thesis
obua@14738
   371
    by (simp add: add_assoc)
obua@14738
   372
qed
obua@14738
   373
obua@14738
   374
lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::pordered_ab_group_add))"
obua@14738
   375
proof 
obua@14738
   376
  assume "- b \<le> - a"
obua@14738
   377
  hence "- (- a) \<le> - (- b)"
obua@14738
   378
    by (rule le_imp_neg_le)
obua@14738
   379
  thus "a\<le>b" by simp
obua@14738
   380
next
obua@14738
   381
  assume "a\<le>b"
obua@14738
   382
  thus "-b \<le> -a" by (rule le_imp_neg_le)
obua@14738
   383
qed
obua@14738
   384
obua@14738
   385
lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::pordered_ab_group_add))"
obua@14738
   386
by (subst neg_le_iff_le [symmetric], simp)
obua@14738
   387
obua@14738
   388
lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::pordered_ab_group_add))"
obua@14738
   389
by (subst neg_le_iff_le [symmetric], simp)
obua@14738
   390
obua@14738
   391
lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::pordered_ab_group_add))"
obua@14738
   392
by (force simp add: order_less_le) 
obua@14738
   393
obua@14738
   394
lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::pordered_ab_group_add))"
obua@14738
   395
by (subst neg_less_iff_less [symmetric], simp)
obua@14738
   396
obua@14738
   397
lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::pordered_ab_group_add))"
obua@14738
   398
by (subst neg_less_iff_less [symmetric], simp)
obua@14738
   399
obua@14738
   400
text{*The next several equations can make the simplifier loop!*}
obua@14738
   401
obua@14738
   402
lemma less_minus_iff: "(a < - b) = (b < - (a::'a::pordered_ab_group_add))"
obua@14738
   403
proof -
obua@14738
   404
  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
obua@14738
   405
  thus ?thesis by simp
obua@14738
   406
qed
obua@14738
   407
obua@14738
   408
lemma minus_less_iff: "(- a < b) = (- b < (a::'a::pordered_ab_group_add))"
obua@14738
   409
proof -
obua@14738
   410
  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
obua@14738
   411
  thus ?thesis by simp
obua@14738
   412
qed
obua@14738
   413
obua@14738
   414
lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::pordered_ab_group_add))"
obua@14738
   415
proof -
obua@14738
   416
  have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
obua@14738
   417
  have "(- (- a) <= -b) = (b <= - a)" 
obua@14738
   418
    apply (auto simp only: order_le_less)
obua@14738
   419
    apply (drule mm)
obua@14738
   420
    apply (simp_all)
obua@14738
   421
    apply (drule mm[simplified], assumption)
obua@14738
   422
    done
obua@14738
   423
  then show ?thesis by simp
obua@14738
   424
qed
obua@14738
   425
obua@14738
   426
lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::pordered_ab_group_add))"
obua@14738
   427
by (auto simp add: order_le_less minus_less_iff)
obua@14738
   428
obua@14738
   429
lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::ab_group_add)"
obua@14738
   430
by (simp add: diff_minus add_ac)
obua@14738
   431
obua@14738
   432
lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::ab_group_add)"
obua@14738
   433
by (simp add: diff_minus add_ac)
obua@14738
   434
obua@14738
   435
lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::ab_group_add))"
obua@14738
   436
by (auto simp add: diff_minus add_assoc)
obua@14738
   437
obua@14738
   438
lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::ab_group_add) = c)"
obua@14738
   439
by (auto simp add: diff_minus add_assoc)
obua@14738
   440
obua@14738
   441
lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::ab_group_add))"
obua@14738
   442
by (simp add: diff_minus add_ac)
obua@14738
   443
obua@14738
   444
lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::ab_group_add)"
obua@14738
   445
by (simp add: diff_minus add_ac)
obua@14738
   446
obua@14738
   447
lemma diff_add_cancel: "a - b + b = (a::'a::ab_group_add)"
obua@14738
   448
by (simp add: diff_minus add_ac)
obua@14738
   449
obua@14738
   450
lemma add_diff_cancel: "a + b - b = (a::'a::ab_group_add)"
obua@14738
   451
by (simp add: diff_minus add_ac)
obua@14738
   452
obua@14754
   453
text{*Further subtraction laws*}
obua@14738
   454
obua@14738
   455
lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::pordered_ab_group_add))"
obua@14738
   456
proof -
obua@14738
   457
  have  "(a < b) = (a + (- b) < b + (-b))"  
obua@14738
   458
    by (simp only: add_less_cancel_right)
obua@14738
   459
  also have "... =  (a - b < 0)" by (simp add: diff_minus)
obua@14738
   460
  finally show ?thesis .
obua@14738
   461
qed
obua@14738
   462
obua@14738
   463
lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::pordered_ab_group_add))"
paulson@15481
   464
apply (subst less_iff_diff_less_0 [of a])
obua@14738
   465
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
obua@14738
   466
apply (simp add: diff_minus add_ac)
obua@14738
   467
done
obua@14738
   468
obua@14738
   469
lemma less_diff_eq: "(a < c-b) = (a + (b::'a::pordered_ab_group_add) < c)"
paulson@15481
   470
apply (subst less_iff_diff_less_0 [of "a+b"])
paulson@15481
   471
apply (subst less_iff_diff_less_0 [of a])
obua@14738
   472
apply (simp add: diff_minus add_ac)
obua@14738
   473
done
obua@14738
   474
obua@14738
   475
lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::pordered_ab_group_add))"
obua@14738
   476
by (auto simp add: order_le_less diff_less_eq diff_add_cancel add_diff_cancel)
obua@14738
   477
obua@14738
   478
lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::pordered_ab_group_add) \<le> c)"
obua@14738
   479
by (auto simp add: order_le_less less_diff_eq diff_add_cancel add_diff_cancel)
obua@14738
   480
obua@14738
   481
text{*This list of rewrites simplifies (in)equalities by bringing subtractions
obua@14738
   482
  to the top and then moving negative terms to the other side.
obua@14738
   483
  Use with @{text add_ac}*}
obua@14738
   484
lemmas compare_rls =
obua@14738
   485
       diff_minus [symmetric]
obua@14738
   486
       add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
obua@14738
   487
       diff_less_eq less_diff_eq diff_le_eq le_diff_eq
obua@14738
   488
       diff_eq_eq eq_diff_eq
obua@14738
   489
avigad@16775
   490
subsection {* Support for reasoning about signs *}
avigad@16775
   491
avigad@16775
   492
lemma add_pos_pos: "0 < 
avigad@16775
   493
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
avigad@16775
   494
      ==> 0 < y ==> 0 < x + y"
avigad@16775
   495
apply (subgoal_tac "0 + 0 < x + y")
avigad@16775
   496
apply simp
avigad@16775
   497
apply (erule add_less_le_mono)
avigad@16775
   498
apply (erule order_less_imp_le)
avigad@16775
   499
done
avigad@16775
   500
avigad@16775
   501
lemma add_pos_nonneg: "0 < 
avigad@16775
   502
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
avigad@16775
   503
      ==> 0 <= y ==> 0 < x + y"
avigad@16775
   504
apply (subgoal_tac "0 + 0 < x + y")
avigad@16775
   505
apply simp
avigad@16775
   506
apply (erule add_less_le_mono, assumption)
avigad@16775
   507
done
avigad@16775
   508
avigad@16775
   509
lemma add_nonneg_pos: "0 <= 
avigad@16775
   510
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
avigad@16775
   511
      ==> 0 < y ==> 0 < x + y"
avigad@16775
   512
apply (subgoal_tac "0 + 0 < x + y")
avigad@16775
   513
apply simp
avigad@16775
   514
apply (erule add_le_less_mono, assumption)
avigad@16775
   515
done
avigad@16775
   516
avigad@16775
   517
lemma add_nonneg_nonneg: "0 <= 
avigad@16775
   518
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
avigad@16775
   519
      ==> 0 <= y ==> 0 <= x + y"
avigad@16775
   520
apply (subgoal_tac "0 + 0 <= x + y")
avigad@16775
   521
apply simp
avigad@16775
   522
apply (erule add_mono, assumption)
avigad@16775
   523
done
avigad@16775
   524
avigad@16775
   525
lemma add_neg_neg: "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add})
avigad@16775
   526
    < 0 ==> y < 0 ==> x + y < 0"
avigad@16775
   527
apply (subgoal_tac "x + y < 0 + 0")
avigad@16775
   528
apply simp
avigad@16775
   529
apply (erule add_less_le_mono)
avigad@16775
   530
apply (erule order_less_imp_le)
avigad@16775
   531
done
avigad@16775
   532
avigad@16775
   533
lemma add_neg_nonpos: 
avigad@16775
   534
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) < 0 
avigad@16775
   535
      ==> y <= 0 ==> x + y < 0"
avigad@16775
   536
apply (subgoal_tac "x + y < 0 + 0")
avigad@16775
   537
apply simp
avigad@16775
   538
apply (erule add_less_le_mono, assumption)
avigad@16775
   539
done
avigad@16775
   540
avigad@16775
   541
lemma add_nonpos_neg: 
avigad@16775
   542
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
avigad@16775
   543
      ==> y < 0 ==> x + y < 0"
avigad@16775
   544
apply (subgoal_tac "x + y < 0 + 0")
avigad@16775
   545
apply simp
avigad@16775
   546
apply (erule add_le_less_mono, assumption)
avigad@16775
   547
done
avigad@16775
   548
avigad@16775
   549
lemma add_nonpos_nonpos: 
avigad@16775
   550
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
avigad@16775
   551
      ==> y <= 0 ==> x + y <= 0"
avigad@16775
   552
apply (subgoal_tac "x + y <= 0 + 0")
avigad@16775
   553
apply simp
avigad@16775
   554
apply (erule add_mono, assumption)
avigad@16775
   555
done
obua@14738
   556
obua@14738
   557
subsection{*Lemmas for the @{text cancel_numerals} simproc*}
obua@14738
   558
obua@14738
   559
lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::ab_group_add))"
obua@14738
   560
by (simp add: compare_rls)
obua@14738
   561
obua@14738
   562
lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::pordered_ab_group_add))"
obua@14738
   563
by (simp add: compare_rls)
obua@14738
   564
haftmann@22452
   565
obua@14738
   566
subsection {* Lattice Ordered (Abelian) Groups *}
obua@14738
   567
haftmann@22452
   568
class lordered_ab_group_meet = pordered_ab_group_add + lower_semilattice
haftmann@22452
   569
haftmann@22452
   570
class lordered_ab_group_join = pordered_ab_group_add + upper_semilattice
obua@14738
   571
haftmann@22452
   572
class lordered_ab_group = pordered_ab_group_add + lattice
obua@14738
   573
haftmann@22452
   574
instance lordered_ab_group \<subseteq> lordered_ab_group_meet by default
haftmann@22452
   575
instance lordered_ab_group \<subseteq> lordered_ab_group_join by default
haftmann@22452
   576
haftmann@22452
   577
lemma add_inf_distrib_left: "a + inf b c = inf (a + b) (a + (c::'a::{pordered_ab_group_add, lower_semilattice}))"
obua@14738
   578
apply (rule order_antisym)
haftmann@22422
   579
apply (simp_all add: le_infI)
obua@14738
   580
apply (rule add_le_imp_le_left [of "-a"])
obua@14738
   581
apply (simp only: add_assoc[symmetric], simp)
nipkow@21312
   582
apply rule
nipkow@21312
   583
apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
obua@14738
   584
done
obua@14738
   585
haftmann@22452
   586
lemma add_sup_distrib_left: "a + sup b c = sup (a + b) (a+ (c::'a::{pordered_ab_group_add, upper_semilattice}))" 
obua@14738
   587
apply (rule order_antisym)
obua@14738
   588
apply (rule add_le_imp_le_left [of "-a"])
obua@14738
   589
apply (simp only: add_assoc[symmetric], simp)
nipkow@21312
   590
apply rule
nipkow@21312
   591
apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
haftmann@22422
   592
apply (rule le_supI)
nipkow@21312
   593
apply (simp_all)
obua@14738
   594
done
obua@14738
   595
haftmann@22452
   596
lemma add_inf_distrib_right: "inf a b + (c::'a::lordered_ab_group) = inf (a+c) (b+c)"
obua@14738
   597
proof -
haftmann@22452
   598
  have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
obua@14738
   599
  thus ?thesis by (simp add: add_commute)
obua@14738
   600
qed
obua@14738
   601
haftmann@22452
   602
lemma add_sup_distrib_right: "sup a b + (c::'a::lordered_ab_group) = sup (a+c) (b+c)"
obua@14738
   603
proof -
haftmann@22452
   604
  have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
obua@14738
   605
  thus ?thesis by (simp add: add_commute)
obua@14738
   606
qed
obua@14738
   607
haftmann@22422
   608
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
obua@14738
   609
haftmann@22452
   610
lemma inf_eq_neg_sup: "inf a (b\<Colon>'a\<Colon>lordered_ab_group) = - sup (-a) (-b)"
haftmann@22452
   611
proof (rule inf_unique)
haftmann@22452
   612
  fix a b :: 'a
haftmann@22452
   613
  show "- sup (-a) (-b) \<le> a" by (rule add_le_imp_le_right [of _ "sup (-a) (-b)"])
haftmann@22452
   614
    (simp, simp add: add_sup_distrib_left)
haftmann@22452
   615
next
haftmann@22452
   616
  fix a b :: 'a
haftmann@22452
   617
  show "- sup (-a) (-b) \<le> b" by (rule add_le_imp_le_right [of _ "sup (-a) (-b)"])
haftmann@22452
   618
    (simp, simp add: add_sup_distrib_left)
haftmann@22452
   619
next
haftmann@22452
   620
  fix a b c :: 'a
haftmann@22452
   621
  assume "a \<le> b" "a \<le> c"
haftmann@22452
   622
  then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
haftmann@22452
   623
    (simp add: le_supI)
haftmann@22452
   624
qed
haftmann@22452
   625
  
haftmann@22452
   626
lemma sup_eq_neg_inf: "sup a (b\<Colon>'a\<Colon>lordered_ab_group) = - inf (-a) (-b)"
haftmann@22452
   627
proof (rule sup_unique)
haftmann@22452
   628
  fix a b :: 'a
haftmann@22452
   629
  show "a \<le> - inf (-a) (-b)" by (rule add_le_imp_le_right [of _ "inf (-a) (-b)"])
haftmann@22452
   630
    (simp, simp add: add_inf_distrib_left)
haftmann@22452
   631
next
haftmann@22452
   632
  fix a b :: 'a
haftmann@22452
   633
  show "b \<le> - inf (-a) (-b)" by (rule add_le_imp_le_right [of _ "inf (-a) (-b)"])
haftmann@22452
   634
    (simp, simp add: add_inf_distrib_left)
haftmann@22452
   635
next
haftmann@22452
   636
  fix a b c :: 'a
haftmann@22452
   637
  assume "a \<le> c" "b \<le> c"
haftmann@22452
   638
  then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
haftmann@22452
   639
    (simp add: le_infI)
haftmann@22452
   640
qed
obua@14738
   641
haftmann@22452
   642
lemma add_eq_inf_sup: "a + b = sup a b + inf a (b\<Colon>'a\<Colon>lordered_ab_group)"
obua@14738
   643
proof -
haftmann@22422
   644
  have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
haftmann@22422
   645
  hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
haftmann@22422
   646
  hence "0 = (-a + sup a b) + (inf a b + (-b))"
haftmann@22422
   647
    apply (simp add: add_sup_distrib_left add_inf_distrib_right)
obua@14738
   648
    by (simp add: diff_minus add_commute)
obua@14738
   649
  thus ?thesis
obua@14738
   650
    apply (simp add: compare_rls)
haftmann@22422
   651
    apply (subst add_left_cancel[symmetric, of "a+b" "sup a b + inf a b" "-a"])
obua@14738
   652
    apply (simp only: add_assoc, simp add: add_assoc[symmetric])
obua@14738
   653
    done
obua@14738
   654
qed
obua@14738
   655
obua@14738
   656
subsection {* Positive Part, Negative Part, Absolute Value *}
obua@14738
   657
haftmann@22422
   658
definition
haftmann@22422
   659
  nprt :: "'a \<Rightarrow> ('a::lordered_ab_group)" where
haftmann@22422
   660
  "nprt x = inf x 0"
haftmann@22422
   661
haftmann@22422
   662
definition
haftmann@22422
   663
  pprt :: "'a \<Rightarrow> ('a::lordered_ab_group)" where
haftmann@22422
   664
  "pprt x = sup x 0"
obua@14738
   665
obua@14738
   666
lemma prts: "a = pprt a + nprt a"
haftmann@22422
   667
by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
obua@14738
   668
obua@14738
   669
lemma zero_le_pprt[simp]: "0 \<le> pprt a"
nipkow@21312
   670
by (simp add: pprt_def)
obua@14738
   671
obua@14738
   672
lemma nprt_le_zero[simp]: "nprt a \<le> 0"
nipkow@21312
   673
by (simp add: nprt_def)
obua@14738
   674
obua@14738
   675
lemma le_eq_neg: "(a \<le> -b) = (a + b \<le> (0::_::lordered_ab_group))" (is "?l = ?r")
obua@14738
   676
proof -
obua@14738
   677
  have a: "?l \<longrightarrow> ?r"
obua@14738
   678
    apply (auto)
obua@14738
   679
    apply (rule add_le_imp_le_right[of _ "-b" _])
obua@14738
   680
    apply (simp add: add_assoc)
obua@14738
   681
    done
obua@14738
   682
  have b: "?r \<longrightarrow> ?l"
obua@14738
   683
    apply (auto)
obua@14738
   684
    apply (rule add_le_imp_le_right[of _ "b" _])
obua@14738
   685
    apply (simp)
obua@14738
   686
    done
obua@14738
   687
  from a b show ?thesis by blast
obua@14738
   688
qed
obua@14738
   689
obua@15580
   690
lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
obua@15580
   691
lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
obua@15580
   692
obua@15580
   693
lemma pprt_eq_id[simp]: "0 <= x \<Longrightarrow> pprt x = x"
haftmann@22422
   694
  by (simp add: pprt_def le_iff_sup sup_aci)
obua@15580
   695
obua@15580
   696
lemma nprt_eq_id[simp]: "x <= 0 \<Longrightarrow> nprt x = x"
haftmann@22422
   697
  by (simp add: nprt_def le_iff_inf inf_aci)
obua@15580
   698
obua@15580
   699
lemma pprt_eq_0[simp]: "x <= 0 \<Longrightarrow> pprt x = 0"
haftmann@22422
   700
  by (simp add: pprt_def le_iff_sup sup_aci)
obua@15580
   701
obua@15580
   702
lemma nprt_eq_0[simp]: "0 <= x \<Longrightarrow> nprt x = 0"
haftmann@22422
   703
  by (simp add: nprt_def le_iff_inf inf_aci)
obua@15580
   704
haftmann@22422
   705
lemma sup_0_imp_0: "sup a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
obua@14738
   706
proof -
obua@14738
   707
  {
obua@14738
   708
    fix a::'a
haftmann@22422
   709
    assume hyp: "sup a (-a) = 0"
haftmann@22422
   710
    hence "sup a (-a) + a = a" by (simp)
haftmann@22422
   711
    hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right) 
haftmann@22422
   712
    hence "sup (a+a) 0 <= a" by (simp)
haftmann@22422
   713
    hence "0 <= a" by (blast intro: order_trans inf_sup_ord)
obua@14738
   714
  }
obua@14738
   715
  note p = this
haftmann@22422
   716
  assume hyp:"sup a (-a) = 0"
haftmann@22422
   717
  hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)
obua@14738
   718
  from p[OF hyp] p[OF hyp2] show "a = 0" by simp
obua@14738
   719
qed
obua@14738
   720
haftmann@22422
   721
lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"
haftmann@22422
   722
apply (simp add: inf_eq_neg_sup)
haftmann@22422
   723
apply (simp add: sup_commute)
haftmann@22422
   724
apply (erule sup_0_imp_0)
paulson@15481
   725
done
obua@14738
   726
haftmann@22422
   727
lemma inf_0_eq_0[simp]: "(inf a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
haftmann@22422
   728
by (auto, erule inf_0_imp_0)
obua@14738
   729
haftmann@22422
   730
lemma sup_0_eq_0[simp]: "(sup a (-a) = 0) = (a = (0::'a::lordered_ab_group))"
haftmann@22422
   731
by (auto, erule sup_0_imp_0)
obua@14738
   732
obua@14738
   733
lemma zero_le_double_add_iff_zero_le_single_add[simp]: "(0 \<le> a + a) = (0 \<le> (a::'a::lordered_ab_group))"
obua@14738
   734
proof
obua@14738
   735
  assume "0 <= a + a"
haftmann@22422
   736
  hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute)
haftmann@22422
   737
  have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_") by (simp add: add_sup_inf_distribs inf_aci)
haftmann@22422
   738
  hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
haftmann@22422
   739
  hence "inf a 0 = 0" by (simp only: add_right_cancel)
haftmann@22422
   740
  then show "0 <= a" by (simp add: le_iff_inf inf_commute)    
obua@14738
   741
next  
obua@14738
   742
  assume a: "0 <= a"
obua@14738
   743
  show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
obua@14738
   744
qed
obua@14738
   745
obua@14738
   746
lemma double_add_le_zero_iff_single_add_le_zero[simp]: "(a + a <= 0) = ((a::'a::lordered_ab_group) <= 0)" 
obua@14738
   747
proof -
obua@14738
   748
  have "(a + a <= 0) = (0 <= -(a+a))" by (subst le_minus_iff, simp)
obua@14738
   749
  moreover have "\<dots> = (a <= 0)" by (simp add: zero_le_double_add_iff_zero_le_single_add)
obua@14738
   750
  ultimately show ?thesis by blast
obua@14738
   751
qed
obua@14738
   752
obua@14738
   753
lemma double_add_less_zero_iff_single_less_zero[simp]: "(a+a<0) = ((a::'a::{pordered_ab_group_add,linorder}) < 0)" (is ?s)
obua@14738
   754
proof cases
obua@14738
   755
  assume a: "a < 0"
obua@14738
   756
  thus ?s by (simp add:  add_strict_mono[OF a a, simplified])
obua@14738
   757
next
obua@14738
   758
  assume "~(a < 0)" 
obua@14738
   759
  hence a:"0 <= a" by (simp)
obua@14738
   760
  hence "0 <= a+a" by (simp add: add_mono[OF a a, simplified])
obua@14738
   761
  hence "~(a+a < 0)" by simp
obua@14738
   762
  with a show ?thesis by simp 
obua@14738
   763
qed
obua@14738
   764
haftmann@22452
   765
class lordered_ab_group_abs = lordered_ab_group +
haftmann@22452
   766
  assumes abs_lattice: "abs x = sup x (uminus x)"
obua@14738
   767
obua@14738
   768
lemma abs_zero[simp]: "abs 0 = (0::'a::lordered_ab_group_abs)"
obua@14738
   769
by (simp add: abs_lattice)
obua@14738
   770
obua@14738
   771
lemma abs_eq_0[simp]: "(abs a = 0) = (a = (0::'a::lordered_ab_group_abs))"
obua@14738
   772
by (simp add: abs_lattice)
obua@14738
   773
obua@14738
   774
lemma abs_0_eq[simp]: "(0 = abs a) = (a = (0::'a::lordered_ab_group_abs))"
obua@14738
   775
proof -
obua@14738
   776
  have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac)
obua@14738
   777
  thus ?thesis by simp
obua@14738
   778
qed
obua@14738
   779
haftmann@22422
   780
lemma neg_inf_eq_sup[simp]: "- inf a (b::_::lordered_ab_group) = sup (-a) (-b)"
haftmann@22422
   781
by (simp add: inf_eq_neg_sup)
obua@14738
   782
haftmann@22422
   783
lemma neg_sup_eq_inf[simp]: "- sup a (b::_::lordered_ab_group) = inf (-a) (-b)"
haftmann@22422
   784
by (simp del: neg_inf_eq_sup add: sup_eq_neg_inf)
obua@14738
   785
haftmann@22422
   786
lemma sup_eq_if: "sup a (-a) = (if a < 0 then -a else (a::'a::{lordered_ab_group, linorder}))"
obua@14738
   787
proof -
obua@14738
   788
  note b = add_le_cancel_right[of a a "-a",symmetric,simplified]
obua@14738
   789
  have c: "a + a = 0 \<Longrightarrow> -a = a" by (rule add_right_imp_eq[of _ a], simp)
haftmann@22452
   790
  show ?thesis by (auto simp add: max_def b linorder_not_less sup_max)
obua@14738
   791
qed
obua@14738
   792
obua@14738
   793
lemma abs_if_lattice: "\<bar>a\<bar> = (if a < 0 then -a else (a::'a::{lordered_ab_group_abs, linorder}))"
obua@14738
   794
proof -
haftmann@22422
   795
  show ?thesis by (simp add: abs_lattice sup_eq_if)
obua@14738
   796
qed
obua@14738
   797
obua@14738
   798
lemma abs_ge_zero[simp]: "0 \<le> abs (a::'a::lordered_ab_group_abs)"
obua@14738
   799
proof -
nipkow@21312
   800
  have a:"a <= abs a" and b:"-a <= abs a" by (auto simp add: abs_lattice)
obua@14738
   801
  show ?thesis by (rule add_mono[OF a b, simplified])
obua@14738
   802
qed
obua@14738
   803
  
obua@14738
   804
lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::lordered_ab_group_abs)) = (a = 0)" 
obua@14738
   805
proof
obua@14738
   806
  assume "abs a <= 0"
obua@14738
   807
  hence "abs a = 0" by (auto dest: order_antisym)
obua@14738
   808
  thus "a = 0" by simp
obua@14738
   809
next
obua@14738
   810
  assume "a = 0"
obua@14738
   811
  thus "abs a <= 0" by simp
obua@14738
   812
qed
obua@14738
   813
obua@14738
   814
lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::lordered_ab_group_abs))"
obua@14738
   815
by (simp add: order_less_le)
obua@14738
   816
obua@14738
   817
lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::lordered_ab_group_abs)"
obua@14738
   818
proof -
obua@14738
   819
  have a:"!! x (y::_::order). x <= y \<Longrightarrow> ~(y < x)" by auto
obua@14738
   820
  show ?thesis by (simp add: a)
obua@14738
   821
qed
obua@14738
   822
obua@14738
   823
lemma abs_ge_self: "a \<le> abs (a::'a::lordered_ab_group_abs)"
nipkow@21312
   824
by (simp add: abs_lattice)
obua@14738
   825
obua@14738
   826
lemma abs_ge_minus_self: "-a \<le> abs (a::'a::lordered_ab_group_abs)"
nipkow@21312
   827
by (simp add: abs_lattice)
obua@14738
   828
obua@14738
   829
lemma abs_prts: "abs (a::_::lordered_ab_group_abs) = pprt a - nprt a"
obua@14738
   830
apply (simp add: pprt_def nprt_def diff_minus)
haftmann@22422
   831
apply (simp add: add_sup_inf_distribs sup_aci abs_lattice[symmetric])
haftmann@22422
   832
apply (subst sup_absorb2, auto)
obua@14738
   833
done
obua@14738
   834
obua@14738
   835
lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::lordered_ab_group_abs)"
haftmann@22422
   836
by (simp add: abs_lattice sup_commute)
obua@14738
   837
obua@14738
   838
lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::lordered_ab_group_abs)"
obua@14738
   839
apply (simp add: abs_lattice[of "abs a"])
haftmann@22422
   840
apply (subst sup_absorb1)
obua@14738
   841
apply (rule order_trans[of _ 0])
obua@14738
   842
by auto
obua@14738
   843
paulson@15093
   844
lemma abs_minus_commute: 
paulson@15093
   845
  fixes a :: "'a::lordered_ab_group_abs"
paulson@15093
   846
  shows "abs (a-b) = abs(b-a)"
paulson@15093
   847
proof -
paulson@15093
   848
  have "abs (a-b) = abs (- (a-b))" by (simp only: abs_minus_cancel)
paulson@15093
   849
  also have "... = abs(b-a)" by simp
paulson@15093
   850
  finally show ?thesis .
paulson@15093
   851
qed
paulson@15093
   852
obua@14738
   853
lemma zero_le_iff_zero_nprt: "(0 \<le> a) = (nprt a = 0)"
haftmann@22422
   854
by (simp add: le_iff_inf nprt_def inf_commute)
obua@14738
   855
obua@14738
   856
lemma le_zero_iff_zero_pprt: "(a \<le> 0) = (pprt a = 0)"
haftmann@22422
   857
by (simp add: le_iff_sup pprt_def sup_commute)
obua@14738
   858
obua@14738
   859
lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)"
haftmann@22422
   860
by (simp add: le_iff_sup pprt_def sup_commute)
obua@14738
   861
obua@14738
   862
lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)"
haftmann@22422
   863
by (simp add: le_iff_inf nprt_def inf_commute)
obua@14738
   864
obua@15580
   865
lemma pprt_mono[simp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> pprt a <= pprt b"
haftmann@22422
   866
  by (simp add: le_iff_sup pprt_def sup_aci)
obua@15580
   867
obua@15580
   868
lemma nprt_mono[simp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> nprt a <= nprt b"
haftmann@22422
   869
  by (simp add: le_iff_inf nprt_def inf_aci)
obua@15580
   870
obua@19404
   871
lemma pprt_neg: "pprt (-x) = - nprt x"
obua@19404
   872
  by (simp add: pprt_def nprt_def)
obua@19404
   873
obua@19404
   874
lemma nprt_neg: "nprt (-x) = - pprt x"
obua@19404
   875
  by (simp add: pprt_def nprt_def)
obua@19404
   876
obua@14738
   877
lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)"
obua@14738
   878
by (simp)
obua@14738
   879
avigad@16775
   880
lemma abs_of_nonneg [simp]: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)"
obua@14738
   881
by (simp add: iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_pprt_id] abs_prts)
obua@14738
   882
avigad@16775
   883
lemma abs_of_pos: "0 < (x::'a::lordered_ab_group_abs) ==> abs x = x";
avigad@16775
   884
by (rule abs_of_nonneg, rule order_less_imp_le);
avigad@16775
   885
avigad@16775
   886
lemma abs_of_nonpos [simp]: "a \<le> 0 \<Longrightarrow> abs a = -(a::'a::lordered_ab_group_abs)"
obua@14738
   887
by (simp add: iff2imp[OF le_zero_iff_zero_pprt] iff2imp[OF zero_le_iff_nprt_id] abs_prts)
obua@14738
   888
avigad@16775
   889
lemma abs_of_neg: "(x::'a::lordered_ab_group_abs) <  0 ==> 
avigad@16775
   890
  abs x = - x"
avigad@16775
   891
by (rule abs_of_nonpos, rule order_less_imp_le)
avigad@16775
   892
obua@14738
   893
lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::lordered_ab_group_abs)"
haftmann@22422
   894
by (simp add: abs_lattice le_supI)
obua@14738
   895
obua@14738
   896
lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::lordered_ab_group))"
obua@14738
   897
proof -
obua@14738
   898
  from add_le_cancel_left[of "-a" "a+a" "0"] have "(a <= -a) = (a+a <= 0)" 
obua@14738
   899
    by (simp add: add_assoc[symmetric])
obua@14738
   900
  thus ?thesis by simp
obua@14738
   901
qed
obua@14738
   902
obua@14738
   903
lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::lordered_ab_group))"
obua@14738
   904
proof -
obua@14738
   905
  from add_le_cancel_left[of "-a" "0" "a+a"] have "(-a <= a) = (0 <= a+a)" 
obua@14738
   906
    by (simp add: add_assoc[symmetric])
obua@14738
   907
  thus ?thesis by simp
obua@14738
   908
qed
obua@14738
   909
obua@14738
   910
lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::lordered_ab_group_abs)"
obua@14738
   911
by (insert abs_ge_self, blast intro: order_trans)
obua@14738
   912
obua@14738
   913
lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::lordered_ab_group_abs)"
obua@14738
   914
by (insert abs_le_D1 [of "-a"], simp)
obua@14738
   915
obua@14738
   916
lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::lordered_ab_group_abs))"
obua@14738
   917
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
obua@14738
   918
nipkow@15539
   919
lemma abs_triangle_ineq: "abs(a+b) \<le> abs a + abs(b::'a::lordered_ab_group_abs)"
obua@14738
   920
proof -
haftmann@22422
   921
  have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
haftmann@22422
   922
    by (simp add: abs_lattice add_sup_inf_distribs sup_aci diff_minus)
haftmann@22422
   923
  have a:"a+b <= sup ?m ?n" by (simp)
nipkow@21312
   924
  have b:"-a-b <= ?n" by (simp) 
haftmann@22422
   925
  have c:"?n <= sup ?m ?n" by (simp)
haftmann@22422
   926
  from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
obua@14738
   927
  have e:"-a-b = -(a+b)" by (simp add: diff_minus)
haftmann@22422
   928
  from a d e have "abs(a+b) <= sup ?m ?n" 
obua@14738
   929
    by (drule_tac abs_leI, auto)
obua@14738
   930
  with g[symmetric] show ?thesis by simp
obua@14738
   931
qed
obua@14738
   932
avigad@16775
   933
lemma abs_triangle_ineq2: "abs (a::'a::lordered_ab_group_abs) - 
avigad@16775
   934
    abs b <= abs (a - b)"
avigad@16775
   935
  apply (simp add: compare_rls)
avigad@16775
   936
  apply (subgoal_tac "abs a = abs (a - b + b)")
avigad@16775
   937
  apply (erule ssubst)
avigad@16775
   938
  apply (rule abs_triangle_ineq)
avigad@16775
   939
  apply (rule arg_cong);back;
avigad@16775
   940
  apply (simp add: compare_rls)
avigad@16775
   941
done
avigad@16775
   942
avigad@16775
   943
lemma abs_triangle_ineq3: 
avigad@16775
   944
    "abs(abs (a::'a::lordered_ab_group_abs) - abs b) <= abs (a - b)"
avigad@16775
   945
  apply (subst abs_le_iff)
avigad@16775
   946
  apply auto
avigad@16775
   947
  apply (rule abs_triangle_ineq2)
avigad@16775
   948
  apply (subst abs_minus_commute)
avigad@16775
   949
  apply (rule abs_triangle_ineq2)
avigad@16775
   950
done
avigad@16775
   951
avigad@16775
   952
lemma abs_triangle_ineq4: "abs ((a::'a::lordered_ab_group_abs) - b) <= 
avigad@16775
   953
    abs a + abs b"
avigad@16775
   954
proof -;
avigad@16775
   955
  have "abs(a - b) = abs(a + - b)"
avigad@16775
   956
    by (subst diff_minus, rule refl)
avigad@16775
   957
  also have "... <= abs a + abs (- b)"
avigad@16775
   958
    by (rule abs_triangle_ineq)
avigad@16775
   959
  finally show ?thesis
avigad@16775
   960
    by simp
avigad@16775
   961
qed
avigad@16775
   962
obua@14738
   963
lemma abs_diff_triangle_ineq:
obua@14738
   964
     "\<bar>(a::'a::lordered_ab_group_abs) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>"
obua@14738
   965
proof -
obua@14738
   966
  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
obua@14738
   967
  also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
obua@14738
   968
  finally show ?thesis .
obua@14738
   969
qed
obua@14738
   970
nipkow@15539
   971
lemma abs_add_abs[simp]:
nipkow@15539
   972
fixes a:: "'a::{lordered_ab_group_abs}"
nipkow@15539
   973
shows "abs(abs a + abs b) = abs a + abs b" (is "?L = ?R")
nipkow@15539
   974
proof (rule order_antisym)
nipkow@15539
   975
  show "?L \<ge> ?R" by(rule abs_ge_self)
nipkow@15539
   976
next
nipkow@15539
   977
  have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
nipkow@15539
   978
  also have "\<dots> = ?R" by simp
nipkow@15539
   979
  finally show "?L \<le> ?R" .
nipkow@15539
   980
qed
nipkow@15539
   981
obua@14754
   982
text {* Needed for abelian cancellation simprocs: *}
obua@14754
   983
obua@14754
   984
lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
obua@14754
   985
apply (subst add_left_commute)
obua@14754
   986
apply (subst add_left_cancel)
obua@14754
   987
apply simp
obua@14754
   988
done
obua@14754
   989
obua@14754
   990
lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"
obua@14754
   991
apply (subst add_cancel_21[of _ _ _ 0, simplified])
obua@14754
   992
apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])
obua@14754
   993
done
obua@14754
   994
obua@14754
   995
lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"
obua@14754
   996
by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])
obua@14754
   997
obua@14754
   998
lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"
obua@14754
   999
apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of  y' x'])
obua@14754
  1000
apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])
obua@14754
  1001
done
obua@14754
  1002
obua@14754
  1003
lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"
obua@14754
  1004
by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])
obua@14754
  1005
obua@14754
  1006
lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"
obua@14754
  1007
by (simp add: diff_minus)
obua@14754
  1008
obua@14754
  1009
lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"
obua@14754
  1010
by (simp add: add_assoc[symmetric])
obua@14754
  1011
obua@14754
  1012
lemma minus_add_cancel: "-(a::'a::ab_group_add) + (a + b) = b"
obua@14754
  1013
by (simp add: add_assoc[symmetric])
obua@14754
  1014
obua@15178
  1015
lemma  le_add_right_mono: 
obua@15178
  1016
  assumes 
obua@15178
  1017
  "a <= b + (c::'a::pordered_ab_group_add)"
obua@15178
  1018
  "c <= d"    
obua@15178
  1019
  shows "a <= b + d"
obua@15178
  1020
  apply (rule_tac order_trans[where y = "b+c"])
obua@15178
  1021
  apply (simp_all add: prems)
obua@15178
  1022
  done
obua@15178
  1023
obua@15178
  1024
lemmas group_eq_simps =
obua@15178
  1025
  mult_ac
obua@15178
  1026
  add_ac
obua@15178
  1027
  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
obua@15178
  1028
  diff_eq_eq eq_diff_eq
obua@15178
  1029
obua@15178
  1030
lemma estimate_by_abs:
obua@15178
  1031
"a + b <= (c::'a::lordered_ab_group_abs) \<Longrightarrow> a <= c + abs b" 
obua@15178
  1032
proof -
obua@15178
  1033
  assume 1: "a+b <= c"
obua@15178
  1034
  have 2: "a <= c+(-b)"
obua@15178
  1035
    apply (insert 1)
obua@15178
  1036
    apply (drule_tac add_right_mono[where c="-b"])
obua@15178
  1037
    apply (simp add: group_eq_simps)
obua@15178
  1038
    done
obua@15178
  1039
  have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)
obua@15178
  1040
  show ?thesis by (rule le_add_right_mono[OF 2 3])
obua@15178
  1041
qed
obua@15178
  1042
haftmann@22482
  1043
haftmann@22482
  1044
subsection {* Tools setup *}
haftmann@22482
  1045
paulson@17085
  1046
text{*Simplification of @{term "x-y < 0"}, etc.*}
paulson@17085
  1047
lemmas diff_less_0_iff_less = less_iff_diff_less_0 [symmetric]
paulson@17085
  1048
lemmas diff_eq_0_iff_eq = eq_iff_diff_eq_0 [symmetric]
paulson@17085
  1049
lemmas diff_le_0_iff_le = le_iff_diff_le_0 [symmetric]
paulson@17085
  1050
declare diff_less_0_iff_less [simp]
paulson@17085
  1051
declare diff_eq_0_iff_eq [simp]
paulson@17085
  1052
declare diff_le_0_iff_le [simp]
paulson@17085
  1053
haftmann@22482
  1054
ML {*
haftmann@22482
  1055
structure ab_group_add_cancel = Abel_Cancel(
haftmann@22482
  1056
struct
haftmann@22482
  1057
haftmann@22482
  1058
(* term order for abelian groups *)
haftmann@22482
  1059
haftmann@22482
  1060
fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')
haftmann@22997
  1061
      [@{const_name HOL.zero}, @{const_name HOL.plus},
haftmann@22997
  1062
        @{const_name HOL.uminus}, @{const_name HOL.minus}]
haftmann@22482
  1063
  | agrp_ord _ = ~1;
haftmann@22482
  1064
haftmann@22482
  1065
fun termless_agrp (a, b) = (Term.term_lpo agrp_ord (a, b) = LESS);
haftmann@22482
  1066
haftmann@22482
  1067
local
haftmann@22482
  1068
  val ac1 = mk_meta_eq @{thm add_assoc};
haftmann@22482
  1069
  val ac2 = mk_meta_eq @{thm add_commute};
haftmann@22482
  1070
  val ac3 = mk_meta_eq @{thm add_left_commute};
haftmann@22997
  1071
  fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
haftmann@22482
  1072
        SOME ac1
haftmann@22997
  1073
    | solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
haftmann@22482
  1074
        if termless_agrp (y, x) then SOME ac3 else NONE
haftmann@22482
  1075
    | solve_add_ac thy _ (_ $ x $ y) =
haftmann@22482
  1076
        if termless_agrp (y, x) then SOME ac2 else NONE
haftmann@22482
  1077
    | solve_add_ac thy _ _ = NONE
haftmann@22482
  1078
in
haftmann@22482
  1079
  val add_ac_proc = Simplifier.simproc @{theory}
haftmann@22482
  1080
    "add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac;
haftmann@22482
  1081
end;
haftmann@22482
  1082
haftmann@22482
  1083
val cancel_ss = HOL_basic_ss settermless termless_agrp
haftmann@22482
  1084
  addsimprocs [add_ac_proc] addsimps
haftmann@22482
  1085
  [@{thm add_0}, @{thm add_0_right}, @{thm diff_def},
haftmann@22482
  1086
   @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
haftmann@22482
  1087
   @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
haftmann@22482
  1088
   @{thm minus_add_cancel}];
haftmann@22482
  1089
  
haftmann@22548
  1090
val eq_reflection = @{thm eq_reflection};
haftmann@22482
  1091
  
haftmann@22548
  1092
val thy_ref = Theory.self_ref @{theory};
haftmann@22482
  1093
haftmann@22548
  1094
val T = TFree("'a", ["OrderedGroup.ab_group_add"]);
haftmann@22482
  1095
haftmann@22548
  1096
val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
haftmann@22482
  1097
haftmann@22482
  1098
val dest_eqI = 
haftmann@22482
  1099
  fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of;
haftmann@22482
  1100
haftmann@22482
  1101
end);
haftmann@22482
  1102
*}
haftmann@22482
  1103
haftmann@22482
  1104
ML_setup {*
haftmann@22482
  1105
  Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv];
haftmann@22482
  1106
*}
paulson@17085
  1107
obua@14738
  1108
end