src/HOL/Tools/numeral_simprocs.ML
author huffman
Thu Oct 27 07:46:57 2011 +0200 (2011-10-27)
changeset 45270 d5b5c9259afd
parent 44984 6e6e958b2d40
child 45284 ae78a4ffa81d
permissions -rw-r--r--
fix bug in cancel_factor simprocs so they will work on goals like 'x * y < x * z' where the common term is already on the left
haftmann@31068
     1
(* Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
haftmann@31068
     2
   Copyright   2000  University of Cambridge
wenzelm@23164
     3
haftmann@36751
     4
Simprocs for the (integer) numerals.
wenzelm@23164
     5
*)
wenzelm@23164
     6
wenzelm@23164
     7
(*To quote from Provers/Arith/cancel_numeral_factor.ML:
wenzelm@23164
     8
wenzelm@23164
     9
Cancels common coefficients in balanced expressions:
wenzelm@23164
    10
wenzelm@23164
    11
     u*#m ~~ u'*#m'  ==  #n*u ~~ #n'*u'
wenzelm@23164
    12
wenzelm@23164
    13
where ~~ is an appropriate balancing operation (e.g. =, <=, <, div, /)
wenzelm@23164
    14
and d = gcd(m,m') and n=m/d and n'=m'/d.
wenzelm@23164
    15
*)
wenzelm@23164
    16
haftmann@31068
    17
signature NUMERAL_SIMPROCS =
haftmann@31068
    18
sig
haftmann@44945
    19
  val prep_simproc: theory -> string * string list * (theory -> simpset -> term -> thm option)
haftmann@44945
    20
    -> simproc
haftmann@44945
    21
  val trans_tac: thm option -> tactic
haftmann@31068
    22
  val assoc_fold_simproc: simproc
haftmann@31068
    23
  val combine_numerals: simproc
haftmann@31068
    24
  val cancel_numerals: simproc list
haftmann@31068
    25
  val cancel_factors: simproc list
haftmann@31068
    26
  val cancel_numeral_factors: simproc list
haftmann@31068
    27
  val field_combine_numerals: simproc
haftmann@31068
    28
  val field_cancel_numeral_factors: simproc list
haftmann@31068
    29
  val num_ss: simpset
haftmann@36751
    30
  val field_comp_conv: conv
haftmann@31068
    31
end;
haftmann@31068
    32
haftmann@31068
    33
structure Numeral_Simprocs : NUMERAL_SIMPROCS =
haftmann@31068
    34
struct
haftmann@31068
    35
haftmann@44945
    36
fun prep_simproc thy (name, pats, proc) =
haftmann@44945
    37
  Simplifier.simproc_global thy name pats proc;
haftmann@44945
    38
haftmann@44945
    39
fun trans_tac NONE  = all_tac
haftmann@44945
    40
  | trans_tac (SOME th) = ALLGOALS (rtac (th RS trans));
haftmann@44945
    41
haftmann@33359
    42
val mk_number = Arith_Data.mk_number;
haftmann@33359
    43
val mk_sum = Arith_Data.mk_sum;
haftmann@33359
    44
val long_mk_sum = Arith_Data.long_mk_sum;
haftmann@33359
    45
val dest_sum = Arith_Data.dest_sum;
haftmann@31068
    46
haftmann@35267
    47
val mk_diff = HOLogic.mk_binop @{const_name Groups.minus};
haftmann@35267
    48
val dest_diff = HOLogic.dest_bin @{const_name Groups.minus} Term.dummyT;
haftmann@31068
    49
haftmann@35267
    50
val mk_times = HOLogic.mk_binop @{const_name Groups.times};
haftmann@31068
    51
haftmann@35267
    52
fun one_of T = Const(@{const_name Groups.one}, T);
haftmann@31068
    53
haftmann@31068
    54
(* build product with trailing 1 rather than Numeral 1 in order to avoid the
haftmann@31068
    55
   unnecessary restriction to type class number_ring
haftmann@31068
    56
   which is not required for cancellation of common factors in divisions.
haftmann@31068
    57
*)
haftmann@31068
    58
fun mk_prod T = 
haftmann@31068
    59
  let val one = one_of T
haftmann@31068
    60
  fun mk [] = one
haftmann@31068
    61
    | mk [t] = t
haftmann@31068
    62
    | mk (t :: ts) = if t = one then mk ts else mk_times (t, mk ts)
haftmann@31068
    63
  in mk end;
haftmann@31068
    64
haftmann@31068
    65
(*This version ALWAYS includes a trailing one*)
haftmann@31068
    66
fun long_mk_prod T []        = one_of T
haftmann@31068
    67
  | long_mk_prod T (t :: ts) = mk_times (t, mk_prod T ts);
haftmann@31068
    68
haftmann@35267
    69
val dest_times = HOLogic.dest_bin @{const_name Groups.times} Term.dummyT;
haftmann@31068
    70
haftmann@31068
    71
fun dest_prod t =
haftmann@31068
    72
      let val (t,u) = dest_times t
haftmann@31068
    73
      in dest_prod t @ dest_prod u end
haftmann@31068
    74
      handle TERM _ => [t];
haftmann@31068
    75
haftmann@33359
    76
fun find_first_numeral past (t::terms) =
haftmann@33359
    77
        ((snd (HOLogic.dest_number t), rev past @ terms)
haftmann@33359
    78
         handle TERM _ => find_first_numeral (t::past) terms)
haftmann@33359
    79
  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
haftmann@33359
    80
haftmann@31068
    81
(*DON'T do the obvious simplifications; that would create special cases*)
haftmann@31068
    82
fun mk_coeff (k, t) = mk_times (mk_number (Term.fastype_of t) k, t);
haftmann@31068
    83
haftmann@31068
    84
(*Express t as a product of (possibly) a numeral with other sorted terms*)
haftmann@35267
    85
fun dest_coeff sign (Const (@{const_name Groups.uminus}, _) $ t) = dest_coeff (~sign) t
haftmann@31068
    86
  | dest_coeff sign t =
wenzelm@35408
    87
    let val ts = sort Term_Ord.term_ord (dest_prod t)
haftmann@31068
    88
        val (n, ts') = find_first_numeral [] ts
haftmann@31068
    89
                          handle TERM _ => (1, ts)
haftmann@31068
    90
    in (sign*n, mk_prod (Term.fastype_of t) ts') end;
haftmann@31068
    91
haftmann@31068
    92
(*Find first coefficient-term THAT MATCHES u*)
haftmann@31068
    93
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
haftmann@31068
    94
  | find_first_coeff past u (t::terms) =
haftmann@31068
    95
        let val (n,u') = dest_coeff 1 t
haftmann@31068
    96
        in if u aconv u' then (n, rev past @ terms)
haftmann@31068
    97
                         else find_first_coeff (t::past) u terms
haftmann@31068
    98
        end
haftmann@31068
    99
        handle TERM _ => find_first_coeff (t::past) u terms;
haftmann@31068
   100
haftmann@31068
   101
(*Fractions as pairs of ints. Can't use Rat.rat because the representation
haftmann@31068
   102
  needs to preserve negative values in the denominator.*)
haftmann@31068
   103
fun mk_frac (p, q) = if q = 0 then raise Div else (p, q);
haftmann@31068
   104
haftmann@31068
   105
(*Don't reduce fractions; sums must be proved by rule add_frac_eq.
haftmann@31068
   106
  Fractions are reduced later by the cancel_numeral_factor simproc.*)
haftmann@31068
   107
fun add_frac ((p1, q1), (p2, q2)) = (p1 * q2 + p2 * q1, q1 * q2);
haftmann@31068
   108
huffman@44064
   109
val mk_divide = HOLogic.mk_binop @{const_name Fields.divide};
haftmann@31068
   110
haftmann@31068
   111
(*Build term (p / q) * t*)
haftmann@31068
   112
fun mk_fcoeff ((p, q), t) =
haftmann@31068
   113
  let val T = Term.fastype_of t
haftmann@31068
   114
  in mk_times (mk_divide (mk_number T p, mk_number T q), t) end;
haftmann@31068
   115
haftmann@31068
   116
(*Express t as a product of a fraction with other sorted terms*)
haftmann@35267
   117
fun dest_fcoeff sign (Const (@{const_name Groups.uminus}, _) $ t) = dest_fcoeff (~sign) t
huffman@44064
   118
  | dest_fcoeff sign (Const (@{const_name Fields.divide}, _) $ t $ u) =
haftmann@31068
   119
    let val (p, t') = dest_coeff sign t
haftmann@31068
   120
        val (q, u') = dest_coeff 1 u
haftmann@31068
   121
    in (mk_frac (p, q), mk_divide (t', u')) end
haftmann@31068
   122
  | dest_fcoeff sign t =
haftmann@31068
   123
    let val (p, t') = dest_coeff sign t
haftmann@31068
   124
        val T = Term.fastype_of t
haftmann@31068
   125
    in (mk_frac (p, 1), mk_divide (t', one_of T)) end;
haftmann@31068
   126
haftmann@31068
   127
haftmann@31068
   128
(** New term ordering so that AC-rewriting brings numerals to the front **)
haftmann@31068
   129
haftmann@31068
   130
(*Order integers by absolute value and then by sign. The standard integer
haftmann@31068
   131
  ordering is not well-founded.*)
haftmann@31068
   132
fun num_ord (i,j) =
haftmann@31068
   133
  (case int_ord (abs i, abs j) of
haftmann@31068
   134
    EQUAL => int_ord (Int.sign i, Int.sign j) 
haftmann@31068
   135
  | ord => ord);
haftmann@31068
   136
wenzelm@35408
   137
(*This resembles Term_Ord.term_ord, but it puts binary numerals before other
haftmann@31068
   138
  non-atomic terms.*)
haftmann@31068
   139
local open Term 
haftmann@31068
   140
in 
haftmann@31068
   141
fun numterm_ord (Abs (_, T, t), Abs(_, U, u)) =
wenzelm@35408
   142
      (case numterm_ord (t, u) of EQUAL => Term_Ord.typ_ord (T, U) | ord => ord)
haftmann@31068
   143
  | numterm_ord
haftmann@31068
   144
     (Const(@{const_name Int.number_of}, _) $ v, Const(@{const_name Int.number_of}, _) $ w) =
haftmann@31068
   145
     num_ord (HOLogic.dest_numeral v, HOLogic.dest_numeral w)
haftmann@31068
   146
  | numterm_ord (Const(@{const_name Int.number_of}, _) $ _, _) = LESS
haftmann@31068
   147
  | numterm_ord (_, Const(@{const_name Int.number_of}, _) $ _) = GREATER
haftmann@31068
   148
  | numterm_ord (t, u) =
haftmann@31068
   149
      (case int_ord (size_of_term t, size_of_term u) of
haftmann@31068
   150
        EQUAL =>
haftmann@31068
   151
          let val (f, ts) = strip_comb t and (g, us) = strip_comb u in
wenzelm@35408
   152
            (case Term_Ord.hd_ord (f, g) of EQUAL => numterms_ord (ts, us) | ord => ord)
haftmann@31068
   153
          end
haftmann@31068
   154
      | ord => ord)
haftmann@31068
   155
and numterms_ord (ts, us) = list_ord numterm_ord (ts, us)
haftmann@31068
   156
end;
haftmann@31068
   157
haftmann@31068
   158
fun numtermless tu = (numterm_ord tu = LESS);
haftmann@31068
   159
haftmann@31068
   160
val num_ss = HOL_ss settermless numtermless;
haftmann@31068
   161
haftmann@31068
   162
(*Maps 0 to Numeral0 and 1 to Numeral1 so that arithmetic isn't complicated by the abstract 0 and 1.*)
haftmann@31068
   163
val numeral_syms = [@{thm numeral_0_eq_0} RS sym, @{thm numeral_1_eq_1} RS sym];
haftmann@31068
   164
haftmann@31068
   165
(*Simplify Numeral0+n, n+Numeral0, Numeral1*n, n*Numeral1, 1*x, x*1, x/1 *)
haftmann@31068
   166
val add_0s =  @{thms add_0s};
haftmann@31068
   167
val mult_1s = @{thms mult_1s mult_1_left mult_1_right divide_1};
haftmann@31068
   168
haftmann@31068
   169
(*Simplify inverse Numeral1, a/Numeral1*)
haftmann@31068
   170
val inverse_1s = [@{thm inverse_numeral_1}];
haftmann@31068
   171
val divide_1s = [@{thm divide_numeral_1}];
haftmann@31068
   172
haftmann@31068
   173
(*To perform binary arithmetic.  The "left" rewriting handles patterns
haftmann@31068
   174
  created by the Numeral_Simprocs, such as 3 * (5 * x). *)
haftmann@31068
   175
val simps = [@{thm numeral_0_eq_0} RS sym, @{thm numeral_1_eq_1} RS sym,
haftmann@31068
   176
                 @{thm add_number_of_left}, @{thm mult_number_of_left}] @
haftmann@31068
   177
                @{thms arith_simps} @ @{thms rel_simps};
haftmann@31068
   178
haftmann@31068
   179
(*Binary arithmetic BUT NOT ADDITION since it may collapse adjacent terms
haftmann@31068
   180
  during re-arrangement*)
haftmann@31068
   181
val non_add_simps =
haftmann@31068
   182
  subtract Thm.eq_thm [@{thm add_number_of_left}, @{thm number_of_add} RS sym] simps;
wenzelm@23164
   183
haftmann@31068
   184
(*To evaluate binary negations of coefficients*)
haftmann@31068
   185
val minus_simps = [@{thm numeral_m1_eq_minus_1} RS sym, @{thm number_of_minus} RS sym] @
haftmann@31068
   186
                   @{thms minus_bin_simps} @ @{thms pred_bin_simps};
haftmann@31068
   187
haftmann@31068
   188
(*To let us treat subtraction as addition*)
haftmann@31068
   189
val diff_simps = [@{thm diff_minus}, @{thm minus_add_distrib}, @{thm minus_minus}];
haftmann@31068
   190
haftmann@31068
   191
(*To let us treat division as multiplication*)
haftmann@31068
   192
val divide_simps = [@{thm divide_inverse}, @{thm inverse_mult_distrib}, @{thm inverse_inverse_eq}];
haftmann@31068
   193
wenzelm@35020
   194
(*push the unary minus down*)
wenzelm@35020
   195
val minus_mult_eq_1_to_2 = @{lemma "- (a::'a::ring) * b = a * - b" by simp};
haftmann@31068
   196
haftmann@31068
   197
(*to extract again any uncancelled minuses*)
haftmann@31068
   198
val minus_from_mult_simps =
haftmann@31068
   199
    [@{thm minus_minus}, @{thm mult_minus_left}, @{thm mult_minus_right}];
haftmann@31068
   200
haftmann@31068
   201
(*combine unary minus with numeric literals, however nested within a product*)
haftmann@31068
   202
val mult_minus_simps =
haftmann@31068
   203
    [@{thm mult_assoc}, @{thm minus_mult_left}, minus_mult_eq_1_to_2];
haftmann@31068
   204
haftmann@31068
   205
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @
haftmann@31068
   206
  diff_simps @ minus_simps @ @{thms add_ac}
haftmann@31068
   207
val norm_ss2 = num_ss addsimps non_add_simps @ mult_minus_simps
haftmann@31068
   208
val norm_ss3 = num_ss addsimps minus_from_mult_simps @ @{thms add_ac} @ @{thms mult_ac}
haftmann@31068
   209
haftmann@31068
   210
structure CancelNumeralsCommon =
haftmann@44945
   211
struct
haftmann@44945
   212
  val mk_sum = mk_sum
haftmann@44945
   213
  val dest_sum = dest_sum
haftmann@44945
   214
  val mk_coeff = mk_coeff
haftmann@44945
   215
  val dest_coeff = dest_coeff 1
haftmann@44945
   216
  val find_first_coeff = find_first_coeff []
haftmann@44947
   217
  val trans_tac = trans_tac
haftmann@31068
   218
haftmann@31068
   219
  fun norm_tac ss =
haftmann@31068
   220
    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
haftmann@31068
   221
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
haftmann@31068
   222
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
haftmann@31068
   223
haftmann@31068
   224
  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps
haftmann@31068
   225
  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
haftmann@31068
   226
  val simplify_meta_eq = Arith_Data.simplify_meta_eq (add_0s @ mult_1s)
haftmann@44945
   227
  val prove_conv = Arith_Data.prove_conv
haftmann@44945
   228
end;
haftmann@31068
   229
haftmann@31068
   230
structure EqCancelNumerals = CancelNumeralsFun
haftmann@31068
   231
 (open CancelNumeralsCommon
haftmann@31068
   232
  val mk_bal   = HOLogic.mk_eq
haftmann@38864
   233
  val dest_bal = HOLogic.dest_bin @{const_name HOL.eq} Term.dummyT
haftmann@31068
   234
  val bal_add1 = @{thm eq_add_iff1} RS trans
haftmann@31068
   235
  val bal_add2 = @{thm eq_add_iff2} RS trans
haftmann@31068
   236
);
haftmann@31068
   237
haftmann@31068
   238
structure LessCancelNumerals = CancelNumeralsFun
haftmann@31068
   239
 (open CancelNumeralsCommon
haftmann@35092
   240
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less}
haftmann@35092
   241
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} Term.dummyT
haftmann@31068
   242
  val bal_add1 = @{thm less_add_iff1} RS trans
haftmann@31068
   243
  val bal_add2 = @{thm less_add_iff2} RS trans
haftmann@31068
   244
);
haftmann@31068
   245
haftmann@31068
   246
structure LeCancelNumerals = CancelNumeralsFun
haftmann@31068
   247
 (open CancelNumeralsCommon
haftmann@35092
   248
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less_eq}
haftmann@35092
   249
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} Term.dummyT
haftmann@31068
   250
  val bal_add1 = @{thm le_add_iff1} RS trans
haftmann@31068
   251
  val bal_add2 = @{thm le_add_iff2} RS trans
haftmann@31068
   252
);
haftmann@31068
   253
haftmann@31068
   254
val cancel_numerals =
haftmann@44945
   255
  map (prep_simproc @{theory})
haftmann@31068
   256
   [("inteq_cancel_numerals",
haftmann@31068
   257
     ["(l::'a::number_ring) + m = n",
haftmann@31068
   258
      "(l::'a::number_ring) = m + n",
haftmann@31068
   259
      "(l::'a::number_ring) - m = n",
haftmann@31068
   260
      "(l::'a::number_ring) = m - n",
haftmann@31068
   261
      "(l::'a::number_ring) * m = n",
haftmann@31068
   262
      "(l::'a::number_ring) = m * n"],
haftmann@31068
   263
     K EqCancelNumerals.proc),
haftmann@31068
   264
    ("intless_cancel_numerals",
haftmann@35028
   265
     ["(l::'a::{linordered_idom,number_ring}) + m < n",
haftmann@35028
   266
      "(l::'a::{linordered_idom,number_ring}) < m + n",
haftmann@35028
   267
      "(l::'a::{linordered_idom,number_ring}) - m < n",
haftmann@35028
   268
      "(l::'a::{linordered_idom,number_ring}) < m - n",
haftmann@35028
   269
      "(l::'a::{linordered_idom,number_ring}) * m < n",
haftmann@35028
   270
      "(l::'a::{linordered_idom,number_ring}) < m * n"],
haftmann@31068
   271
     K LessCancelNumerals.proc),
haftmann@31068
   272
    ("intle_cancel_numerals",
haftmann@35028
   273
     ["(l::'a::{linordered_idom,number_ring}) + m <= n",
haftmann@35028
   274
      "(l::'a::{linordered_idom,number_ring}) <= m + n",
haftmann@35028
   275
      "(l::'a::{linordered_idom,number_ring}) - m <= n",
haftmann@35028
   276
      "(l::'a::{linordered_idom,number_ring}) <= m - n",
haftmann@35028
   277
      "(l::'a::{linordered_idom,number_ring}) * m <= n",
haftmann@35028
   278
      "(l::'a::{linordered_idom,number_ring}) <= m * n"],
haftmann@31068
   279
     K LeCancelNumerals.proc)];
haftmann@31068
   280
haftmann@31068
   281
structure CombineNumeralsData =
haftmann@44945
   282
struct
haftmann@44945
   283
  type coeff = int
haftmann@44945
   284
  val iszero = (fn x => x = 0)
haftmann@44945
   285
  val add  = op +
haftmann@44945
   286
  val mk_sum = long_mk_sum    (*to work for e.g. 2*x + 3*x *)
haftmann@44945
   287
  val dest_sum = dest_sum
haftmann@44945
   288
  val mk_coeff = mk_coeff
haftmann@44945
   289
  val dest_coeff = dest_coeff 1
haftmann@44945
   290
  val left_distrib = @{thm combine_common_factor} RS trans
haftmann@44945
   291
  val prove_conv = Arith_Data.prove_conv_nohyps
haftmann@44947
   292
  val trans_tac = trans_tac
haftmann@31068
   293
haftmann@31068
   294
  fun norm_tac ss =
haftmann@31068
   295
    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
haftmann@31068
   296
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
haftmann@31068
   297
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
haftmann@31068
   298
haftmann@31068
   299
  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps
haftmann@31068
   300
  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
haftmann@31068
   301
  val simplify_meta_eq = Arith_Data.simplify_meta_eq (add_0s @ mult_1s)
haftmann@44945
   302
end;
haftmann@31068
   303
haftmann@31068
   304
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
haftmann@31068
   305
haftmann@31068
   306
(*Version for fields, where coefficients can be fractions*)
haftmann@31068
   307
structure FieldCombineNumeralsData =
haftmann@44945
   308
struct
haftmann@44945
   309
  type coeff = int * int
haftmann@44945
   310
  val iszero = (fn (p, q) => p = 0)
haftmann@44945
   311
  val add = add_frac
haftmann@44945
   312
  val mk_sum = long_mk_sum
haftmann@44945
   313
  val dest_sum = dest_sum
haftmann@44945
   314
  val mk_coeff = mk_fcoeff
haftmann@44945
   315
  val dest_coeff = dest_fcoeff 1
haftmann@44945
   316
  val left_distrib = @{thm combine_common_factor} RS trans
haftmann@44945
   317
  val prove_conv = Arith_Data.prove_conv_nohyps
haftmann@44947
   318
  val trans_tac = trans_tac
haftmann@31068
   319
haftmann@31068
   320
  val norm_ss1a = norm_ss1 addsimps inverse_1s @ divide_simps
haftmann@31068
   321
  fun norm_tac ss =
haftmann@31068
   322
    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1a))
haftmann@31068
   323
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
haftmann@31068
   324
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
haftmann@31068
   325
haftmann@31068
   326
  val numeral_simp_ss = HOL_ss addsimps add_0s @ simps @ [@{thm add_frac_eq}]
haftmann@31068
   327
  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
haftmann@31068
   328
  val simplify_meta_eq = Arith_Data.simplify_meta_eq (add_0s @ mult_1s @ divide_1s)
haftmann@44945
   329
end;
haftmann@31068
   330
haftmann@31068
   331
structure FieldCombineNumerals = CombineNumeralsFun(FieldCombineNumeralsData);
haftmann@31068
   332
haftmann@31068
   333
val combine_numerals =
haftmann@44945
   334
  prep_simproc @{theory}
haftmann@31068
   335
    ("int_combine_numerals", 
haftmann@31068
   336
     ["(i::'a::number_ring) + j", "(i::'a::number_ring) - j"], 
haftmann@31068
   337
     K CombineNumerals.proc);
haftmann@31068
   338
haftmann@31068
   339
val field_combine_numerals =
haftmann@44945
   340
  prep_simproc @{theory}
haftmann@31068
   341
    ("field_combine_numerals", 
haftmann@36409
   342
     ["(i::'a::{field_inverse_zero, number_ring}) + j",
haftmann@36409
   343
      "(i::'a::{field_inverse_zero, number_ring}) - j"], 
haftmann@31068
   344
     K FieldCombineNumerals.proc);
haftmann@31068
   345
haftmann@31068
   346
(** Constant folding for multiplication in semirings **)
haftmann@31068
   347
haftmann@31068
   348
(*We do not need folding for addition: combine_numerals does the same thing*)
haftmann@31068
   349
haftmann@31068
   350
structure Semiring_Times_Assoc_Data : ASSOC_FOLD_DATA =
haftmann@31068
   351
struct
haftmann@31068
   352
  val assoc_ss = HOL_ss addsimps @{thms mult_ac}
haftmann@31068
   353
  val eq_reflection = eq_reflection
boehmes@35983
   354
  val is_numeral = can HOLogic.dest_number
haftmann@31068
   355
end;
haftmann@31068
   356
haftmann@31068
   357
structure Semiring_Times_Assoc = Assoc_Fold (Semiring_Times_Assoc_Data);
haftmann@31068
   358
haftmann@31068
   359
val assoc_fold_simproc =
haftmann@44945
   360
  prep_simproc @{theory}
haftmann@31068
   361
   ("semiring_assoc_fold", ["(a::'a::comm_semiring_1_cancel) * b"],
haftmann@31068
   362
    K Semiring_Times_Assoc.proc);
wenzelm@23164
   363
wenzelm@23164
   364
structure CancelNumeralFactorCommon =
haftmann@44945
   365
struct
haftmann@44945
   366
  val mk_coeff = mk_coeff
haftmann@44945
   367
  val dest_coeff = dest_coeff 1
haftmann@44947
   368
  val trans_tac = trans_tac
wenzelm@23164
   369
huffman@44983
   370
  val norm_ss1 = HOL_basic_ss addsimps minus_from_mult_simps @ mult_1s
huffman@44983
   371
  val norm_ss2 = HOL_basic_ss addsimps simps @ mult_minus_simps
huffman@44983
   372
  val norm_ss3 = HOL_basic_ss addsimps @{thms mult_ac}
wenzelm@23164
   373
  fun norm_tac ss =
wenzelm@23164
   374
    ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
wenzelm@23164
   375
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
wenzelm@23164
   376
    THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
wenzelm@23164
   377
haftmann@31068
   378
  val numeral_simp_ss = HOL_ss addsimps
haftmann@31068
   379
    [@{thm eq_number_of_eq}, @{thm less_number_of}, @{thm le_number_of}] @ simps
wenzelm@23164
   380
  fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
haftmann@30518
   381
  val simplify_meta_eq = Arith_Data.simplify_meta_eq
haftmann@35064
   382
    [@{thm Nat.add_0}, @{thm Nat.add_0_right}, @{thm mult_zero_left},
huffman@26086
   383
      @{thm mult_zero_right}, @{thm mult_Bit1}, @{thm mult_1_right}];
haftmann@44945
   384
  val prove_conv = Arith_Data.prove_conv
haftmann@44945
   385
end
wenzelm@23164
   386
haftmann@30931
   387
(*Version for semiring_div*)
haftmann@30931
   388
structure DivCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   389
 (open CancelNumeralFactorCommon
wenzelm@23164
   390
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
haftmann@30931
   391
  val dest_bal = HOLogic.dest_bin @{const_name Divides.div} Term.dummyT
haftmann@30931
   392
  val cancel = @{thm div_mult_mult1} RS trans
wenzelm@23164
   393
  val neg_exchanges = false
wenzelm@23164
   394
)
wenzelm@23164
   395
wenzelm@23164
   396
(*Version for fields*)
wenzelm@23164
   397
structure DivideCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   398
 (open CancelNumeralFactorCommon
huffman@44064
   399
  val mk_bal   = HOLogic.mk_binop @{const_name Fields.divide}
huffman@44064
   400
  val dest_bal = HOLogic.dest_bin @{const_name Fields.divide} Term.dummyT
nipkow@23413
   401
  val cancel = @{thm mult_divide_mult_cancel_left} RS trans
wenzelm@23164
   402
  val neg_exchanges = false
wenzelm@23164
   403
)
wenzelm@23164
   404
wenzelm@23164
   405
structure EqCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   406
 (open CancelNumeralFactorCommon
wenzelm@23164
   407
  val mk_bal   = HOLogic.mk_eq
haftmann@38864
   408
  val dest_bal = HOLogic.dest_bin @{const_name HOL.eq} Term.dummyT
wenzelm@23164
   409
  val cancel = @{thm mult_cancel_left} RS trans
wenzelm@23164
   410
  val neg_exchanges = false
wenzelm@23164
   411
)
wenzelm@23164
   412
wenzelm@23164
   413
structure LessCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   414
 (open CancelNumeralFactorCommon
haftmann@35092
   415
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less}
haftmann@35092
   416
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} Term.dummyT
wenzelm@23164
   417
  val cancel = @{thm mult_less_cancel_left} RS trans
wenzelm@23164
   418
  val neg_exchanges = true
wenzelm@23164
   419
)
wenzelm@23164
   420
wenzelm@23164
   421
structure LeCancelNumeralFactor = CancelNumeralFactorFun
wenzelm@23164
   422
 (open CancelNumeralFactorCommon
haftmann@35092
   423
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less_eq}
haftmann@35092
   424
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} Term.dummyT
wenzelm@23164
   425
  val cancel = @{thm mult_le_cancel_left} RS trans
wenzelm@23164
   426
  val neg_exchanges = true
wenzelm@23164
   427
)
wenzelm@23164
   428
wenzelm@23164
   429
val cancel_numeral_factors =
haftmann@44945
   430
  map (prep_simproc @{theory})
wenzelm@23164
   431
   [("ring_eq_cancel_numeral_factor",
wenzelm@23164
   432
     ["(l::'a::{idom,number_ring}) * m = n",
wenzelm@23164
   433
      "(l::'a::{idom,number_ring}) = m * n"],
wenzelm@23164
   434
     K EqCancelNumeralFactor.proc),
wenzelm@23164
   435
    ("ring_less_cancel_numeral_factor",
haftmann@35028
   436
     ["(l::'a::{linordered_idom,number_ring}) * m < n",
haftmann@35028
   437
      "(l::'a::{linordered_idom,number_ring}) < m * n"],
wenzelm@23164
   438
     K LessCancelNumeralFactor.proc),
wenzelm@23164
   439
    ("ring_le_cancel_numeral_factor",
haftmann@35028
   440
     ["(l::'a::{linordered_idom,number_ring}) * m <= n",
haftmann@35028
   441
      "(l::'a::{linordered_idom,number_ring}) <= m * n"],
wenzelm@23164
   442
     K LeCancelNumeralFactor.proc),
wenzelm@23164
   443
    ("int_div_cancel_numeral_factors",
haftmann@30931
   444
     ["((l::'a::{semiring_div,number_ring}) * m) div n",
haftmann@30931
   445
      "(l::'a::{semiring_div,number_ring}) div (m * n)"],
haftmann@30931
   446
     K DivCancelNumeralFactor.proc),
wenzelm@23164
   447
    ("divide_cancel_numeral_factor",
haftmann@36409
   448
     ["((l::'a::{field_inverse_zero,number_ring}) * m) / n",
haftmann@36409
   449
      "(l::'a::{field_inverse_zero,number_ring}) / (m * n)",
haftmann@36409
   450
      "((number_of v)::'a::{field_inverse_zero,number_ring}) / (number_of w)"],
wenzelm@23164
   451
     K DivideCancelNumeralFactor.proc)];
wenzelm@23164
   452
wenzelm@23164
   453
val field_cancel_numeral_factors =
haftmann@44945
   454
  map (prep_simproc @{theory})
wenzelm@23164
   455
   [("field_eq_cancel_numeral_factor",
wenzelm@23164
   456
     ["(l::'a::{field,number_ring}) * m = n",
wenzelm@23164
   457
      "(l::'a::{field,number_ring}) = m * n"],
wenzelm@23164
   458
     K EqCancelNumeralFactor.proc),
wenzelm@23164
   459
    ("field_cancel_numeral_factor",
haftmann@36409
   460
     ["((l::'a::{field_inverse_zero,number_ring}) * m) / n",
haftmann@36409
   461
      "(l::'a::{field_inverse_zero,number_ring}) / (m * n)",
haftmann@36409
   462
      "((number_of v)::'a::{field_inverse_zero,number_ring}) / (number_of w)"],
wenzelm@23164
   463
     K DivideCancelNumeralFactor.proc)]
wenzelm@23164
   464
wenzelm@23164
   465
wenzelm@23164
   466
(** Declarations for ExtractCommonTerm **)
wenzelm@23164
   467
wenzelm@23164
   468
(*Find first term that matches u*)
wenzelm@23164
   469
fun find_first_t past u []         = raise TERM ("find_first_t", [])
wenzelm@23164
   470
  | find_first_t past u (t::terms) =
wenzelm@23164
   471
        if u aconv t then (rev past @ terms)
wenzelm@23164
   472
        else find_first_t (t::past) u terms
wenzelm@23164
   473
        handle TERM _ => find_first_t (t::past) u terms;
wenzelm@23164
   474
wenzelm@23164
   475
(** Final simplification for the CancelFactor simprocs **)
haftmann@30518
   476
val simplify_one = Arith_Data.simplify_meta_eq  
nipkow@30031
   477
  [@{thm mult_1_left}, @{thm mult_1_right}, @{thm div_by_1}, @{thm numeral_1_eq_1}];
wenzelm@23164
   478
nipkow@30649
   479
fun cancel_simplify_meta_eq ss cancel_th th =
wenzelm@23164
   480
    simplify_one ss (([th, cancel_th]) MRS trans);
wenzelm@23164
   481
nipkow@30649
   482
local
haftmann@31067
   483
  val Tp_Eq = Thm.reflexive (Thm.cterm_of @{theory HOL} HOLogic.Trueprop)
nipkow@30649
   484
  fun Eq_True_elim Eq = 
nipkow@30649
   485
    Thm.equal_elim (Thm.combination Tp_Eq (Thm.symmetric Eq)) @{thm TrueI}
nipkow@30649
   486
in
nipkow@30649
   487
fun sign_conv pos_th neg_th ss t =
nipkow@30649
   488
  let val T = fastype_of t;
haftmann@35267
   489
      val zero = Const(@{const_name Groups.zero}, T);
haftmann@35092
   490
      val less = Const(@{const_name Orderings.less}, [T,T] ---> HOLogic.boolT);
nipkow@30649
   491
      val pos = less $ zero $ t and neg = less $ t $ zero
nipkow@30649
   492
      fun prove p =
haftmann@31101
   493
        Option.map Eq_True_elim (Lin_Arith.simproc ss p)
nipkow@30649
   494
        handle THM _ => NONE
nipkow@30649
   495
    in case prove pos of
nipkow@30649
   496
         SOME th => SOME(th RS pos_th)
nipkow@30649
   497
       | NONE => (case prove neg of
nipkow@30649
   498
                    SOME th => SOME(th RS neg_th)
nipkow@30649
   499
                  | NONE => NONE)
nipkow@30649
   500
    end;
nipkow@30649
   501
end
nipkow@30649
   502
wenzelm@23164
   503
structure CancelFactorCommon =
haftmann@44945
   504
struct
haftmann@44945
   505
  val mk_sum = long_mk_prod
haftmann@44945
   506
  val dest_sum = dest_prod
haftmann@44945
   507
  val mk_coeff = mk_coeff
haftmann@44945
   508
  val dest_coeff = dest_coeff
haftmann@44945
   509
  val find_first = find_first_t []
haftmann@44947
   510
  val trans_tac = trans_tac
haftmann@23881
   511
  val norm_ss = HOL_ss addsimps mult_1s @ @{thms mult_ac}
wenzelm@23164
   512
  fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss))
nipkow@30649
   513
  val simplify_meta_eq  = cancel_simplify_meta_eq 
haftmann@44945
   514
  val prove_conv = Arith_Data.prove_conv
huffman@45270
   515
  fun mk_eq (a, b) = HOLogic.mk_Trueprop (HOLogic.mk_eq (a, b))
haftmann@44945
   516
end;
wenzelm@23164
   517
wenzelm@23164
   518
(*mult_cancel_left requires a ring with no zero divisors.*)
wenzelm@23164
   519
structure EqCancelFactor = ExtractCommonTermFun
wenzelm@23164
   520
 (open CancelFactorCommon
wenzelm@23164
   521
  val mk_bal   = HOLogic.mk_eq
haftmann@38864
   522
  val dest_bal = HOLogic.dest_bin @{const_name HOL.eq} Term.dummyT
wenzelm@31368
   523
  fun simp_conv _ _ = SOME @{thm mult_cancel_left}
nipkow@30649
   524
);
nipkow@30649
   525
nipkow@30649
   526
(*for ordered rings*)
nipkow@30649
   527
structure LeCancelFactor = ExtractCommonTermFun
nipkow@30649
   528
 (open CancelFactorCommon
haftmann@35092
   529
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less_eq}
haftmann@35092
   530
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} Term.dummyT
nipkow@30649
   531
  val simp_conv = sign_conv
nipkow@30649
   532
    @{thm mult_le_cancel_left_pos} @{thm mult_le_cancel_left_neg}
nipkow@30649
   533
);
nipkow@30649
   534
nipkow@30649
   535
(*for ordered rings*)
nipkow@30649
   536
structure LessCancelFactor = ExtractCommonTermFun
nipkow@30649
   537
 (open CancelFactorCommon
haftmann@35092
   538
  val mk_bal   = HOLogic.mk_binrel @{const_name Orderings.less}
haftmann@35092
   539
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} Term.dummyT
nipkow@30649
   540
  val simp_conv = sign_conv
nipkow@30649
   541
    @{thm mult_less_cancel_left_pos} @{thm mult_less_cancel_left_neg}
wenzelm@23164
   542
);
wenzelm@23164
   543
haftmann@30931
   544
(*for semirings with division*)
haftmann@30931
   545
structure DivCancelFactor = ExtractCommonTermFun
wenzelm@23164
   546
 (open CancelFactorCommon
wenzelm@23164
   547
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
haftmann@30931
   548
  val dest_bal = HOLogic.dest_bin @{const_name Divides.div} Term.dummyT
wenzelm@31368
   549
  fun simp_conv _ _ = SOME @{thm div_mult_mult1_if}
wenzelm@23164
   550
);
wenzelm@23164
   551
haftmann@30931
   552
structure ModCancelFactor = ExtractCommonTermFun
nipkow@24395
   553
 (open CancelFactorCommon
nipkow@24395
   554
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.mod}
haftmann@31067
   555
  val dest_bal = HOLogic.dest_bin @{const_name Divides.mod} Term.dummyT
wenzelm@31368
   556
  fun simp_conv _ _ = SOME @{thm mod_mult_mult1}
nipkow@24395
   557
);
nipkow@24395
   558
haftmann@30931
   559
(*for idoms*)
haftmann@30931
   560
structure DvdCancelFactor = ExtractCommonTermFun
nipkow@23969
   561
 (open CancelFactorCommon
haftmann@35050
   562
  val mk_bal   = HOLogic.mk_binrel @{const_name Rings.dvd}
haftmann@35050
   563
  val dest_bal = HOLogic.dest_bin @{const_name Rings.dvd} Term.dummyT
wenzelm@31368
   564
  fun simp_conv _ _ = SOME @{thm dvd_mult_cancel_left}
nipkow@23969
   565
);
nipkow@23969
   566
wenzelm@23164
   567
(*Version for all fields, including unordered ones (type complex).*)
wenzelm@23164
   568
structure DivideCancelFactor = ExtractCommonTermFun
wenzelm@23164
   569
 (open CancelFactorCommon
huffman@44064
   570
  val mk_bal   = HOLogic.mk_binop @{const_name Fields.divide}
huffman@44064
   571
  val dest_bal = HOLogic.dest_bin @{const_name Fields.divide} Term.dummyT
wenzelm@31368
   572
  fun simp_conv _ _ = SOME @{thm mult_divide_mult_cancel_left_if}
wenzelm@23164
   573
);
wenzelm@23164
   574
wenzelm@23164
   575
val cancel_factors =
haftmann@44945
   576
  map (prep_simproc @{theory})
wenzelm@23164
   577
   [("ring_eq_cancel_factor",
haftmann@30931
   578
     ["(l::'a::idom) * m = n",
haftmann@30931
   579
      "(l::'a::idom) = m * n"],
nipkow@30649
   580
     K EqCancelFactor.proc),
haftmann@35043
   581
    ("linordered_ring_le_cancel_factor",
haftmann@35028
   582
     ["(l::'a::linordered_ring) * m <= n",
haftmann@35028
   583
      "(l::'a::linordered_ring) <= m * n"],
nipkow@30649
   584
     K LeCancelFactor.proc),
haftmann@35043
   585
    ("linordered_ring_less_cancel_factor",
haftmann@35028
   586
     ["(l::'a::linordered_ring) * m < n",
haftmann@35028
   587
      "(l::'a::linordered_ring) < m * n"],
nipkow@30649
   588
     K LessCancelFactor.proc),
wenzelm@23164
   589
    ("int_div_cancel_factor",
haftmann@30931
   590
     ["((l::'a::semiring_div) * m) div n", "(l::'a::semiring_div) div (m * n)"],
haftmann@30931
   591
     K DivCancelFactor.proc),
nipkow@24395
   592
    ("int_mod_cancel_factor",
haftmann@30931
   593
     ["((l::'a::semiring_div) * m) mod n", "(l::'a::semiring_div) mod (m * n)"],
haftmann@30931
   594
     K ModCancelFactor.proc),
huffman@29981
   595
    ("dvd_cancel_factor",
huffman@29981
   596
     ["((l::'a::idom) * m) dvd n", "(l::'a::idom) dvd (m * n)"],
haftmann@30931
   597
     K DvdCancelFactor.proc),
wenzelm@23164
   598
    ("divide_cancel_factor",
haftmann@36409
   599
     ["((l::'a::field_inverse_zero) * m) / n",
haftmann@36409
   600
      "(l::'a::field_inverse_zero) / (m * n)"],
wenzelm@23164
   601
     K DivideCancelFactor.proc)];
wenzelm@23164
   602
haftmann@36751
   603
local
haftmann@36751
   604
 val zr = @{cpat "0"}
haftmann@36751
   605
 val zT = ctyp_of_term zr
haftmann@38864
   606
 val geq = @{cpat HOL.eq}
haftmann@36751
   607
 val eqT = Thm.dest_ctyp (ctyp_of_term geq) |> hd
haftmann@36751
   608
 val add_frac_eq = mk_meta_eq @{thm "add_frac_eq"}
haftmann@36751
   609
 val add_frac_num = mk_meta_eq @{thm "add_frac_num"}
haftmann@36751
   610
 val add_num_frac = mk_meta_eq @{thm "add_num_frac"}
haftmann@36751
   611
haftmann@36751
   612
 fun prove_nz ss T t =
haftmann@36751
   613
    let
wenzelm@36945
   614
      val z = Thm.instantiate_cterm ([(zT,T)],[]) zr
wenzelm@36945
   615
      val eq = Thm.instantiate_cterm ([(eqT,T)],[]) geq
haftmann@36751
   616
      val th = Simplifier.rewrite (ss addsimps @{thms simp_thms})
haftmann@36751
   617
           (Thm.capply @{cterm "Trueprop"} (Thm.capply @{cterm "Not"}
haftmann@36751
   618
                  (Thm.capply (Thm.capply eq t) z)))
wenzelm@36945
   619
    in Thm.equal_elim (Thm.symmetric th) TrueI
haftmann@36751
   620
    end
haftmann@36751
   621
haftmann@36751
   622
 fun proc phi ss ct =
haftmann@36751
   623
  let
haftmann@36751
   624
    val ((x,y),(w,z)) =
haftmann@36751
   625
         (Thm.dest_binop #> (fn (a,b) => (Thm.dest_binop a, Thm.dest_binop b))) ct
haftmann@36751
   626
    val _ = map (HOLogic.dest_number o term_of) [x,y,z,w]
haftmann@36751
   627
    val T = ctyp_of_term x
haftmann@36751
   628
    val [y_nz, z_nz] = map (prove_nz ss T) [y, z]
haftmann@36751
   629
    val th = instantiate' [SOME T] (map SOME [y,z,x,w]) add_frac_eq
wenzelm@36945
   630
  in SOME (Thm.implies_elim (Thm.implies_elim th y_nz) z_nz)
haftmann@36751
   631
  end
haftmann@36751
   632
  handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE
haftmann@36751
   633
haftmann@36751
   634
 fun proc2 phi ss ct =
haftmann@36751
   635
  let
haftmann@36751
   636
    val (l,r) = Thm.dest_binop ct
haftmann@36751
   637
    val T = ctyp_of_term l
haftmann@36751
   638
  in (case (term_of l, term_of r) of
huffman@44064
   639
      (Const(@{const_name Fields.divide},_)$_$_, _) =>
haftmann@36751
   640
        let val (x,y) = Thm.dest_binop l val z = r
haftmann@36751
   641
            val _ = map (HOLogic.dest_number o term_of) [x,y,z]
haftmann@36751
   642
            val ynz = prove_nz ss T y
wenzelm@36945
   643
        in SOME (Thm.implies_elim (instantiate' [SOME T] (map SOME [y,x,z]) add_frac_num) ynz)
haftmann@36751
   644
        end
huffman@44064
   645
     | (_, Const (@{const_name Fields.divide},_)$_$_) =>
haftmann@36751
   646
        let val (x,y) = Thm.dest_binop r val z = l
haftmann@36751
   647
            val _ = map (HOLogic.dest_number o term_of) [x,y,z]
haftmann@36751
   648
            val ynz = prove_nz ss T y
wenzelm@36945
   649
        in SOME (Thm.implies_elim (instantiate' [SOME T] (map SOME [y,z,x]) add_num_frac) ynz)
haftmann@36751
   650
        end
haftmann@36751
   651
     | _ => NONE)
haftmann@36751
   652
  end
haftmann@36751
   653
  handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE
haftmann@36751
   654
huffman@44064
   655
 fun is_number (Const(@{const_name Fields.divide},_)$a$b) = is_number a andalso is_number b
haftmann@36751
   656
   | is_number t = can HOLogic.dest_number t
haftmann@36751
   657
haftmann@36751
   658
 val is_number = is_number o term_of
haftmann@36751
   659
haftmann@36751
   660
 fun proc3 phi ss ct =
haftmann@36751
   661
  (case term_of ct of
huffman@44064
   662
    Const(@{const_name Orderings.less},_)$(Const(@{const_name Fields.divide},_)$_$_)$_ =>
haftmann@36751
   663
      let
haftmann@36751
   664
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@36751
   665
        val _ = map is_number [a,b,c]
haftmann@36751
   666
        val T = ctyp_of_term c
haftmann@36751
   667
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_less_eq"}
haftmann@36751
   668
      in SOME (mk_meta_eq th) end
huffman@44064
   669
  | Const(@{const_name Orderings.less_eq},_)$(Const(@{const_name Fields.divide},_)$_$_)$_ =>
haftmann@36751
   670
      let
haftmann@36751
   671
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@36751
   672
        val _ = map is_number [a,b,c]
haftmann@36751
   673
        val T = ctyp_of_term c
haftmann@36751
   674
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_le_eq"}
haftmann@36751
   675
      in SOME (mk_meta_eq th) end
huffman@44064
   676
  | Const(@{const_name HOL.eq},_)$(Const(@{const_name Fields.divide},_)$_$_)$_ =>
haftmann@36751
   677
      let
haftmann@36751
   678
        val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop
haftmann@36751
   679
        val _ = map is_number [a,b,c]
haftmann@36751
   680
        val T = ctyp_of_term c
haftmann@36751
   681
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_eq_eq"}
haftmann@36751
   682
      in SOME (mk_meta_eq th) end
huffman@44064
   683
  | Const(@{const_name Orderings.less},_)$_$(Const(@{const_name Fields.divide},_)$_$_) =>
haftmann@36751
   684
    let
haftmann@36751
   685
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@36751
   686
        val _ = map is_number [a,b,c]
haftmann@36751
   687
        val T = ctyp_of_term c
haftmann@36751
   688
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "less_divide_eq"}
haftmann@36751
   689
      in SOME (mk_meta_eq th) end
huffman@44064
   690
  | Const(@{const_name Orderings.less_eq},_)$_$(Const(@{const_name Fields.divide},_)$_$_) =>
haftmann@36751
   691
    let
haftmann@36751
   692
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@36751
   693
        val _ = map is_number [a,b,c]
haftmann@36751
   694
        val T = ctyp_of_term c
haftmann@36751
   695
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "le_divide_eq"}
haftmann@36751
   696
      in SOME (mk_meta_eq th) end
huffman@44064
   697
  | Const(@{const_name HOL.eq},_)$_$(Const(@{const_name Fields.divide},_)$_$_) =>
haftmann@36751
   698
    let
haftmann@36751
   699
      val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop
haftmann@36751
   700
        val _ = map is_number [a,b,c]
haftmann@36751
   701
        val T = ctyp_of_term c
haftmann@36751
   702
        val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "eq_divide_eq"}
haftmann@36751
   703
      in SOME (mk_meta_eq th) end
haftmann@36751
   704
  | _ => NONE)
haftmann@36751
   705
  handle TERM _ => NONE | CTERM _ => NONE | THM _ => NONE
haftmann@36751
   706
haftmann@36751
   707
val add_frac_frac_simproc =
haftmann@36751
   708
       make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + (?w::?'a::field)/?z"}],
haftmann@36751
   709
                     name = "add_frac_frac_simproc",
haftmann@36751
   710
                     proc = proc, identifier = []}
haftmann@36751
   711
haftmann@36751
   712
val add_frac_num_simproc =
haftmann@36751
   713
       make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + ?z"}, @{cpat "?z + (?x::?'a::field)/?y"}],
haftmann@36751
   714
                     name = "add_frac_num_simproc",
haftmann@36751
   715
                     proc = proc2, identifier = []}
haftmann@36751
   716
haftmann@36751
   717
val ord_frac_simproc =
haftmann@36751
   718
  make_simproc
haftmann@36751
   719
    {lhss = [@{cpat "(?a::(?'a::{field, ord}))/?b < ?c"},
haftmann@36751
   720
             @{cpat "(?a::(?'a::{field, ord}))/?b <= ?c"},
haftmann@36751
   721
             @{cpat "?c < (?a::(?'a::{field, ord}))/?b"},
haftmann@36751
   722
             @{cpat "?c <= (?a::(?'a::{field, ord}))/?b"},
haftmann@36751
   723
             @{cpat "?c = ((?a::(?'a::{field, ord}))/?b)"},
haftmann@36751
   724
             @{cpat "((?a::(?'a::{field, ord}))/ ?b) = ?c"}],
haftmann@36751
   725
             name = "ord_frac_simproc", proc = proc3, identifier = []}
haftmann@36751
   726
haftmann@36751
   727
val ths = [@{thm "mult_numeral_1"}, @{thm "mult_numeral_1_right"},
haftmann@36751
   728
           @{thm "divide_Numeral1"},
haftmann@36751
   729
           @{thm "divide_zero"}, @{thm "divide_Numeral0"},
haftmann@36751
   730
           @{thm "divide_divide_eq_left"}, 
haftmann@36751
   731
           @{thm "times_divide_eq_left"}, @{thm "times_divide_eq_right"},
haftmann@36751
   732
           @{thm "times_divide_times_eq"},
haftmann@36751
   733
           @{thm "divide_divide_eq_right"},
haftmann@37887
   734
           @{thm "diff_minus"}, @{thm "minus_divide_left"},
haftmann@36751
   735
           @{thm "Numeral1_eq1_nat"}, @{thm "add_divide_distrib"} RS sym,
haftmann@36751
   736
           @{thm field_divide_inverse} RS sym, @{thm inverse_divide}, 
haftmann@36751
   737
           Conv.fconv_rule (Conv.arg_conv (Conv.arg1_conv (Conv.rewr_conv (mk_meta_eq @{thm mult_commute}))))   
haftmann@36751
   738
           (@{thm field_divide_inverse} RS sym)]
haftmann@36751
   739
haftmann@36751
   740
in
haftmann@36751
   741
haftmann@36751
   742
val field_comp_conv = (Simplifier.rewrite
haftmann@36751
   743
(HOL_basic_ss addsimps @{thms "semiring_norm"}
haftmann@36751
   744
              addsimps ths addsimps @{thms simp_thms}
haftmann@36751
   745
              addsimprocs field_cancel_numeral_factors
haftmann@36751
   746
               addsimprocs [add_frac_frac_simproc, add_frac_num_simproc,
haftmann@36751
   747
                            ord_frac_simproc]
haftmann@36751
   748
                addcongs [@{thm "if_weak_cong"}]))
haftmann@36751
   749
then_conv (Simplifier.rewrite (HOL_basic_ss addsimps
haftmann@36751
   750
  [@{thm numeral_1_eq_1},@{thm numeral_0_eq_0}] @ @{thms numerals(1-2)}))
haftmann@36751
   751
haftmann@36751
   752
end
haftmann@36751
   753
wenzelm@23164
   754
end;
wenzelm@23164
   755
haftmann@31068
   756
Addsimprocs Numeral_Simprocs.cancel_numerals;
haftmann@31068
   757
Addsimprocs [Numeral_Simprocs.combine_numerals];
haftmann@31068
   758
Addsimprocs [Numeral_Simprocs.field_combine_numerals];
haftmann@31068
   759
Addsimprocs [Numeral_Simprocs.assoc_fold_simproc];
haftmann@31068
   760
haftmann@31068
   761
(*examples:
haftmann@31068
   762
print_depth 22;
haftmann@31068
   763
set timing;
wenzelm@40878
   764
set simp_trace;
haftmann@31068
   765
fun test s = (Goal s, by (Simp_tac 1));
haftmann@31068
   766
haftmann@31068
   767
test "l + 2 + 2 + 2 + (l + 2) + (oo + 2) = (uu::int)";
haftmann@31068
   768
haftmann@31068
   769
test "2*u = (u::int)";
haftmann@31068
   770
test "(i + j + 12 + (k::int)) - 15 = y";
haftmann@31068
   771
test "(i + j + 12 + (k::int)) - 5 = y";
haftmann@31068
   772
haftmann@31068
   773
test "y - b < (b::int)";
haftmann@31068
   774
test "y - (3*b + c) < (b::int) - 2*c";
haftmann@31068
   775
haftmann@31068
   776
test "(2*x - (u*v) + y) - v*3*u = (w::int)";
haftmann@31068
   777
test "(2*x*u*v + (u*v)*4 + y) - v*u*4 = (w::int)";
haftmann@31068
   778
test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::int)";
haftmann@31068
   779
test "u*v - (x*u*v + (u*v)*4 + y) = (w::int)";
haftmann@31068
   780
haftmann@31068
   781
test "(i + j + 12 + (k::int)) = u + 15 + y";
haftmann@31068
   782
test "(i + j*2 + 12 + (k::int)) = j + 5 + y";
haftmann@31068
   783
haftmann@31068
   784
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::int)";
haftmann@31068
   785
haftmann@31068
   786
test "a + -(b+c) + b = (d::int)";
haftmann@31068
   787
test "a + -(b+c) - b = (d::int)";
haftmann@31068
   788
haftmann@31068
   789
(*negative numerals*)
haftmann@31068
   790
test "(i + j + -2 + (k::int)) - (u + 5 + y) = zz";
haftmann@31068
   791
test "(i + j + -3 + (k::int)) < u + 5 + y";
haftmann@31068
   792
test "(i + j + 3 + (k::int)) < u + -6 + y";
haftmann@31068
   793
test "(i + j + -12 + (k::int)) - 15 = y";
haftmann@31068
   794
test "(i + j + 12 + (k::int)) - -15 = y";
haftmann@31068
   795
test "(i + j + -12 + (k::int)) - -15 = y";
haftmann@31068
   796
*)
haftmann@31068
   797
haftmann@31068
   798
Addsimprocs Numeral_Simprocs.cancel_numeral_factors;
haftmann@31068
   799
haftmann@31068
   800
(*examples:
haftmann@31068
   801
print_depth 22;
haftmann@31068
   802
set timing;
wenzelm@40878
   803
set simp_trace;
haftmann@31068
   804
fun test s = (Goal s; by (Simp_tac 1));
haftmann@31068
   805
haftmann@31068
   806
test "9*x = 12 * (y::int)";
haftmann@31068
   807
test "(9*x) div (12 * (y::int)) = z";
haftmann@31068
   808
test "9*x < 12 * (y::int)";
haftmann@31068
   809
test "9*x <= 12 * (y::int)";
haftmann@31068
   810
haftmann@31068
   811
test "-99*x = 132 * (y::int)";
haftmann@31068
   812
test "(-99*x) div (132 * (y::int)) = z";
haftmann@31068
   813
test "-99*x < 132 * (y::int)";
haftmann@31068
   814
test "-99*x <= 132 * (y::int)";
haftmann@31068
   815
haftmann@31068
   816
test "999*x = -396 * (y::int)";
haftmann@31068
   817
test "(999*x) div (-396 * (y::int)) = z";
haftmann@31068
   818
test "999*x < -396 * (y::int)";
haftmann@31068
   819
test "999*x <= -396 * (y::int)";
haftmann@31068
   820
haftmann@31068
   821
test "-99*x = -81 * (y::int)";
haftmann@31068
   822
test "(-99*x) div (-81 * (y::int)) = z";
haftmann@31068
   823
test "-99*x <= -81 * (y::int)";
haftmann@31068
   824
test "-99*x < -81 * (y::int)";
haftmann@31068
   825
haftmann@31068
   826
test "-2 * x = -1 * (y::int)";
haftmann@31068
   827
test "-2 * x = -(y::int)";
haftmann@31068
   828
test "(-2 * x) div (-1 * (y::int)) = z";
haftmann@31068
   829
test "-2 * x < -(y::int)";
haftmann@31068
   830
test "-2 * x <= -1 * (y::int)";
haftmann@31068
   831
test "-x < -23 * (y::int)";
haftmann@31068
   832
test "-x <= -23 * (y::int)";
haftmann@31068
   833
*)
haftmann@31068
   834
haftmann@31068
   835
(*And the same examples for fields such as rat or real:
haftmann@31068
   836
test "0 <= (y::rat) * -2";
haftmann@31068
   837
test "9*x = 12 * (y::rat)";
haftmann@31068
   838
test "(9*x) / (12 * (y::rat)) = z";
haftmann@31068
   839
test "9*x < 12 * (y::rat)";
haftmann@31068
   840
test "9*x <= 12 * (y::rat)";
haftmann@31068
   841
haftmann@31068
   842
test "-99*x = 132 * (y::rat)";
haftmann@31068
   843
test "(-99*x) / (132 * (y::rat)) = z";
haftmann@31068
   844
test "-99*x < 132 * (y::rat)";
haftmann@31068
   845
test "-99*x <= 132 * (y::rat)";
haftmann@31068
   846
haftmann@31068
   847
test "999*x = -396 * (y::rat)";
haftmann@31068
   848
test "(999*x) / (-396 * (y::rat)) = z";
haftmann@31068
   849
test "999*x < -396 * (y::rat)";
haftmann@31068
   850
test "999*x <= -396 * (y::rat)";
haftmann@31068
   851
haftmann@31068
   852
test  "(- ((2::rat) * x) <= 2 * y)";
haftmann@31068
   853
test "-99*x = -81 * (y::rat)";
haftmann@31068
   854
test "(-99*x) / (-81 * (y::rat)) = z";
haftmann@31068
   855
test "-99*x <= -81 * (y::rat)";
haftmann@31068
   856
test "-99*x < -81 * (y::rat)";
haftmann@31068
   857
haftmann@31068
   858
test "-2 * x = -1 * (y::rat)";
haftmann@31068
   859
test "-2 * x = -(y::rat)";
haftmann@31068
   860
test "(-2 * x) / (-1 * (y::rat)) = z";
haftmann@31068
   861
test "-2 * x < -(y::rat)";
haftmann@31068
   862
test "-2 * x <= -1 * (y::rat)";
haftmann@31068
   863
test "-x < -23 * (y::rat)";
haftmann@31068
   864
test "-x <= -23 * (y::rat)";
haftmann@31068
   865
*)
haftmann@31068
   866
haftmann@31068
   867
Addsimprocs Numeral_Simprocs.cancel_factors;
wenzelm@23164
   868
wenzelm@23164
   869
wenzelm@23164
   870
(*examples:
wenzelm@23164
   871
print_depth 22;
wenzelm@23164
   872
set timing;
wenzelm@40878
   873
set simp_trace;
wenzelm@23164
   874
fun test s = (Goal s; by (Asm_simp_tac 1));
wenzelm@23164
   875
wenzelm@23164
   876
test "x*k = k*(y::int)";
wenzelm@23164
   877
test "k = k*(y::int)";
wenzelm@23164
   878
test "a*(b*c) = (b::int)";
wenzelm@23164
   879
test "a*(b*c) = d*(b::int)*(x*a)";
wenzelm@23164
   880
wenzelm@23164
   881
test "(x*k) div (k*(y::int)) = (uu::int)";
wenzelm@23164
   882
test "(k) div (k*(y::int)) = (uu::int)";
wenzelm@23164
   883
test "(a*(b*c)) div ((b::int)) = (uu::int)";
wenzelm@23164
   884
test "(a*(b*c)) div (d*(b::int)*(x*a)) = (uu::int)";
wenzelm@23164
   885
*)
wenzelm@23164
   886
wenzelm@23164
   887
(*And the same examples for fields such as rat or real:
wenzelm@23164
   888
print_depth 22;
wenzelm@23164
   889
set timing;
wenzelm@40878
   890
set simp_trace;
wenzelm@23164
   891
fun test s = (Goal s; by (Asm_simp_tac 1));
wenzelm@23164
   892
wenzelm@23164
   893
test "x*k = k*(y::rat)";
wenzelm@23164
   894
test "k = k*(y::rat)";
wenzelm@23164
   895
test "a*(b*c) = (b::rat)";
wenzelm@23164
   896
test "a*(b*c) = d*(b::rat)*(x*a)";
wenzelm@23164
   897
wenzelm@23164
   898
wenzelm@23164
   899
test "(x*k) / (k*(y::rat)) = (uu::rat)";
wenzelm@23164
   900
test "(k) / (k*(y::rat)) = (uu::rat)";
wenzelm@23164
   901
test "(a*(b*c)) / ((b::rat)) = (uu::rat)";
wenzelm@23164
   902
test "(a*(b*c)) / (d*(b::rat)*(x*a)) = (uu::rat)";
wenzelm@23164
   903
wenzelm@23164
   904
(*FIXME: what do we do about this?*)
wenzelm@23164
   905
test "a*(b*c)/(y*z) = d*(b::rat)*(x*a)/z";
wenzelm@23164
   906
*)