src/HOL/Real/RealVector.thy
author huffman
Mon May 28 04:22:44 2007 +0200 (2007-05-28)
changeset 23113 d5cdaa3b7517
parent 22973 64d300e16370
child 23120 a34f204e9c88
permissions -rw-r--r--
interpretations additive_scaleR_left, additive_scaleR_right
huffman@20504
     1
(*  Title       : RealVector.thy
huffman@20504
     2
    ID:         $Id$
huffman@20504
     3
    Author      : Brian Huffman
huffman@20504
     4
*)
huffman@20504
     5
huffman@20504
     6
header {* Vector Spaces and Algebras over the Reals *}
huffman@20504
     7
huffman@20504
     8
theory RealVector
huffman@20684
     9
imports RealPow
huffman@20504
    10
begin
huffman@20504
    11
huffman@20504
    12
subsection {* Locale for additive functions *}
huffman@20504
    13
huffman@20504
    14
locale additive =
huffman@20504
    15
  fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
huffman@20504
    16
  assumes add: "f (x + y) = f x + f y"
huffman@20504
    17
huffman@20504
    18
lemma (in additive) zero: "f 0 = 0"
huffman@20504
    19
proof -
huffman@20504
    20
  have "f 0 = f (0 + 0)" by simp
huffman@20504
    21
  also have "\<dots> = f 0 + f 0" by (rule add)
huffman@20504
    22
  finally show "f 0 = 0" by simp
huffman@20504
    23
qed
huffman@20504
    24
huffman@20504
    25
lemma (in additive) minus: "f (- x) = - f x"
huffman@20504
    26
proof -
huffman@20504
    27
  have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
huffman@20504
    28
  also have "\<dots> = - f x + f x" by (simp add: zero)
huffman@20504
    29
  finally show "f (- x) = - f x" by (rule add_right_imp_eq)
huffman@20504
    30
qed
huffman@20504
    31
huffman@20504
    32
lemma (in additive) diff: "f (x - y) = f x - f y"
huffman@20504
    33
by (simp add: diff_def add minus)
huffman@20504
    34
huffman@22942
    35
lemma (in additive) setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
huffman@22942
    36
apply (cases "finite A")
huffman@22942
    37
apply (induct set: finite)
huffman@22942
    38
apply (simp add: zero)
huffman@22942
    39
apply (simp add: add)
huffman@22942
    40
apply (simp add: zero)
huffman@22942
    41
done
huffman@22942
    42
huffman@20504
    43
huffman@20504
    44
subsection {* Real vector spaces *}
huffman@20504
    45
huffman@22636
    46
class scaleR = type +
huffman@22636
    47
  fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a"
huffman@20504
    48
huffman@22636
    49
notation
huffman@22636
    50
  scaleR (infixr "*#" 75)
huffman@20504
    51
huffman@20763
    52
abbreviation
wenzelm@21404
    53
  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a::scaleR" (infixl "'/#" 70) where
huffman@21809
    54
  "x /# r == scaleR (inverse r) x"
huffman@20763
    55
wenzelm@21210
    56
notation (xsymbols)
wenzelm@21404
    57
  scaleR (infixr "*\<^sub>R" 75) and
huffman@20763
    58
  divideR (infixl "'/\<^sub>R" 70)
huffman@20504
    59
huffman@22636
    60
instance real :: scaleR
huffman@22973
    61
  real_scaleR_def [simp]: "scaleR a x \<equiv> a * x" ..
huffman@20554
    62
huffman@20504
    63
axclass real_vector < scaleR, ab_group_add
huffman@21809
    64
  scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y"
huffman@21809
    65
  scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x"
huffman@21809
    66
  scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@21809
    67
  scaleR_one [simp]: "scaleR 1 x = x"
huffman@20504
    68
huffman@20504
    69
axclass real_algebra < real_vector, ring
huffman@21809
    70
  mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
huffman@21809
    71
  mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
huffman@20504
    72
huffman@20554
    73
axclass real_algebra_1 < real_algebra, ring_1
huffman@20554
    74
huffman@20584
    75
axclass real_div_algebra < real_algebra_1, division_ring
huffman@20584
    76
huffman@20584
    77
axclass real_field < real_div_algebra, field
huffman@20584
    78
huffman@20584
    79
instance real :: real_field
huffman@20554
    80
apply (intro_classes, unfold real_scaleR_def)
huffman@20554
    81
apply (rule right_distrib)
huffman@20554
    82
apply (rule left_distrib)
huffman@20763
    83
apply (rule mult_assoc [symmetric])
huffman@20554
    84
apply (rule mult_1_left)
huffman@20554
    85
apply (rule mult_assoc)
huffman@20554
    86
apply (rule mult_left_commute)
huffman@20554
    87
done
huffman@20554
    88
huffman@20504
    89
lemma scaleR_left_commute:
huffman@20504
    90
  fixes x :: "'a::real_vector"
huffman@21809
    91
  shows "scaleR a (scaleR b x) = scaleR b (scaleR a x)"
huffman@20763
    92
by (simp add: mult_commute)
huffman@20504
    93
huffman@23113
    94
interpretation additive_scaleR_left:
huffman@23113
    95
  additive ["(\<lambda>a. scaleR a x::'a::real_vector)"]
huffman@20504
    96
by (rule additive.intro, rule scaleR_left_distrib)
huffman@20504
    97
huffman@23113
    98
interpretation additive_scaleR_right:
huffman@23113
    99
  additive ["(\<lambda>x. scaleR a x::'a::real_vector)"]
huffman@23113
   100
by (rule additive.intro, rule scaleR_right_distrib)
huffman@20504
   101
huffman@23113
   102
lemmas scaleR_zero_left [simp] = additive_scaleR_left.zero
huffman@20504
   103
huffman@23113
   104
lemmas scaleR_zero_right [simp] = additive_scaleR_right.zero
huffman@20504
   105
huffman@23113
   106
lemmas scaleR_minus_left [simp] = additive_scaleR_left.minus
huffman@23113
   107
huffman@23113
   108
lemmas scaleR_minus_right [simp] = additive_scaleR_right.minus
huffman@20504
   109
huffman@23113
   110
lemmas scaleR_left_diff_distrib = additive_scaleR_left.diff
huffman@20504
   111
huffman@23113
   112
lemmas scaleR_right_diff_distrib = additive_scaleR_right.diff
huffman@20504
   113
huffman@22973
   114
lemma scaleR_eq_0_iff [simp]:
huffman@20554
   115
  fixes x :: "'a::real_vector"
huffman@21809
   116
  shows "(scaleR a x = 0) = (a = 0 \<or> x = 0)"
huffman@20554
   117
proof cases
huffman@20554
   118
  assume "a = 0" thus ?thesis by simp
huffman@20554
   119
next
huffman@20554
   120
  assume anz [simp]: "a \<noteq> 0"
huffman@21809
   121
  { assume "scaleR a x = 0"
huffman@21809
   122
    hence "scaleR (inverse a) (scaleR a x) = 0" by simp
huffman@20763
   123
    hence "x = 0" by simp }
huffman@20554
   124
  thus ?thesis by force
huffman@20554
   125
qed
huffman@20554
   126
huffman@20554
   127
lemma scaleR_left_imp_eq:
huffman@20554
   128
  fixes x y :: "'a::real_vector"
huffman@21809
   129
  shows "\<lbrakk>a \<noteq> 0; scaleR a x = scaleR a y\<rbrakk> \<Longrightarrow> x = y"
huffman@20554
   130
proof -
huffman@20554
   131
  assume nonzero: "a \<noteq> 0"
huffman@21809
   132
  assume "scaleR a x = scaleR a y"
huffman@21809
   133
  hence "scaleR a (x - y) = 0"
huffman@20554
   134
     by (simp add: scaleR_right_diff_distrib)
huffman@22973
   135
  hence "x - y = 0" by (simp add: nonzero)
huffman@20554
   136
  thus "x = y" by simp
huffman@20554
   137
qed
huffman@20554
   138
huffman@20554
   139
lemma scaleR_right_imp_eq:
huffman@20554
   140
  fixes x y :: "'a::real_vector"
huffman@21809
   141
  shows "\<lbrakk>x \<noteq> 0; scaleR a x = scaleR b x\<rbrakk> \<Longrightarrow> a = b"
huffman@20554
   142
proof -
huffman@20554
   143
  assume nonzero: "x \<noteq> 0"
huffman@21809
   144
  assume "scaleR a x = scaleR b x"
huffman@21809
   145
  hence "scaleR (a - b) x = 0"
huffman@20554
   146
     by (simp add: scaleR_left_diff_distrib)
huffman@22973
   147
  hence "a - b = 0" by (simp add: nonzero)
huffman@20554
   148
  thus "a = b" by simp
huffman@20554
   149
qed
huffman@20554
   150
huffman@20554
   151
lemma scaleR_cancel_left:
huffman@20554
   152
  fixes x y :: "'a::real_vector"
huffman@21809
   153
  shows "(scaleR a x = scaleR a y) = (x = y \<or> a = 0)"
huffman@20554
   154
by (auto intro: scaleR_left_imp_eq)
huffman@20554
   155
huffman@20554
   156
lemma scaleR_cancel_right:
huffman@20554
   157
  fixes x y :: "'a::real_vector"
huffman@21809
   158
  shows "(scaleR a x = scaleR b x) = (a = b \<or> x = 0)"
huffman@20554
   159
by (auto intro: scaleR_right_imp_eq)
huffman@20554
   160
huffman@20584
   161
lemma nonzero_inverse_scaleR_distrib:
huffman@21809
   162
  fixes x :: "'a::real_div_algebra" shows
huffman@21809
   163
  "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20763
   164
by (rule inverse_unique, simp)
huffman@20584
   165
huffman@20584
   166
lemma inverse_scaleR_distrib:
huffman@20584
   167
  fixes x :: "'a::{real_div_algebra,division_by_zero}"
huffman@21809
   168
  shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20584
   169
apply (case_tac "a = 0", simp)
huffman@20584
   170
apply (case_tac "x = 0", simp)
huffman@20584
   171
apply (erule (1) nonzero_inverse_scaleR_distrib)
huffman@20584
   172
done
huffman@20584
   173
huffman@20554
   174
huffman@20554
   175
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
huffman@20554
   176
@{term of_real} *}
huffman@20554
   177
huffman@20554
   178
definition
wenzelm@21404
   179
  of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
huffman@21809
   180
  "of_real r = scaleR r 1"
huffman@20554
   181
huffman@21809
   182
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
huffman@20763
   183
by (simp add: of_real_def)
huffman@20763
   184
huffman@20554
   185
lemma of_real_0 [simp]: "of_real 0 = 0"
huffman@20554
   186
by (simp add: of_real_def)
huffman@20554
   187
huffman@20554
   188
lemma of_real_1 [simp]: "of_real 1 = 1"
huffman@20554
   189
by (simp add: of_real_def)
huffman@20554
   190
huffman@20554
   191
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
huffman@20554
   192
by (simp add: of_real_def scaleR_left_distrib)
huffman@20554
   193
huffman@20554
   194
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
huffman@20554
   195
by (simp add: of_real_def)
huffman@20554
   196
huffman@20554
   197
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
huffman@20554
   198
by (simp add: of_real_def scaleR_left_diff_distrib)
huffman@20554
   199
huffman@20554
   200
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
huffman@20763
   201
by (simp add: of_real_def mult_commute)
huffman@20554
   202
huffman@20584
   203
lemma nonzero_of_real_inverse:
huffman@20584
   204
  "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
huffman@20584
   205
   inverse (of_real x :: 'a::real_div_algebra)"
huffman@20584
   206
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
huffman@20584
   207
huffman@20584
   208
lemma of_real_inverse [simp]:
huffman@20584
   209
  "of_real (inverse x) =
huffman@20584
   210
   inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
huffman@20584
   211
by (simp add: of_real_def inverse_scaleR_distrib)
huffman@20584
   212
huffman@20584
   213
lemma nonzero_of_real_divide:
huffman@20584
   214
  "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
huffman@20584
   215
   (of_real x / of_real y :: 'a::real_field)"
huffman@20584
   216
by (simp add: divide_inverse nonzero_of_real_inverse)
huffman@20722
   217
huffman@20722
   218
lemma of_real_divide [simp]:
huffman@20584
   219
  "of_real (x / y) =
huffman@20584
   220
   (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
huffman@20584
   221
by (simp add: divide_inverse)
huffman@20584
   222
huffman@20722
   223
lemma of_real_power [simp]:
huffman@20722
   224
  "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n"
wenzelm@20772
   225
by (induct n) (simp_all add: power_Suc)
huffman@20722
   226
huffman@20554
   227
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
huffman@20554
   228
by (simp add: of_real_def scaleR_cancel_right)
huffman@20554
   229
huffman@20584
   230
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
huffman@20554
   231
huffman@20554
   232
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
huffman@20554
   233
proof
huffman@20554
   234
  fix r
huffman@20554
   235
  show "of_real r = id r"
huffman@22973
   236
    by (simp add: of_real_def)
huffman@20554
   237
qed
huffman@20554
   238
huffman@20554
   239
text{*Collapse nested embeddings*}
huffman@20554
   240
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
wenzelm@20772
   241
by (induct n) auto
huffman@20554
   242
huffman@20554
   243
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
huffman@20554
   244
by (cases z rule: int_diff_cases, simp)
huffman@20554
   245
huffman@20554
   246
lemma of_real_number_of_eq:
huffman@20554
   247
  "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
huffman@20554
   248
by (simp add: number_of_eq)
huffman@20554
   249
huffman@22912
   250
text{*Every real algebra has characteristic zero*}
huffman@22912
   251
instance real_algebra_1 < ring_char_0
huffman@22912
   252
proof
huffman@22912
   253
  fix w z :: int
huffman@22912
   254
  assume "of_int w = (of_int z::'a)"
huffman@22912
   255
  hence "of_real (of_int w) = (of_real (of_int z)::'a)"
huffman@22912
   256
    by (simp only: of_real_of_int_eq)
huffman@22912
   257
  thus "w = z"
huffman@22912
   258
    by (simp only: of_real_eq_iff of_int_eq_iff)
huffman@22912
   259
qed
huffman@22912
   260
huffman@20554
   261
huffman@20554
   262
subsection {* The Set of Real Numbers *}
huffman@20554
   263
wenzelm@20772
   264
definition
wenzelm@21404
   265
  Reals :: "'a::real_algebra_1 set" where
wenzelm@20772
   266
  "Reals \<equiv> range of_real"
huffman@20554
   267
wenzelm@21210
   268
notation (xsymbols)
huffman@20554
   269
  Reals  ("\<real>")
huffman@20554
   270
huffman@21809
   271
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
huffman@20554
   272
by (simp add: Reals_def)
huffman@20554
   273
huffman@21809
   274
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
huffman@21809
   275
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
huffman@20718
   276
huffman@21809
   277
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
huffman@21809
   278
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
huffman@21809
   279
huffman@21809
   280
lemma Reals_number_of [simp]:
huffman@21809
   281
  "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
huffman@21809
   282
by (subst of_real_number_of_eq [symmetric], rule Reals_of_real)
huffman@20718
   283
huffman@20554
   284
lemma Reals_0 [simp]: "0 \<in> Reals"
huffman@20554
   285
apply (unfold Reals_def)
huffman@20554
   286
apply (rule range_eqI)
huffman@20554
   287
apply (rule of_real_0 [symmetric])
huffman@20554
   288
done
huffman@20554
   289
huffman@20554
   290
lemma Reals_1 [simp]: "1 \<in> Reals"
huffman@20554
   291
apply (unfold Reals_def)
huffman@20554
   292
apply (rule range_eqI)
huffman@20554
   293
apply (rule of_real_1 [symmetric])
huffman@20554
   294
done
huffman@20554
   295
huffman@20584
   296
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
huffman@20554
   297
apply (auto simp add: Reals_def)
huffman@20554
   298
apply (rule range_eqI)
huffman@20554
   299
apply (rule of_real_add [symmetric])
huffman@20554
   300
done
huffman@20554
   301
huffman@20584
   302
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
huffman@20584
   303
apply (auto simp add: Reals_def)
huffman@20584
   304
apply (rule range_eqI)
huffman@20584
   305
apply (rule of_real_minus [symmetric])
huffman@20584
   306
done
huffman@20584
   307
huffman@20584
   308
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
huffman@20584
   309
apply (auto simp add: Reals_def)
huffman@20584
   310
apply (rule range_eqI)
huffman@20584
   311
apply (rule of_real_diff [symmetric])
huffman@20584
   312
done
huffman@20584
   313
huffman@20584
   314
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
huffman@20554
   315
apply (auto simp add: Reals_def)
huffman@20554
   316
apply (rule range_eqI)
huffman@20554
   317
apply (rule of_real_mult [symmetric])
huffman@20554
   318
done
huffman@20554
   319
huffman@20584
   320
lemma nonzero_Reals_inverse:
huffman@20584
   321
  fixes a :: "'a::real_div_algebra"
huffman@20584
   322
  shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   323
apply (auto simp add: Reals_def)
huffman@20584
   324
apply (rule range_eqI)
huffman@20584
   325
apply (erule nonzero_of_real_inverse [symmetric])
huffman@20584
   326
done
huffman@20584
   327
huffman@20584
   328
lemma Reals_inverse [simp]:
huffman@20584
   329
  fixes a :: "'a::{real_div_algebra,division_by_zero}"
huffman@20584
   330
  shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   331
apply (auto simp add: Reals_def)
huffman@20584
   332
apply (rule range_eqI)
huffman@20584
   333
apply (rule of_real_inverse [symmetric])
huffman@20584
   334
done
huffman@20584
   335
huffman@20584
   336
lemma nonzero_Reals_divide:
huffman@20584
   337
  fixes a b :: "'a::real_field"
huffman@20584
   338
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   339
apply (auto simp add: Reals_def)
huffman@20584
   340
apply (rule range_eqI)
huffman@20584
   341
apply (erule nonzero_of_real_divide [symmetric])
huffman@20584
   342
done
huffman@20584
   343
huffman@20584
   344
lemma Reals_divide [simp]:
huffman@20584
   345
  fixes a b :: "'a::{real_field,division_by_zero}"
huffman@20584
   346
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   347
apply (auto simp add: Reals_def)
huffman@20584
   348
apply (rule range_eqI)
huffman@20584
   349
apply (rule of_real_divide [symmetric])
huffman@20584
   350
done
huffman@20584
   351
huffman@20722
   352
lemma Reals_power [simp]:
huffman@20722
   353
  fixes a :: "'a::{real_algebra_1,recpower}"
huffman@20722
   354
  shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
huffman@20722
   355
apply (auto simp add: Reals_def)
huffman@20722
   356
apply (rule range_eqI)
huffman@20722
   357
apply (rule of_real_power [symmetric])
huffman@20722
   358
done
huffman@20722
   359
huffman@20554
   360
lemma Reals_cases [cases set: Reals]:
huffman@20554
   361
  assumes "q \<in> \<real>"
huffman@20554
   362
  obtains (of_real) r where "q = of_real r"
huffman@20554
   363
  unfolding Reals_def
huffman@20554
   364
proof -
huffman@20554
   365
  from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
huffman@20554
   366
  then obtain r where "q = of_real r" ..
huffman@20554
   367
  then show thesis ..
huffman@20554
   368
qed
huffman@20554
   369
huffman@20554
   370
lemma Reals_induct [case_names of_real, induct set: Reals]:
huffman@20554
   371
  "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
huffman@20554
   372
  by (rule Reals_cases) auto
huffman@20554
   373
huffman@20504
   374
huffman@20504
   375
subsection {* Real normed vector spaces *}
huffman@20504
   376
huffman@22636
   377
class norm = type +
huffman@22636
   378
  fixes norm :: "'a \<Rightarrow> real"
huffman@20504
   379
huffman@22636
   380
instance real :: norm
huffman@22636
   381
  real_norm_def [simp]: "norm r \<equiv> \<bar>r\<bar>" ..
huffman@20554
   382
huffman@22852
   383
axclass real_normed_vector < real_vector, norm
huffman@20533
   384
  norm_ge_zero [simp]: "0 \<le> norm x"
huffman@20533
   385
  norm_eq_zero [simp]: "(norm x = 0) = (x = 0)"
huffman@20533
   386
  norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
huffman@21809
   387
  norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
huffman@20504
   388
huffman@20584
   389
axclass real_normed_algebra < real_algebra, real_normed_vector
huffman@20533
   390
  norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
huffman@20504
   391
huffman@22852
   392
axclass real_normed_algebra_1 < real_algebra_1, real_normed_algebra
huffman@22852
   393
  norm_one [simp]: "norm 1 = 1"
huffman@22852
   394
huffman@22852
   395
axclass real_normed_div_algebra < real_div_algebra, real_normed_vector
huffman@20533
   396
  norm_mult: "norm (x * y) = norm x * norm y"
huffman@20504
   397
huffman@20584
   398
axclass real_normed_field < real_field, real_normed_div_algebra
huffman@20584
   399
huffman@22852
   400
instance real_normed_div_algebra < real_normed_algebra_1
huffman@20554
   401
proof
huffman@20554
   402
  fix x y :: 'a
huffman@20554
   403
  show "norm (x * y) \<le> norm x * norm y"
huffman@20554
   404
    by (simp add: norm_mult)
huffman@22852
   405
next
huffman@22852
   406
  have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
huffman@22852
   407
    by (rule norm_mult)
huffman@22852
   408
  thus "norm (1::'a) = 1" by simp
huffman@20554
   409
qed
huffman@20554
   410
huffman@20584
   411
instance real :: real_normed_field
huffman@22852
   412
apply (intro_classes, unfold real_norm_def real_scaleR_def)
huffman@20554
   413
apply (rule abs_ge_zero)
huffman@20554
   414
apply (rule abs_eq_0)
huffman@20554
   415
apply (rule abs_triangle_ineq)
huffman@22852
   416
apply (rule abs_mult)
huffman@20554
   417
apply (rule abs_mult)
huffman@20554
   418
done
huffman@20504
   419
huffman@22852
   420
lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
huffman@20504
   421
by simp
huffman@20504
   422
huffman@22852
   423
lemma zero_less_norm_iff [simp]:
huffman@22852
   424
  fixes x :: "'a::real_normed_vector"
huffman@22852
   425
  shows "(0 < norm x) = (x \<noteq> 0)"
huffman@20504
   426
by (simp add: order_less_le)
huffman@20504
   427
huffman@22852
   428
lemma norm_not_less_zero [simp]:
huffman@22852
   429
  fixes x :: "'a::real_normed_vector"
huffman@22852
   430
  shows "\<not> norm x < 0"
huffman@20828
   431
by (simp add: linorder_not_less)
huffman@20828
   432
huffman@22852
   433
lemma norm_le_zero_iff [simp]:
huffman@22852
   434
  fixes x :: "'a::real_normed_vector"
huffman@22852
   435
  shows "(norm x \<le> 0) = (x = 0)"
huffman@20828
   436
by (simp add: order_le_less)
huffman@20828
   437
huffman@20504
   438
lemma norm_minus_cancel [simp]:
huffman@20584
   439
  fixes x :: "'a::real_normed_vector"
huffman@20584
   440
  shows "norm (- x) = norm x"
huffman@20504
   441
proof -
huffman@21809
   442
  have "norm (- x) = norm (scaleR (- 1) x)"
huffman@20504
   443
    by (simp only: scaleR_minus_left scaleR_one)
huffman@20533
   444
  also have "\<dots> = \<bar>- 1\<bar> * norm x"
huffman@20504
   445
    by (rule norm_scaleR)
huffman@20504
   446
  finally show ?thesis by simp
huffman@20504
   447
qed
huffman@20504
   448
huffman@20504
   449
lemma norm_minus_commute:
huffman@20584
   450
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   451
  shows "norm (a - b) = norm (b - a)"
huffman@20504
   452
proof -
huffman@22898
   453
  have "norm (- (b - a)) = norm (b - a)"
huffman@22898
   454
    by (rule norm_minus_cancel)
huffman@22898
   455
  thus ?thesis by simp
huffman@20504
   456
qed
huffman@20504
   457
huffman@20504
   458
lemma norm_triangle_ineq2:
huffman@20584
   459
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   460
  shows "norm a - norm b \<le> norm (a - b)"
huffman@20504
   461
proof -
huffman@20533
   462
  have "norm (a - b + b) \<le> norm (a - b) + norm b"
huffman@20504
   463
    by (rule norm_triangle_ineq)
huffman@22898
   464
  thus ?thesis by simp
huffman@20504
   465
qed
huffman@20504
   466
huffman@20584
   467
lemma norm_triangle_ineq3:
huffman@20584
   468
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   469
  shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
huffman@20584
   470
apply (subst abs_le_iff)
huffman@20584
   471
apply auto
huffman@20584
   472
apply (rule norm_triangle_ineq2)
huffman@20584
   473
apply (subst norm_minus_commute)
huffman@20584
   474
apply (rule norm_triangle_ineq2)
huffman@20584
   475
done
huffman@20584
   476
huffman@20504
   477
lemma norm_triangle_ineq4:
huffman@20584
   478
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   479
  shows "norm (a - b) \<le> norm a + norm b"
huffman@20504
   480
proof -
huffman@22898
   481
  have "norm (a + - b) \<le> norm a + norm (- b)"
huffman@20504
   482
    by (rule norm_triangle_ineq)
huffman@22898
   483
  thus ?thesis
huffman@22898
   484
    by (simp only: diff_minus norm_minus_cancel)
huffman@22898
   485
qed
huffman@22898
   486
huffman@22898
   487
lemma norm_diff_ineq:
huffman@22898
   488
  fixes a b :: "'a::real_normed_vector"
huffman@22898
   489
  shows "norm a - norm b \<le> norm (a + b)"
huffman@22898
   490
proof -
huffman@22898
   491
  have "norm a - norm (- b) \<le> norm (a - - b)"
huffman@22898
   492
    by (rule norm_triangle_ineq2)
huffman@22898
   493
  thus ?thesis by simp
huffman@20504
   494
qed
huffman@20504
   495
huffman@20551
   496
lemma norm_diff_triangle_ineq:
huffman@20551
   497
  fixes a b c d :: "'a::real_normed_vector"
huffman@20551
   498
  shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
huffman@20551
   499
proof -
huffman@20551
   500
  have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
huffman@20551
   501
    by (simp add: diff_minus add_ac)
huffman@20551
   502
  also have "\<dots> \<le> norm (a - c) + norm (b - d)"
huffman@20551
   503
    by (rule norm_triangle_ineq)
huffman@20551
   504
  finally show ?thesis .
huffman@20551
   505
qed
huffman@20551
   506
huffman@22857
   507
lemma abs_norm_cancel [simp]:
huffman@22857
   508
  fixes a :: "'a::real_normed_vector"
huffman@22857
   509
  shows "\<bar>norm a\<bar> = norm a"
huffman@22857
   510
by (rule abs_of_nonneg [OF norm_ge_zero])
huffman@22857
   511
huffman@22880
   512
lemma norm_add_less:
huffman@22880
   513
  fixes x y :: "'a::real_normed_vector"
huffman@22880
   514
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
huffman@22880
   515
by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
huffman@22880
   516
huffman@22880
   517
lemma norm_mult_less:
huffman@22880
   518
  fixes x y :: "'a::real_normed_algebra"
huffman@22880
   519
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
huffman@22880
   520
apply (rule order_le_less_trans [OF norm_mult_ineq])
huffman@22880
   521
apply (simp add: mult_strict_mono')
huffman@22880
   522
done
huffman@22880
   523
huffman@22857
   524
lemma norm_of_real [simp]:
huffman@22857
   525
  "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
huffman@22852
   526
unfolding of_real_def by (simp add: norm_scaleR)
huffman@20560
   527
huffman@22876
   528
lemma norm_number_of [simp]:
huffman@22876
   529
  "norm (number_of w::'a::{number_ring,real_normed_algebra_1})
huffman@22876
   530
    = \<bar>number_of w\<bar>"
huffman@22876
   531
by (subst of_real_number_of_eq [symmetric], rule norm_of_real)
huffman@22876
   532
huffman@22876
   533
lemma norm_of_int [simp]:
huffman@22876
   534
  "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
huffman@22876
   535
by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
huffman@22876
   536
huffman@22876
   537
lemma norm_of_nat [simp]:
huffman@22876
   538
  "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
huffman@22876
   539
apply (subst of_real_of_nat_eq [symmetric])
huffman@22876
   540
apply (subst norm_of_real, simp)
huffman@22876
   541
done
huffman@22876
   542
huffman@20504
   543
lemma nonzero_norm_inverse:
huffman@20504
   544
  fixes a :: "'a::real_normed_div_algebra"
huffman@20533
   545
  shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
huffman@20504
   546
apply (rule inverse_unique [symmetric])
huffman@20504
   547
apply (simp add: norm_mult [symmetric])
huffman@20504
   548
done
huffman@20504
   549
huffman@20504
   550
lemma norm_inverse:
huffman@20504
   551
  fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
huffman@20533
   552
  shows "norm (inverse a) = inverse (norm a)"
huffman@20504
   553
apply (case_tac "a = 0", simp)
huffman@20504
   554
apply (erule nonzero_norm_inverse)
huffman@20504
   555
done
huffman@20504
   556
huffman@20584
   557
lemma nonzero_norm_divide:
huffman@20584
   558
  fixes a b :: "'a::real_normed_field"
huffman@20584
   559
  shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
huffman@20584
   560
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
huffman@20584
   561
huffman@20584
   562
lemma norm_divide:
huffman@20584
   563
  fixes a b :: "'a::{real_normed_field,division_by_zero}"
huffman@20584
   564
  shows "norm (a / b) = norm a / norm b"
huffman@20584
   565
by (simp add: divide_inverse norm_mult norm_inverse)
huffman@20584
   566
huffman@22852
   567
lemma norm_power_ineq:
huffman@22852
   568
  fixes x :: "'a::{real_normed_algebra_1,recpower}"
huffman@22852
   569
  shows "norm (x ^ n) \<le> norm x ^ n"
huffman@22852
   570
proof (induct n)
huffman@22852
   571
  case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
huffman@22852
   572
next
huffman@22852
   573
  case (Suc n)
huffman@22852
   574
  have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
huffman@22852
   575
    by (rule norm_mult_ineq)
huffman@22852
   576
  also from Suc have "\<dots> \<le> norm x * norm x ^ n"
huffman@22852
   577
    using norm_ge_zero by (rule mult_left_mono)
huffman@22852
   578
  finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
huffman@22852
   579
    by (simp add: power_Suc)
huffman@22852
   580
qed
huffman@22852
   581
huffman@20684
   582
lemma norm_power:
huffman@20684
   583
  fixes x :: "'a::{real_normed_div_algebra,recpower}"
huffman@20684
   584
  shows "norm (x ^ n) = norm x ^ n"
wenzelm@20772
   585
by (induct n) (simp_all add: power_Suc norm_mult)
huffman@20684
   586
huffman@22442
   587
huffman@22972
   588
subsection {* Sign function *}
huffman@22972
   589
huffman@22972
   590
definition
huffman@22972
   591
  sgn :: "'a::real_normed_vector \<Rightarrow> 'a" where
huffman@22972
   592
  "sgn x = scaleR (inverse (norm x)) x"
huffman@22972
   593
huffman@22972
   594
lemma norm_sgn: "norm (sgn x) = (if x = 0 then 0 else 1)"
huffman@22972
   595
unfolding sgn_def by (simp add: norm_scaleR)
huffman@22972
   596
huffman@22972
   597
lemma sgn_zero [simp]: "sgn 0 = 0"
huffman@22972
   598
unfolding sgn_def by simp
huffman@22972
   599
huffman@22972
   600
lemma sgn_zero_iff: "(sgn x = 0) = (x = 0)"
huffman@22973
   601
unfolding sgn_def by simp
huffman@22972
   602
huffman@22972
   603
lemma sgn_minus: "sgn (- x) = - sgn x"
huffman@22972
   604
unfolding sgn_def by simp
huffman@22972
   605
huffman@22973
   606
lemma sgn_scaleR: "sgn (scaleR r x) = scaleR (sgn r) (sgn x)"
huffman@22973
   607
unfolding sgn_def by (simp add: norm_scaleR mult_ac)
huffman@22973
   608
huffman@22972
   609
lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
huffman@22972
   610
unfolding sgn_def by simp
huffman@22972
   611
huffman@22972
   612
lemma sgn_of_real:
huffman@22972
   613
  "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
huffman@22972
   614
unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
huffman@22972
   615
huffman@22973
   616
lemma sgn_mult:
huffman@22973
   617
  fixes x y :: "'a::real_normed_div_algebra"
huffman@22973
   618
  shows "sgn (x * y) = sgn x * sgn y"
huffman@22973
   619
unfolding sgn_def by (simp add: norm_mult mult_commute)
huffman@22973
   620
huffman@22972
   621
lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
huffman@22973
   622
unfolding sgn_def by (simp add: divide_inverse)
huffman@22972
   623
huffman@22972
   624
lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
huffman@22972
   625
unfolding real_sgn_eq by simp
huffman@22972
   626
huffman@22972
   627
lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
huffman@22972
   628
unfolding real_sgn_eq by simp
huffman@22972
   629
huffman@22972
   630
huffman@22442
   631
subsection {* Bounded Linear and Bilinear Operators *}
huffman@22442
   632
huffman@22442
   633
locale bounded_linear = additive +
huffman@22442
   634
  constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
huffman@22442
   635
  assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
huffman@22442
   636
  assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   637
huffman@22442
   638
lemma (in bounded_linear) pos_bounded:
huffman@22442
   639
  "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   640
proof -
huffman@22442
   641
  obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
huffman@22442
   642
    using bounded by fast
huffman@22442
   643
  show ?thesis
huffman@22442
   644
  proof (intro exI impI conjI allI)
huffman@22442
   645
    show "0 < max 1 K"
huffman@22442
   646
      by (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   647
  next
huffman@22442
   648
    fix x
huffman@22442
   649
    have "norm (f x) \<le> norm x * K" using K .
huffman@22442
   650
    also have "\<dots> \<le> norm x * max 1 K"
huffman@22442
   651
      by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
huffman@22442
   652
    finally show "norm (f x) \<le> norm x * max 1 K" .
huffman@22442
   653
  qed
huffman@22442
   654
qed
huffman@22442
   655
huffman@22442
   656
lemma (in bounded_linear) nonneg_bounded:
huffman@22442
   657
  "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   658
proof -
huffman@22442
   659
  from pos_bounded
huffman@22442
   660
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   661
qed
huffman@22442
   662
huffman@22442
   663
locale bounded_bilinear =
huffman@22442
   664
  fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
huffman@22442
   665
                 \<Rightarrow> 'c::real_normed_vector"
huffman@22442
   666
    (infixl "**" 70)
huffman@22442
   667
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
huffman@22442
   668
  assumes add_right: "prod a (b + b') = prod a b + prod a b'"
huffman@22442
   669
  assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
huffman@22442
   670
  assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
huffman@22442
   671
  assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
huffman@22442
   672
huffman@22442
   673
lemma (in bounded_bilinear) pos_bounded:
huffman@22442
   674
  "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   675
apply (cut_tac bounded, erule exE)
huffman@22442
   676
apply (rule_tac x="max 1 K" in exI, safe)
huffman@22442
   677
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   678
apply (drule spec, drule spec, erule order_trans)
huffman@22442
   679
apply (rule mult_left_mono [OF le_maxI2])
huffman@22442
   680
apply (intro mult_nonneg_nonneg norm_ge_zero)
huffman@22442
   681
done
huffman@22442
   682
huffman@22442
   683
lemma (in bounded_bilinear) nonneg_bounded:
huffman@22442
   684
  "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   685
proof -
huffman@22442
   686
  from pos_bounded
huffman@22442
   687
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   688
qed
huffman@22442
   689
huffman@22442
   690
lemma (in bounded_bilinear) additive_right: "additive (\<lambda>b. prod a b)"
huffman@22442
   691
by (rule additive.intro, rule add_right)
huffman@22442
   692
huffman@22442
   693
lemma (in bounded_bilinear) additive_left: "additive (\<lambda>a. prod a b)"
huffman@22442
   694
by (rule additive.intro, rule add_left)
huffman@22442
   695
huffman@22442
   696
lemma (in bounded_bilinear) zero_left: "prod 0 b = 0"
huffman@22442
   697
by (rule additive.zero [OF additive_left])
huffman@22442
   698
huffman@22442
   699
lemma (in bounded_bilinear) zero_right: "prod a 0 = 0"
huffman@22442
   700
by (rule additive.zero [OF additive_right])
huffman@22442
   701
huffman@22442
   702
lemma (in bounded_bilinear) minus_left: "prod (- a) b = - prod a b"
huffman@22442
   703
by (rule additive.minus [OF additive_left])
huffman@22442
   704
huffman@22442
   705
lemma (in bounded_bilinear) minus_right: "prod a (- b) = - prod a b"
huffman@22442
   706
by (rule additive.minus [OF additive_right])
huffman@22442
   707
huffman@22442
   708
lemma (in bounded_bilinear) diff_left:
huffman@22442
   709
  "prod (a - a') b = prod a b - prod a' b"
huffman@22442
   710
by (rule additive.diff [OF additive_left])
huffman@22442
   711
huffman@22442
   712
lemma (in bounded_bilinear) diff_right:
huffman@22442
   713
  "prod a (b - b') = prod a b - prod a b'"
huffman@22442
   714
by (rule additive.diff [OF additive_right])
huffman@22442
   715
huffman@22442
   716
lemma (in bounded_bilinear) bounded_linear_left:
huffman@22442
   717
  "bounded_linear (\<lambda>a. a ** b)"
huffman@22442
   718
apply (unfold_locales)
huffman@22442
   719
apply (rule add_left)
huffman@22442
   720
apply (rule scaleR_left)
huffman@22442
   721
apply (cut_tac bounded, safe)
huffman@22442
   722
apply (rule_tac x="norm b * K" in exI)
huffman@22442
   723
apply (simp add: mult_ac)
huffman@22442
   724
done
huffman@22442
   725
huffman@22442
   726
lemma (in bounded_bilinear) bounded_linear_right:
huffman@22442
   727
  "bounded_linear (\<lambda>b. a ** b)"
huffman@22442
   728
apply (unfold_locales)
huffman@22442
   729
apply (rule add_right)
huffman@22442
   730
apply (rule scaleR_right)
huffman@22442
   731
apply (cut_tac bounded, safe)
huffman@22442
   732
apply (rule_tac x="norm a * K" in exI)
huffman@22442
   733
apply (simp add: mult_ac)
huffman@22442
   734
done
huffman@22442
   735
huffman@22442
   736
lemma (in bounded_bilinear) prod_diff_prod:
huffman@22442
   737
  "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
huffman@22442
   738
by (simp add: diff_left diff_right)
huffman@22442
   739
huffman@22442
   740
interpretation bounded_bilinear_mult:
huffman@22442
   741
  bounded_bilinear ["op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"]
huffman@22442
   742
apply (rule bounded_bilinear.intro)
huffman@22442
   743
apply (rule left_distrib)
huffman@22442
   744
apply (rule right_distrib)
huffman@22442
   745
apply (rule mult_scaleR_left)
huffman@22442
   746
apply (rule mult_scaleR_right)
huffman@22442
   747
apply (rule_tac x="1" in exI)
huffman@22442
   748
apply (simp add: norm_mult_ineq)
huffman@22442
   749
done
huffman@22442
   750
huffman@22442
   751
interpretation bounded_linear_mult_left:
huffman@22442
   752
  bounded_linear ["(\<lambda>x::'a::real_normed_algebra. x * y)"]
huffman@22442
   753
by (rule bounded_bilinear_mult.bounded_linear_left)
huffman@22442
   754
huffman@22442
   755
interpretation bounded_linear_mult_right:
huffman@22442
   756
  bounded_linear ["(\<lambda>y::'a::real_normed_algebra. x * y)"]
huffman@22442
   757
by (rule bounded_bilinear_mult.bounded_linear_right)
huffman@22442
   758
huffman@22442
   759
interpretation bounded_bilinear_scaleR:
huffman@22442
   760
  bounded_bilinear ["scaleR"]
huffman@22442
   761
apply (rule bounded_bilinear.intro)
huffman@22442
   762
apply (rule scaleR_left_distrib)
huffman@22442
   763
apply (rule scaleR_right_distrib)
huffman@22973
   764
apply simp
huffman@22442
   765
apply (rule scaleR_left_commute)
huffman@22442
   766
apply (rule_tac x="1" in exI)
huffman@22442
   767
apply (simp add: norm_scaleR)
huffman@22442
   768
done
huffman@22442
   769
huffman@22625
   770
interpretation bounded_linear_of_real:
huffman@22625
   771
  bounded_linear ["\<lambda>r. of_real r"]
huffman@22625
   772
apply (unfold of_real_def)
huffman@22625
   773
apply (rule bounded_bilinear_scaleR.bounded_linear_left)
huffman@22625
   774
done
huffman@22625
   775
huffman@20504
   776
end