src/HOL/List.thy
author nipkow
Thu Apr 27 17:40:17 2006 +0200 (2006-04-27)
changeset 19487 d5e79a41bce0
parent 19390 6c7383f80ad1
child 19585 70a1ce3b23ae
permissions -rw-r--r--
added zip/take/drop lemmas
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@13114
     6
header {* The datatype of finite lists *}
wenzelm@13122
     7
nipkow@15131
     8
theory List
nipkow@15140
     9
imports PreList
nipkow@15131
    10
begin
clasohm@923
    11
wenzelm@13142
    12
datatype 'a list =
wenzelm@13366
    13
    Nil    ("[]")
wenzelm@13366
    14
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    15
nipkow@15392
    16
subsection{*Basic list processing functions*}
nipkow@15302
    17
clasohm@923
    18
consts
wenzelm@13366
    19
  "@" :: "'a list => 'a list => 'a list"    (infixr 65)
wenzelm@13366
    20
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    21
  concat:: "'a list list => 'a list"
wenzelm@13366
    22
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    23
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    24
  hd:: "'a list => 'a"
wenzelm@13366
    25
  tl:: "'a list => 'a list"
wenzelm@13366
    26
  last:: "'a list => 'a"
wenzelm@13366
    27
  butlast :: "'a list => 'a list"
wenzelm@13366
    28
  set :: "'a list => 'a set"
wenzelm@13366
    29
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
wenzelm@13366
    30
  map :: "('a=>'b) => ('a list => 'b list)"
wenzelm@13366
    31
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    32
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    33
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    34
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    35
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    36
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    37
  rev :: "'a list => 'a list"
wenzelm@13366
    38
  zip :: "'a list => 'b list => ('a * 'b) list"
nipkow@15425
    39
  upt :: "nat => nat => nat list" ("(1[_..</_'])")
wenzelm@13366
    40
  remdups :: "'a list => 'a list"
nipkow@15110
    41
  remove1 :: "'a => 'a list => 'a list"
wenzelm@13366
    42
  null:: "'a list => bool"
wenzelm@13366
    43
  "distinct":: "'a list => bool"
wenzelm@13366
    44
  replicate :: "nat => 'a => 'a list"
nipkow@15302
    45
  rotate1 :: "'a list \<Rightarrow> 'a list"
nipkow@15302
    46
  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@19390
    47
  splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@15302
    48
  sublist :: "'a list => nat set => 'a list"
nipkow@17086
    49
(* For efficiency *)
nipkow@17086
    50
  mem :: "'a => 'a list => bool"    (infixl 55)
nipkow@17086
    51
  list_inter :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@17086
    52
  list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
nipkow@17086
    53
  list_all:: "('a => bool) => ('a list => bool)"
nipkow@17086
    54
  itrev :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@17086
    55
  filtermap :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list"
nipkow@17086
    56
  map_filter :: "('a => 'b) => ('a => bool) => 'a list => 'b list"
nipkow@15302
    57
wenzelm@19363
    58
abbreviation
wenzelm@19363
    59
  upto:: "nat => nat => nat list"    ("(1[_../_])")
wenzelm@19363
    60
  "[i..j] == [i..<(Suc j)]"
wenzelm@19302
    61
clasohm@923
    62
nipkow@13146
    63
nonterminals lupdbinds lupdbind
nipkow@5077
    64
clasohm@923
    65
syntax
wenzelm@13366
    66
  -- {* list Enumeration *}
wenzelm@13366
    67
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    68
wenzelm@13366
    69
  -- {* Special syntax for filter *}
wenzelm@13366
    70
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    71
wenzelm@13366
    72
  -- {* list update *}
wenzelm@13366
    73
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    74
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    75
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    76
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    77
clasohm@923
    78
translations
wenzelm@13366
    79
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    80
  "[x]" == "x#[]"
wenzelm@13366
    81
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    82
wenzelm@13366
    83
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    84
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    85
nipkow@5427
    86
wenzelm@12114
    87
syntax (xsymbols)
wenzelm@13366
    88
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
kleing@14565
    89
syntax (HTML output)
kleing@14565
    90
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
paulson@3342
    91
paulson@3342
    92
wenzelm@13142
    93
text {*
wenzelm@14589
    94
  Function @{text size} is overloaded for all datatypes. Users may
wenzelm@13366
    95
  refer to the list version as @{text length}. *}
wenzelm@13142
    96
wenzelm@19363
    97
abbreviation
wenzelm@19363
    98
  length :: "'a list => nat"
wenzelm@19363
    99
  "length == size"
nipkow@15302
   100
berghofe@5183
   101
primrec
paulson@15307
   102
  "hd(x#xs) = x"
paulson@15307
   103
berghofe@5183
   104
primrec
paulson@15307
   105
  "tl([]) = []"
paulson@15307
   106
  "tl(x#xs) = xs"
paulson@15307
   107
berghofe@5183
   108
primrec
paulson@15307
   109
  "null([]) = True"
paulson@15307
   110
  "null(x#xs) = False"
paulson@15307
   111
paulson@8972
   112
primrec
paulson@15307
   113
  "last(x#xs) = (if xs=[] then x else last xs)"
paulson@15307
   114
berghofe@5183
   115
primrec
paulson@15307
   116
  "butlast []= []"
paulson@15307
   117
  "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
paulson@15307
   118
berghofe@5183
   119
primrec
paulson@15307
   120
  "set [] = {}"
paulson@15307
   121
  "set (x#xs) = insert x (set xs)"
paulson@15307
   122
berghofe@5183
   123
primrec
paulson@15307
   124
  "map f [] = []"
paulson@15307
   125
  "map f (x#xs) = f(x)#map f xs"
paulson@15307
   126
berghofe@5183
   127
primrec
paulson@15307
   128
  append_Nil:"[]@ys = ys"
paulson@15307
   129
  append_Cons: "(x#xs)@ys = x#(xs@ys)"
paulson@15307
   130
berghofe@5183
   131
primrec
paulson@15307
   132
  "rev([]) = []"
paulson@15307
   133
  "rev(x#xs) = rev(xs) @ [x]"
paulson@15307
   134
berghofe@5183
   135
primrec
paulson@15307
   136
  "filter P [] = []"
paulson@15307
   137
  "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
paulson@15307
   138
berghofe@5183
   139
primrec
paulson@15307
   140
  foldl_Nil:"foldl f a [] = a"
paulson@15307
   141
  foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
paulson@15307
   142
paulson@8000
   143
primrec
paulson@15307
   144
  "foldr f [] a = a"
paulson@15307
   145
  "foldr f (x#xs) a = f x (foldr f xs a)"
paulson@15307
   146
berghofe@5183
   147
primrec
paulson@15307
   148
  "concat([]) = []"
paulson@15307
   149
  "concat(x#xs) = x @ concat(xs)"
paulson@15307
   150
berghofe@5183
   151
primrec
paulson@15307
   152
  drop_Nil:"drop n [] = []"
paulson@15307
   153
  drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
paulson@15307
   154
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   155
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   156
berghofe@5183
   157
primrec
paulson@15307
   158
  take_Nil:"take n [] = []"
paulson@15307
   159
  take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
paulson@15307
   160
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   161
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   162
wenzelm@13142
   163
primrec
paulson@15307
   164
  nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
paulson@15307
   165
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   166
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   167
berghofe@5183
   168
primrec
paulson@15307
   169
  "[][i:=v] = []"
paulson@15307
   170
  "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])"
paulson@15307
   171
paulson@15307
   172
primrec
paulson@15307
   173
  "takeWhile P [] = []"
paulson@15307
   174
  "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
paulson@15307
   175
berghofe@5183
   176
primrec
paulson@15307
   177
  "dropWhile P [] = []"
paulson@15307
   178
  "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
paulson@15307
   179
berghofe@5183
   180
primrec
paulson@15307
   181
  "zip xs [] = []"
paulson@15307
   182
  zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
paulson@15307
   183
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   184
       theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
paulson@15307
   185
nipkow@5427
   186
primrec
nipkow@15425
   187
  upt_0: "[i..<0] = []"
nipkow@15425
   188
  upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
paulson@15307
   189
berghofe@5183
   190
primrec
paulson@15307
   191
  "distinct [] = True"
paulson@15307
   192
  "distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
paulson@15307
   193
berghofe@5183
   194
primrec
paulson@15307
   195
  "remdups [] = []"
paulson@15307
   196
  "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
paulson@15307
   197
berghofe@5183
   198
primrec
paulson@15307
   199
  "remove1 x [] = []"
paulson@15307
   200
  "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
paulson@15307
   201
nipkow@15110
   202
primrec
paulson@15307
   203
  replicate_0: "replicate 0 x = []"
paulson@15307
   204
  replicate_Suc: "replicate (Suc n) x = x # replicate n x"
paulson@15307
   205
nipkow@8115
   206
defs
nipkow@15302
   207
rotate1_def: "rotate1 xs == (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
nipkow@15302
   208
rotate_def:  "rotate n == rotate1 ^ n"
nipkow@15302
   209
nipkow@15302
   210
list_all2_def:
nipkow@15302
   211
 "list_all2 P xs ys ==
nipkow@15302
   212
  length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)"
nipkow@15302
   213
nipkow@15302
   214
sublist_def:
nipkow@15425
   215
 "sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..<size xs]))"
nipkow@5281
   216
nipkow@17086
   217
primrec
nipkow@19390
   218
"splice [] ys = ys"
nipkow@19390
   219
"splice (x#xs) ys = (if ys=[] then x#xs else x # hd ys # splice xs (tl ys))"
nipkow@19390
   220
  -- {*Warning: simpset does not contain the second eqn but a derived one. *}
nipkow@19390
   221
nipkow@19390
   222
primrec
nipkow@17086
   223
  "x mem [] = False"
nipkow@17086
   224
  "x mem (y#ys) = (if y=x then True else x mem ys)"
nipkow@17086
   225
nipkow@17086
   226
primrec
nipkow@17086
   227
 "list_inter [] bs = []"
nipkow@17086
   228
 "list_inter (a#as) bs =
nipkow@17086
   229
  (if a \<in> set bs then a#(list_inter as bs) else list_inter as bs)"
nipkow@17086
   230
nipkow@17086
   231
primrec
nipkow@17086
   232
  "list_all P [] = True"
nipkow@17086
   233
  "list_all P (x#xs) = (P(x) \<and> list_all P xs)"
nipkow@17086
   234
nipkow@17086
   235
primrec
nipkow@17086
   236
"list_ex P [] = False"
nipkow@17086
   237
"list_ex P (x#xs) = (P x \<or> list_ex P xs)"
nipkow@17086
   238
nipkow@17086
   239
primrec
nipkow@17086
   240
 "filtermap f [] = []"
nipkow@17086
   241
 "filtermap f (x#xs) =
nipkow@17086
   242
    (case f x of None \<Rightarrow> filtermap f xs
nipkow@17086
   243
     | Some y \<Rightarrow> y # (filtermap f xs))"
nipkow@17086
   244
nipkow@17086
   245
primrec
nipkow@17086
   246
  "map_filter f P [] = []"
nipkow@17086
   247
  "map_filter f P (x#xs) = (if P x then f x # map_filter f P xs else 
nipkow@17086
   248
               map_filter f P xs)"
nipkow@17086
   249
nipkow@17086
   250
primrec
nipkow@17086
   251
"itrev [] ys = ys"
nipkow@17086
   252
"itrev (x#xs) ys = itrev xs (x#ys)"
nipkow@17086
   253
wenzelm@13114
   254
wenzelm@13142
   255
lemma not_Cons_self [simp]: "xs \<noteq> x # xs"
nipkow@13145
   256
by (induct xs) auto
wenzelm@13114
   257
wenzelm@13142
   258
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   259
wenzelm@13142
   260
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   261
by (induct xs) auto
wenzelm@13114
   262
wenzelm@13142
   263
lemma length_induct:
nipkow@13145
   264
"(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs"
nipkow@17589
   265
by (rule measure_induct [of length]) iprover
wenzelm@13114
   266
wenzelm@13114
   267
nipkow@15392
   268
subsubsection {* @{text length} *}
wenzelm@13114
   269
wenzelm@13142
   270
text {*
nipkow@13145
   271
Needs to come before @{text "@"} because of theorem @{text
nipkow@13145
   272
append_eq_append_conv}.
wenzelm@13142
   273
*}
wenzelm@13114
   274
wenzelm@13142
   275
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   276
by (induct xs) auto
wenzelm@13114
   277
wenzelm@13142
   278
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   279
by (induct xs) auto
wenzelm@13114
   280
wenzelm@13142
   281
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   282
by (induct xs) auto
wenzelm@13114
   283
wenzelm@13142
   284
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   285
by (cases xs) auto
wenzelm@13114
   286
wenzelm@13142
   287
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   288
by (induct xs) auto
wenzelm@13114
   289
wenzelm@13142
   290
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   291
by (induct xs) auto
wenzelm@13114
   292
wenzelm@13114
   293
lemma length_Suc_conv:
nipkow@13145
   294
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   295
by (induct xs) auto
wenzelm@13142
   296
nipkow@14025
   297
lemma Suc_length_conv:
nipkow@14025
   298
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   299
apply (induct xs, simp, simp)
nipkow@14025
   300
apply blast
nipkow@14025
   301
done
nipkow@14025
   302
oheimb@14099
   303
lemma impossible_Cons [rule_format]: 
oheimb@14099
   304
  "length xs <= length ys --> xs = x # ys = False"
paulson@14208
   305
apply (induct xs, auto)
oheimb@14099
   306
done
oheimb@14099
   307
nipkow@14247
   308
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   309
 \<lbrakk> length xs = length ys;
nipkow@14247
   310
   P [] [];
nipkow@14247
   311
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   312
 \<Longrightarrow> P xs ys"
nipkow@14247
   313
apply(induct xs)
nipkow@14247
   314
 apply simp
nipkow@14247
   315
apply(case_tac ys)
nipkow@14247
   316
 apply simp
nipkow@14247
   317
apply(simp)
nipkow@14247
   318
done
wenzelm@13114
   319
nipkow@15392
   320
subsubsection {* @{text "@"} -- append *}
wenzelm@13114
   321
wenzelm@13142
   322
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   323
by (induct xs) auto
wenzelm@13114
   324
wenzelm@13142
   325
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   326
by (induct xs) auto
nipkow@3507
   327
wenzelm@13142
   328
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   329
by (induct xs) auto
wenzelm@13114
   330
wenzelm@13142
   331
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   332
by (induct xs) auto
wenzelm@13114
   333
wenzelm@13142
   334
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   335
by (induct xs) auto
wenzelm@13114
   336
wenzelm@13142
   337
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   338
by (induct xs) auto
wenzelm@13114
   339
berghofe@13883
   340
lemma append_eq_append_conv [simp]:
berghofe@13883
   341
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   342
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   343
apply (induct xs)
paulson@14208
   344
 apply (case_tac ys, simp, force)
paulson@14208
   345
apply (case_tac ys, force, simp)
nipkow@13145
   346
done
wenzelm@13142
   347
nipkow@14495
   348
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   349
 (xs @ ys = zs @ ts) =
nipkow@14495
   350
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   351
apply (induct xs)
nipkow@14495
   352
 apply fastsimp
nipkow@14495
   353
apply(case_tac zs)
nipkow@14495
   354
 apply simp
nipkow@14495
   355
apply fastsimp
nipkow@14495
   356
done
nipkow@14495
   357
wenzelm@13142
   358
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   359
by simp
wenzelm@13142
   360
wenzelm@13142
   361
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   362
by simp
wenzelm@13114
   363
wenzelm@13142
   364
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   365
by simp
wenzelm@13114
   366
wenzelm@13142
   367
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   368
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   369
wenzelm@13142
   370
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   371
using append_same_eq [of "[]"] by auto
wenzelm@13114
   372
wenzelm@13142
   373
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   374
by (induct xs) auto
wenzelm@13114
   375
wenzelm@13142
   376
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   377
by (induct xs) auto
wenzelm@13114
   378
wenzelm@13142
   379
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   380
by (simp add: hd_append split: list.split)
wenzelm@13114
   381
wenzelm@13142
   382
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   383
by (simp split: list.split)
wenzelm@13114
   384
wenzelm@13142
   385
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   386
by (simp add: tl_append split: list.split)
wenzelm@13114
   387
wenzelm@13114
   388
nipkow@14300
   389
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   390
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   391
by(cases ys) auto
nipkow@14300
   392
nipkow@15281
   393
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
nipkow@15281
   394
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
nipkow@15281
   395
by(cases ys) auto
nipkow@15281
   396
nipkow@14300
   397
wenzelm@13142
   398
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   399
wenzelm@13114
   400
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   401
by simp
wenzelm@13114
   402
wenzelm@13142
   403
lemma Cons_eq_appendI:
nipkow@13145
   404
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   405
by (drule sym) simp
wenzelm@13114
   406
wenzelm@13142
   407
lemma append_eq_appendI:
nipkow@13145
   408
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   409
by (drule sym) simp
wenzelm@13114
   410
wenzelm@13114
   411
wenzelm@13142
   412
text {*
nipkow@13145
   413
Simplification procedure for all list equalities.
nipkow@13145
   414
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   415
- both lists end in a singleton list,
nipkow@13145
   416
- or both lists end in the same list.
wenzelm@13142
   417
*}
wenzelm@13142
   418
wenzelm@13142
   419
ML_setup {*
nipkow@3507
   420
local
nipkow@3507
   421
wenzelm@13122
   422
val append_assoc = thm "append_assoc";
wenzelm@13122
   423
val append_Nil = thm "append_Nil";
wenzelm@13122
   424
val append_Cons = thm "append_Cons";
wenzelm@13122
   425
val append1_eq_conv = thm "append1_eq_conv";
wenzelm@13122
   426
val append_same_eq = thm "append_same_eq";
wenzelm@13122
   427
wenzelm@13114
   428
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   429
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
wenzelm@13462
   430
  | last (Const("List.op @",_) $ _ $ ys) = last ys
wenzelm@13462
   431
  | last t = t;
wenzelm@13114
   432
wenzelm@13114
   433
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   434
  | list1 _ = false;
wenzelm@13114
   435
wenzelm@13114
   436
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   437
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
wenzelm@13462
   438
  | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   439
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   440
wenzelm@16973
   441
val rearr_ss = HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons];
wenzelm@16973
   442
wenzelm@16973
   443
fun list_eq sg ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   444
  let
wenzelm@13462
   445
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   446
    fun rearr conv =
wenzelm@13462
   447
      let
wenzelm@13462
   448
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   449
        val Type(_,listT::_) = eqT
wenzelm@13462
   450
        val appT = [listT,listT] ---> listT
wenzelm@13462
   451
        val app = Const("List.op @",appT)
wenzelm@13462
   452
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   453
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@17956
   454
        val thm = Goal.prove sg [] [] eq
wenzelm@17877
   455
          (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1));
skalberg@15531
   456
      in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   457
wenzelm@13462
   458
  in
wenzelm@13462
   459
    if list1 lastl andalso list1 lastr then rearr append1_eq_conv
wenzelm@13462
   460
    else if lastl aconv lastr then rearr append_same_eq
skalberg@15531
   461
    else NONE
wenzelm@13462
   462
  end;
wenzelm@13462
   463
wenzelm@13114
   464
in
wenzelm@13462
   465
wenzelm@13462
   466
val list_eq_simproc =
wenzelm@13462
   467
  Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] list_eq;
wenzelm@13462
   468
wenzelm@13114
   469
end;
wenzelm@13114
   470
wenzelm@13114
   471
Addsimprocs [list_eq_simproc];
wenzelm@13114
   472
*}
wenzelm@13114
   473
wenzelm@13114
   474
nipkow@15392
   475
subsubsection {* @{text map} *}
wenzelm@13114
   476
wenzelm@13142
   477
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   478
by (induct xs) simp_all
wenzelm@13114
   479
wenzelm@13142
   480
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   481
by (rule ext, induct_tac xs) auto
wenzelm@13114
   482
wenzelm@13142
   483
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   484
by (induct xs) auto
wenzelm@13114
   485
wenzelm@13142
   486
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   487
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   488
wenzelm@13142
   489
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   490
by (induct xs) auto
wenzelm@13114
   491
nipkow@13737
   492
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   493
by (induct xs) auto
nipkow@13737
   494
wenzelm@13366
   495
lemma map_cong [recdef_cong]:
nipkow@13145
   496
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   497
-- {* a congruence rule for @{text map} *}
nipkow@13737
   498
by simp
wenzelm@13114
   499
wenzelm@13142
   500
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   501
by (cases xs) auto
wenzelm@13114
   502
wenzelm@13142
   503
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   504
by (cases xs) auto
wenzelm@13114
   505
paulson@18447
   506
lemma map_eq_Cons_conv:
nipkow@14025
   507
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   508
by (cases xs) auto
wenzelm@13114
   509
paulson@18447
   510
lemma Cons_eq_map_conv:
nipkow@14025
   511
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   512
by (cases ys) auto
nipkow@14025
   513
paulson@18447
   514
lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1]
paulson@18447
   515
lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1]
paulson@18447
   516
declare map_eq_Cons_D [dest!]  Cons_eq_map_D [dest!]
paulson@18447
   517
nipkow@14111
   518
lemma ex_map_conv:
nipkow@14111
   519
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
paulson@18447
   520
by(induct ys, auto simp add: Cons_eq_map_conv)
nipkow@14111
   521
nipkow@15110
   522
lemma map_eq_imp_length_eq:
nipkow@15110
   523
  "!!xs. map f xs = map f ys ==> length xs = length ys"
nipkow@15110
   524
apply (induct ys)
nipkow@15110
   525
 apply simp
nipkow@15110
   526
apply(simp (no_asm_use))
nipkow@15110
   527
apply clarify
nipkow@15110
   528
apply(simp (no_asm_use))
nipkow@15110
   529
apply fast
nipkow@15110
   530
done
nipkow@15110
   531
nipkow@15110
   532
lemma map_inj_on:
nipkow@15110
   533
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
nipkow@15110
   534
  ==> xs = ys"
nipkow@15110
   535
apply(frule map_eq_imp_length_eq)
nipkow@15110
   536
apply(rotate_tac -1)
nipkow@15110
   537
apply(induct rule:list_induct2)
nipkow@15110
   538
 apply simp
nipkow@15110
   539
apply(simp)
nipkow@15110
   540
apply (blast intro:sym)
nipkow@15110
   541
done
nipkow@15110
   542
nipkow@15110
   543
lemma inj_on_map_eq_map:
nipkow@15110
   544
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@15110
   545
by(blast dest:map_inj_on)
nipkow@15110
   546
wenzelm@13114
   547
lemma map_injective:
nipkow@14338
   548
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   549
by (induct ys) (auto dest!:injD)
wenzelm@13114
   550
nipkow@14339
   551
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   552
by(blast dest:map_injective)
nipkow@14339
   553
wenzelm@13114
   554
lemma inj_mapI: "inj f ==> inj (map f)"
nipkow@17589
   555
by (iprover dest: map_injective injD intro: inj_onI)
wenzelm@13114
   556
wenzelm@13114
   557
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   558
apply (unfold inj_on_def, clarify)
nipkow@13145
   559
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   560
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   561
apply blast
nipkow@13145
   562
done
wenzelm@13114
   563
nipkow@14339
   564
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   565
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   566
nipkow@15303
   567
lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
nipkow@15303
   568
apply(rule inj_onI)
nipkow@15303
   569
apply(erule map_inj_on)
nipkow@15303
   570
apply(blast intro:inj_onI dest:inj_onD)
nipkow@15303
   571
done
nipkow@15303
   572
kleing@14343
   573
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   574
by (induct xs, auto)
wenzelm@13114
   575
nipkow@14402
   576
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   577
by (induct xs) auto
nipkow@14402
   578
nipkow@15110
   579
lemma map_fst_zip[simp]:
nipkow@15110
   580
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
nipkow@15110
   581
by (induct rule:list_induct2, simp_all)
nipkow@15110
   582
nipkow@15110
   583
lemma map_snd_zip[simp]:
nipkow@15110
   584
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
nipkow@15110
   585
by (induct rule:list_induct2, simp_all)
nipkow@15110
   586
nipkow@15110
   587
nipkow@15392
   588
subsubsection {* @{text rev} *}
wenzelm@13114
   589
wenzelm@13142
   590
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   591
by (induct xs) auto
wenzelm@13114
   592
wenzelm@13142
   593
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   594
by (induct xs) auto
wenzelm@13114
   595
kleing@15870
   596
lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
kleing@15870
   597
by auto
kleing@15870
   598
wenzelm@13142
   599
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   600
by (induct xs) auto
wenzelm@13114
   601
wenzelm@13142
   602
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   603
by (induct xs) auto
wenzelm@13114
   604
kleing@15870
   605
lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
kleing@15870
   606
by (cases xs) auto
kleing@15870
   607
kleing@15870
   608
lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
kleing@15870
   609
by (cases xs) auto
kleing@15870
   610
wenzelm@13142
   611
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)"
paulson@14208
   612
apply (induct xs, force)
paulson@14208
   613
apply (case_tac ys, simp, force)
nipkow@13145
   614
done
wenzelm@13114
   615
nipkow@15439
   616
lemma inj_on_rev[iff]: "inj_on rev A"
nipkow@15439
   617
by(simp add:inj_on_def)
nipkow@15439
   618
wenzelm@13366
   619
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   620
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
berghofe@15489
   621
apply(simplesubst rev_rev_ident[symmetric])
nipkow@13145
   622
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   623
done
wenzelm@13114
   624
nipkow@13145
   625
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   626
wenzelm@13366
   627
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   628
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   629
by (induct xs rule: rev_induct) auto
wenzelm@13114
   630
wenzelm@13366
   631
lemmas rev_cases = rev_exhaust
wenzelm@13366
   632
nipkow@18423
   633
lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
nipkow@18423
   634
by(rule rev_cases[of xs]) auto
nipkow@18423
   635
wenzelm@13114
   636
nipkow@15392
   637
subsubsection {* @{text set} *}
wenzelm@13114
   638
wenzelm@13142
   639
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   640
by (induct xs) auto
wenzelm@13114
   641
wenzelm@13142
   642
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   643
by (induct xs) auto
wenzelm@13114
   644
nipkow@17830
   645
lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs"
nipkow@17830
   646
by(cases xs) auto
oheimb@14099
   647
wenzelm@13142
   648
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   649
by auto
wenzelm@13114
   650
oheimb@14099
   651
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   652
by auto
oheimb@14099
   653
wenzelm@13142
   654
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   655
by (induct xs) auto
wenzelm@13114
   656
nipkow@15245
   657
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
nipkow@15245
   658
by(induct xs) auto
nipkow@15245
   659
wenzelm@13142
   660
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   661
by (induct xs) auto
wenzelm@13114
   662
wenzelm@13142
   663
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   664
by (induct xs) auto
wenzelm@13114
   665
wenzelm@13142
   666
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   667
by (induct xs) auto
wenzelm@13114
   668
nipkow@15425
   669
lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
paulson@14208
   670
apply (induct j, simp_all)
paulson@14208
   671
apply (erule ssubst, auto)
nipkow@13145
   672
done
wenzelm@13114
   673
wenzelm@13142
   674
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@15113
   675
proof (induct xs)
paulson@15113
   676
  case Nil show ?case by simp
paulson@15113
   677
  case (Cons a xs)
paulson@15113
   678
  show ?case
paulson@15113
   679
  proof 
paulson@15113
   680
    assume "x \<in> set (a # xs)"
paulson@15113
   681
    with prems show "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   682
      by (simp, blast intro: Cons_eq_appendI)
paulson@15113
   683
  next
paulson@15113
   684
    assume "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   685
    then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
paulson@15113
   686
    show "x \<in> set (a # xs)" 
paulson@15113
   687
      by (cases ys, auto simp add: eq)
paulson@15113
   688
  qed
paulson@15113
   689
qed
wenzelm@13142
   690
nipkow@18049
   691
lemma in_set_conv_decomp_first:
nipkow@18049
   692
 "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)"
nipkow@18049
   693
proof (induct xs)
nipkow@18049
   694
  case Nil show ?case by simp
nipkow@18049
   695
next
nipkow@18049
   696
  case (Cons a xs)
nipkow@18049
   697
  show ?case
nipkow@18049
   698
  proof cases
nipkow@18049
   699
    assume "x = a" thus ?case using Cons by force
nipkow@18049
   700
  next
nipkow@18049
   701
    assume "x \<noteq> a"
nipkow@18049
   702
    show ?case
nipkow@18049
   703
    proof
nipkow@18049
   704
      assume "x \<in> set (a # xs)"
nipkow@18049
   705
      from prems show "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys"
nipkow@18049
   706
	by(fastsimp intro!: Cons_eq_appendI)
nipkow@18049
   707
    next
nipkow@18049
   708
      assume "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys"
nipkow@18049
   709
      then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
nipkow@18049
   710
      show "x \<in> set (a # xs)" by (cases ys, auto simp add: eq)
nipkow@18049
   711
    qed
nipkow@18049
   712
  qed
nipkow@18049
   713
qed
nipkow@18049
   714
nipkow@18049
   715
lemmas split_list       = in_set_conv_decomp[THEN iffD1, standard]
nipkow@18049
   716
lemmas split_list_first = in_set_conv_decomp_first[THEN iffD1, standard]
nipkow@18049
   717
nipkow@18049
   718
paulson@13508
   719
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   720
apply (erule finite_induct, auto)
paulson@13508
   721
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   722
done
paulson@13508
   723
kleing@14388
   724
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   725
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   726
paulson@15168
   727
nipkow@15392
   728
subsubsection {* @{text filter} *}
wenzelm@13114
   729
wenzelm@13142
   730
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   731
by (induct xs) auto
wenzelm@13114
   732
nipkow@15305
   733
lemma rev_filter: "rev (filter P xs) = filter P (rev xs)"
nipkow@15305
   734
by (induct xs) simp_all
nipkow@15305
   735
wenzelm@13142
   736
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   737
by (induct xs) auto
wenzelm@13114
   738
nipkow@16998
   739
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
nipkow@16998
   740
by (induct xs) (auto simp add: le_SucI)
nipkow@16998
   741
nipkow@18423
   742
lemma sum_length_filter_compl:
nipkow@18423
   743
  "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs"
nipkow@18423
   744
by(induct xs) simp_all
nipkow@18423
   745
wenzelm@13142
   746
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   747
by (induct xs) auto
wenzelm@13114
   748
wenzelm@13142
   749
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   750
by (induct xs) auto
wenzelm@13114
   751
nipkow@16998
   752
lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" 
nipkow@16998
   753
  by (induct xs) simp_all
nipkow@16998
   754
nipkow@16998
   755
lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
nipkow@16998
   756
apply (induct xs)
nipkow@16998
   757
 apply auto
nipkow@16998
   758
apply(cut_tac P=P and xs=xs in length_filter_le)
nipkow@16998
   759
apply simp
nipkow@16998
   760
done
wenzelm@13114
   761
nipkow@16965
   762
lemma filter_map:
nipkow@16965
   763
  "filter P (map f xs) = map f (filter (P o f) xs)"
nipkow@16965
   764
by (induct xs) simp_all
nipkow@16965
   765
nipkow@16965
   766
lemma length_filter_map[simp]:
nipkow@16965
   767
  "length (filter P (map f xs)) = length(filter (P o f) xs)"
nipkow@16965
   768
by (simp add:filter_map)
nipkow@16965
   769
wenzelm@13142
   770
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   771
by auto
wenzelm@13114
   772
nipkow@15246
   773
lemma length_filter_less:
nipkow@15246
   774
  "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
nipkow@15246
   775
proof (induct xs)
nipkow@15246
   776
  case Nil thus ?case by simp
nipkow@15246
   777
next
nipkow@15246
   778
  case (Cons x xs) thus ?case
nipkow@15246
   779
    apply (auto split:split_if_asm)
nipkow@15246
   780
    using length_filter_le[of P xs] apply arith
nipkow@15246
   781
  done
nipkow@15246
   782
qed
wenzelm@13114
   783
nipkow@15281
   784
lemma length_filter_conv_card:
nipkow@15281
   785
 "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
nipkow@15281
   786
proof (induct xs)
nipkow@15281
   787
  case Nil thus ?case by simp
nipkow@15281
   788
next
nipkow@15281
   789
  case (Cons x xs)
nipkow@15281
   790
  let ?S = "{i. i < length xs & p(xs!i)}"
nipkow@15281
   791
  have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
nipkow@15281
   792
  show ?case (is "?l = card ?S'")
nipkow@15281
   793
  proof (cases)
nipkow@15281
   794
    assume "p x"
nipkow@15281
   795
    hence eq: "?S' = insert 0 (Suc ` ?S)"
nipkow@15281
   796
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   797
    have "length (filter p (x # xs)) = Suc(card ?S)"
nipkow@15281
   798
      using Cons by simp
nipkow@15281
   799
    also have "\<dots> = Suc(card(Suc ` ?S))" using fin
nipkow@15281
   800
      by (simp add: card_image inj_Suc)
nipkow@15281
   801
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   802
      by (simp add:card_insert_if) (simp add:image_def)
nipkow@15281
   803
    finally show ?thesis .
nipkow@15281
   804
  next
nipkow@15281
   805
    assume "\<not> p x"
nipkow@15281
   806
    hence eq: "?S' = Suc ` ?S"
nipkow@15281
   807
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   808
    have "length (filter p (x # xs)) = card ?S"
nipkow@15281
   809
      using Cons by simp
nipkow@15281
   810
    also have "\<dots> = card(Suc ` ?S)" using fin
nipkow@15281
   811
      by (simp add: card_image inj_Suc)
nipkow@15281
   812
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   813
      by (simp add:card_insert_if)
nipkow@15281
   814
    finally show ?thesis .
nipkow@15281
   815
  qed
nipkow@15281
   816
qed
nipkow@15281
   817
nipkow@17629
   818
lemma Cons_eq_filterD:
nipkow@17629
   819
 "x#xs = filter P ys \<Longrightarrow>
nipkow@17629
   820
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
nipkow@17629
   821
  (concl is "\<exists>us vs. ?P ys us vs")
nipkow@17629
   822
proof(induct ys)
nipkow@17629
   823
  case Nil thus ?case by simp
nipkow@17629
   824
next
nipkow@17629
   825
  case (Cons y ys)
nipkow@17629
   826
  show ?case (is "\<exists>x. ?Q x")
nipkow@17629
   827
  proof cases
nipkow@17629
   828
    assume Py: "P y"
nipkow@17629
   829
    show ?thesis
nipkow@17629
   830
    proof cases
nipkow@17629
   831
      assume xy: "x = y"
nipkow@17629
   832
      show ?thesis
nipkow@17629
   833
      proof from Py xy Cons(2) show "?Q []" by simp qed
nipkow@17629
   834
    next
nipkow@17629
   835
      assume "x \<noteq> y" with Py Cons(2) show ?thesis by simp
nipkow@17629
   836
    qed
nipkow@17629
   837
  next
nipkow@17629
   838
    assume Py: "\<not> P y"
nipkow@17629
   839
    with Cons obtain us vs where 1 : "?P (y#ys) (y#us) vs" by fastsimp
nipkow@17629
   840
    show ?thesis (is "? us. ?Q us")
nipkow@17629
   841
    proof show "?Q (y#us)" using 1 by simp qed
nipkow@17629
   842
  qed
nipkow@17629
   843
qed
nipkow@17629
   844
nipkow@17629
   845
lemma filter_eq_ConsD:
nipkow@17629
   846
 "filter P ys = x#xs \<Longrightarrow>
nipkow@17629
   847
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
nipkow@17629
   848
by(rule Cons_eq_filterD) simp
nipkow@17629
   849
nipkow@17629
   850
lemma filter_eq_Cons_iff:
nipkow@17629
   851
 "(filter P ys = x#xs) =
nipkow@17629
   852
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
nipkow@17629
   853
by(auto dest:filter_eq_ConsD)
nipkow@17629
   854
nipkow@17629
   855
lemma Cons_eq_filter_iff:
nipkow@17629
   856
 "(x#xs = filter P ys) =
nipkow@17629
   857
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
nipkow@17629
   858
by(auto dest:Cons_eq_filterD)
nipkow@17629
   859
krauss@18336
   860
lemma filter_cong[recdef_cong]:
nipkow@17501
   861
 "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
nipkow@17501
   862
apply simp
nipkow@17501
   863
apply(erule thin_rl)
nipkow@17501
   864
by (induct ys) simp_all
nipkow@17501
   865
nipkow@15281
   866
nipkow@15392
   867
subsubsection {* @{text concat} *}
wenzelm@13114
   868
wenzelm@13142
   869
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   870
by (induct xs) auto
wenzelm@13114
   871
paulson@18447
   872
lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   873
by (induct xss) auto
wenzelm@13114
   874
paulson@18447
   875
lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   876
by (induct xss) auto
wenzelm@13114
   877
wenzelm@13142
   878
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   879
by (induct xs) auto
wenzelm@13114
   880
wenzelm@13142
   881
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   882
by (induct xs) auto
wenzelm@13114
   883
wenzelm@13142
   884
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   885
by (induct xs) auto
wenzelm@13114
   886
wenzelm@13142
   887
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   888
by (induct xs) auto
wenzelm@13114
   889
wenzelm@13114
   890
nipkow@15392
   891
subsubsection {* @{text nth} *}
wenzelm@13114
   892
wenzelm@13142
   893
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   894
by auto
wenzelm@13114
   895
wenzelm@13142
   896
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   897
by auto
wenzelm@13114
   898
wenzelm@13142
   899
declare nth.simps [simp del]
wenzelm@13114
   900
wenzelm@13114
   901
lemma nth_append:
nipkow@13145
   902
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   903
apply (induct "xs", simp)
paulson@14208
   904
apply (case_tac n, auto)
nipkow@13145
   905
done
wenzelm@13114
   906
nipkow@14402
   907
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
   908
by (induct "xs") auto
nipkow@14402
   909
nipkow@14402
   910
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
   911
by (induct "xs") auto
nipkow@14402
   912
wenzelm@13142
   913
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
   914
apply (induct xs, simp)
paulson@14208
   915
apply (case_tac n, auto)
nipkow@13145
   916
done
wenzelm@13114
   917
nipkow@18423
   918
lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
nipkow@18423
   919
by(cases xs) simp_all
nipkow@18423
   920
nipkow@18049
   921
nipkow@18049
   922
lemma list_eq_iff_nth_eq:
nipkow@18049
   923
 "!!ys. (xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))"
nipkow@18049
   924
apply(induct xs)
nipkow@18049
   925
 apply simp apply blast
nipkow@18049
   926
apply(case_tac ys)
nipkow@18049
   927
 apply simp
nipkow@18049
   928
apply(simp add:nth_Cons split:nat.split)apply blast
nipkow@18049
   929
done
nipkow@18049
   930
wenzelm@13142
   931
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@15251
   932
apply (induct xs, simp, simp)
nipkow@13145
   933
apply safe
paulson@14208
   934
apply (rule_tac x = 0 in exI, simp)
paulson@14208
   935
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
   936
apply (case_tac i, simp)
nipkow@13145
   937
apply (rename_tac j)
paulson@14208
   938
apply (rule_tac x = j in exI, simp)
nipkow@13145
   939
done
wenzelm@13114
   940
nipkow@17501
   941
lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
nipkow@17501
   942
by(auto simp:set_conv_nth)
nipkow@17501
   943
nipkow@13145
   944
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
   945
by (auto simp add: set_conv_nth)
wenzelm@13114
   946
wenzelm@13142
   947
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
   948
by (auto simp add: set_conv_nth)
wenzelm@13114
   949
wenzelm@13114
   950
lemma all_nth_imp_all_set:
nipkow@13145
   951
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
   952
by (auto simp add: set_conv_nth)
wenzelm@13114
   953
wenzelm@13114
   954
lemma all_set_conv_all_nth:
nipkow@13145
   955
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
   956
by (auto simp add: set_conv_nth)
wenzelm@13114
   957
wenzelm@13114
   958
nipkow@15392
   959
subsubsection {* @{text list_update} *}
wenzelm@13114
   960
wenzelm@13142
   961
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
   962
by (induct xs) (auto split: nat.split)
wenzelm@13114
   963
wenzelm@13114
   964
lemma nth_list_update:
nipkow@13145
   965
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
   966
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   967
wenzelm@13142
   968
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
   969
by (simp add: nth_list_update)
wenzelm@13114
   970
wenzelm@13142
   971
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
   972
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   973
wenzelm@13142
   974
lemma list_update_overwrite [simp]:
nipkow@13145
   975
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
   976
by (induct xs) (auto split: nat.split)
wenzelm@13114
   977
nipkow@14402
   978
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
   979
apply (induct xs, simp)
nipkow@14187
   980
apply(simp split:nat.splits)
nipkow@14187
   981
done
nipkow@14187
   982
nipkow@17501
   983
lemma list_update_beyond[simp]: "\<And>i. length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
nipkow@17501
   984
apply (induct xs)
nipkow@17501
   985
 apply simp
nipkow@17501
   986
apply (case_tac i)
nipkow@17501
   987
apply simp_all
nipkow@17501
   988
done
nipkow@17501
   989
wenzelm@13114
   990
lemma list_update_same_conv:
nipkow@13145
   991
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
   992
by (induct xs) (auto split: nat.split)
wenzelm@13114
   993
nipkow@14187
   994
lemma list_update_append1:
nipkow@14187
   995
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
   996
apply (induct xs, simp)
nipkow@14187
   997
apply(simp split:nat.split)
nipkow@14187
   998
done
nipkow@14187
   999
kleing@15868
  1000
lemma list_update_append:
kleing@15868
  1001
  "!!n. (xs @ ys) [n:= x] = 
kleing@15868
  1002
  (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
kleing@15868
  1003
by (induct xs) (auto split:nat.splits)
kleing@15868
  1004
nipkow@14402
  1005
lemma list_update_length [simp]:
nipkow@14402
  1006
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
  1007
by (induct xs, auto)
nipkow@14402
  1008
wenzelm@13114
  1009
lemma update_zip:
nipkow@13145
  1010
"!!i xy xs. length xs = length ys ==>
nipkow@13145
  1011
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
  1012
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
  1013
wenzelm@13114
  1014
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
  1015
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1016
wenzelm@13114
  1017
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
  1018
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
  1019
kleing@15868
  1020
lemma set_update_memI: "!!n. n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
kleing@15868
  1021
by (induct xs) (auto split:nat.splits)
kleing@15868
  1022
wenzelm@13114
  1023
nipkow@15392
  1024
subsubsection {* @{text last} and @{text butlast} *}
wenzelm@13114
  1025
wenzelm@13142
  1026
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
  1027
by (induct xs) auto
wenzelm@13114
  1028
wenzelm@13142
  1029
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
  1030
by (induct xs) auto
wenzelm@13114
  1031
nipkow@14302
  1032
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
  1033
by(simp add:last.simps)
nipkow@14302
  1034
nipkow@14302
  1035
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
  1036
by(simp add:last.simps)
nipkow@14302
  1037
nipkow@14302
  1038
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
  1039
by (induct xs) (auto)
nipkow@14302
  1040
nipkow@14302
  1041
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
  1042
by(simp add:last_append)
nipkow@14302
  1043
nipkow@14302
  1044
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
  1045
by(simp add:last_append)
nipkow@14302
  1046
nipkow@17762
  1047
lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs"
nipkow@17762
  1048
by(rule rev_exhaust[of xs]) simp_all
nipkow@17762
  1049
nipkow@17762
  1050
lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs"
nipkow@17762
  1051
by(cases xs) simp_all
nipkow@17762
  1052
nipkow@17765
  1053
lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as"
nipkow@17765
  1054
by (induct as) auto
nipkow@17762
  1055
wenzelm@13142
  1056
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
  1057
by (induct xs rule: rev_induct) auto
wenzelm@13114
  1058
wenzelm@13114
  1059
lemma butlast_append:
nipkow@13145
  1060
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
  1061
by (induct xs) auto
wenzelm@13114
  1062
wenzelm@13142
  1063
lemma append_butlast_last_id [simp]:
nipkow@13145
  1064
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
  1065
by (induct xs) auto
wenzelm@13114
  1066
wenzelm@13142
  1067
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
  1068
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1069
wenzelm@13114
  1070
lemma in_set_butlast_appendI:
nipkow@13145
  1071
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
  1072
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
  1073
nipkow@17501
  1074
lemma last_drop[simp]: "!!n. n < length xs \<Longrightarrow> last (drop n xs) = last xs"
nipkow@17501
  1075
apply (induct xs)
nipkow@17501
  1076
 apply simp
nipkow@17501
  1077
apply (auto split:nat.split)
nipkow@17501
  1078
done
nipkow@17501
  1079
nipkow@17589
  1080
lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
nipkow@17589
  1081
by(induct xs)(auto simp:neq_Nil_conv)
nipkow@17589
  1082
wenzelm@13142
  1083
nipkow@15392
  1084
subsubsection {* @{text take} and @{text drop} *}
wenzelm@13114
  1085
wenzelm@13142
  1086
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
  1087
by (induct xs) auto
wenzelm@13114
  1088
wenzelm@13142
  1089
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
  1090
by (induct xs) auto
wenzelm@13114
  1091
wenzelm@13142
  1092
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
  1093
by simp
wenzelm@13114
  1094
wenzelm@13142
  1095
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
  1096
by simp
wenzelm@13114
  1097
wenzelm@13142
  1098
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
  1099
nipkow@15110
  1100
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
nipkow@15110
  1101
by(clarsimp simp add:neq_Nil_conv)
nipkow@15110
  1102
nipkow@14187
  1103
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
  1104
by(cases xs, simp_all)
nipkow@14187
  1105
nipkow@14187
  1106
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
  1107
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
  1108
nipkow@14187
  1109
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
  1110
apply (induct xs, simp)
nipkow@14187
  1111
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
  1112
done
nipkow@14187
  1113
nipkow@13913
  1114
lemma take_Suc_conv_app_nth:
nipkow@13913
  1115
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
  1116
apply (induct xs, simp)
paulson@14208
  1117
apply (case_tac i, auto)
nipkow@13913
  1118
done
nipkow@13913
  1119
mehta@14591
  1120
lemma drop_Suc_conv_tl:
mehta@14591
  1121
  "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
mehta@14591
  1122
apply (induct xs, simp)
mehta@14591
  1123
apply (case_tac i, auto)
mehta@14591
  1124
done
mehta@14591
  1125
wenzelm@13142
  1126
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
  1127
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1128
wenzelm@13142
  1129
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
  1130
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1131
wenzelm@13142
  1132
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
  1133
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1134
wenzelm@13142
  1135
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
  1136
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1137
wenzelm@13142
  1138
lemma take_append [simp]:
nipkow@13145
  1139
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
  1140
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1141
wenzelm@13142
  1142
lemma drop_append [simp]:
nipkow@13145
  1143
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
  1144
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1145
wenzelm@13142
  1146
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
  1147
apply (induct m, auto)
paulson@14208
  1148
apply (case_tac xs, auto)
nipkow@15236
  1149
apply (case_tac n, auto)
nipkow@13145
  1150
done
wenzelm@13114
  1151
wenzelm@13142
  1152
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
  1153
apply (induct m, auto)
paulson@14208
  1154
apply (case_tac xs, auto)
nipkow@13145
  1155
done
wenzelm@13114
  1156
wenzelm@13114
  1157
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
  1158
apply (induct m, auto)
paulson@14208
  1159
apply (case_tac xs, auto)
nipkow@13145
  1160
done
wenzelm@13114
  1161
nipkow@14802
  1162
lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)"
nipkow@14802
  1163
apply(induct xs)
nipkow@14802
  1164
 apply simp
nipkow@14802
  1165
apply(simp add: take_Cons drop_Cons split:nat.split)
nipkow@14802
  1166
done
nipkow@14802
  1167
wenzelm@13142
  1168
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
  1169
apply (induct n, auto)
paulson@14208
  1170
apply (case_tac xs, auto)
nipkow@13145
  1171
done
wenzelm@13114
  1172
nipkow@15110
  1173
lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])"
nipkow@15110
  1174
apply(induct xs)
nipkow@15110
  1175
 apply simp
nipkow@15110
  1176
apply(simp add:take_Cons split:nat.split)
nipkow@15110
  1177
done
nipkow@15110
  1178
nipkow@15110
  1179
lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)"
nipkow@15110
  1180
apply(induct xs)
nipkow@15110
  1181
apply simp
nipkow@15110
  1182
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1183
done
nipkow@15110
  1184
wenzelm@13114
  1185
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
  1186
apply (induct n, auto)
paulson@14208
  1187
apply (case_tac xs, auto)
nipkow@13145
  1188
done
wenzelm@13114
  1189
wenzelm@13142
  1190
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
  1191
apply (induct n, auto)
paulson@14208
  1192
apply (case_tac xs, auto)
nipkow@13145
  1193
done
wenzelm@13114
  1194
wenzelm@13114
  1195
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
  1196
apply (induct xs, auto)
paulson@14208
  1197
apply (case_tac i, auto)
nipkow@13145
  1198
done
wenzelm@13114
  1199
wenzelm@13114
  1200
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
  1201
apply (induct xs, auto)
paulson@14208
  1202
apply (case_tac i, auto)
nipkow@13145
  1203
done
wenzelm@13114
  1204
wenzelm@13142
  1205
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
  1206
apply (induct xs, auto)
paulson@14208
  1207
apply (case_tac n, blast)
paulson@14208
  1208
apply (case_tac i, auto)
nipkow@13145
  1209
done
wenzelm@13114
  1210
wenzelm@13142
  1211
lemma nth_drop [simp]:
nipkow@13145
  1212
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
  1213
apply (induct n, auto)
paulson@14208
  1214
apply (case_tac xs, auto)
nipkow@13145
  1215
done
nipkow@3507
  1216
nipkow@18423
  1217
lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n"
nipkow@18423
  1218
by(simp add: hd_conv_nth)
nipkow@18423
  1219
nipkow@14025
  1220
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
  1221
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
  1222
nipkow@14025
  1223
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
  1224
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
  1225
nipkow@14187
  1226
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1227
using set_take_subset by fast
nipkow@14187
  1228
nipkow@14187
  1229
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1230
using set_drop_subset by fast
nipkow@14187
  1231
wenzelm@13114
  1232
lemma append_eq_conv_conj:
nipkow@13145
  1233
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
  1234
apply (induct xs, simp, clarsimp)
paulson@14208
  1235
apply (case_tac zs, auto)
nipkow@13145
  1236
done
wenzelm@13142
  1237
paulson@14050
  1238
lemma take_add [rule_format]: 
paulson@14050
  1239
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
  1240
apply (induct xs, auto) 
paulson@14050
  1241
apply (case_tac i, simp_all) 
paulson@14050
  1242
done
paulson@14050
  1243
nipkow@14300
  1244
lemma append_eq_append_conv_if:
nipkow@14300
  1245
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
  1246
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
  1247
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
  1248
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
  1249
apply(induct xs\<^isub>1)
nipkow@14300
  1250
 apply simp
nipkow@14300
  1251
apply(case_tac ys\<^isub>1)
nipkow@14300
  1252
apply simp_all
nipkow@14300
  1253
done
nipkow@14300
  1254
nipkow@15110
  1255
lemma take_hd_drop:
nipkow@15110
  1256
  "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
nipkow@15110
  1257
apply(induct xs)
nipkow@15110
  1258
apply simp
nipkow@15110
  1259
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1260
done
nipkow@15110
  1261
nipkow@17501
  1262
lemma id_take_nth_drop:
nipkow@17501
  1263
 "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" 
nipkow@17501
  1264
proof -
nipkow@17501
  1265
  assume si: "i < length xs"
nipkow@17501
  1266
  hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
nipkow@17501
  1267
  moreover
nipkow@17501
  1268
  from si have "take (Suc i) xs = take i xs @ [xs!i]"
nipkow@17501
  1269
    apply (rule_tac take_Suc_conv_app_nth) by arith
nipkow@17501
  1270
  ultimately show ?thesis by auto
nipkow@17501
  1271
qed
nipkow@17501
  1272
  
nipkow@17501
  1273
lemma upd_conv_take_nth_drop:
nipkow@17501
  1274
 "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1275
proof -
nipkow@17501
  1276
  assume i: "i < length xs"
nipkow@17501
  1277
  have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]"
nipkow@17501
  1278
    by(rule arg_cong[OF id_take_nth_drop[OF i]])
nipkow@17501
  1279
  also have "\<dots> = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1280
    using i by (simp add: list_update_append)
nipkow@17501
  1281
  finally show ?thesis .
nipkow@17501
  1282
qed
nipkow@17501
  1283
wenzelm@13114
  1284
nipkow@15392
  1285
subsubsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
  1286
wenzelm@13142
  1287
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
  1288
by (induct xs) auto
wenzelm@13114
  1289
wenzelm@13142
  1290
lemma takeWhile_append1 [simp]:
nipkow@13145
  1291
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
  1292
by (induct xs) auto
wenzelm@13114
  1293
wenzelm@13142
  1294
lemma takeWhile_append2 [simp]:
nipkow@13145
  1295
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
  1296
by (induct xs) auto
wenzelm@13114
  1297
wenzelm@13142
  1298
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
  1299
by (induct xs) auto
wenzelm@13114
  1300
wenzelm@13142
  1301
lemma dropWhile_append1 [simp]:
nipkow@13145
  1302
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
  1303
by (induct xs) auto
wenzelm@13114
  1304
wenzelm@13142
  1305
lemma dropWhile_append2 [simp]:
nipkow@13145
  1306
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
  1307
by (induct xs) auto
wenzelm@13114
  1308
wenzelm@13142
  1309
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
  1310
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1311
nipkow@13913
  1312
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
  1313
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1314
by(induct xs, auto)
nipkow@13913
  1315
nipkow@13913
  1316
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
  1317
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1318
by(induct xs, auto)
nipkow@13913
  1319
nipkow@13913
  1320
lemma dropWhile_eq_Cons_conv:
nipkow@13913
  1321
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
  1322
by(induct xs, auto)
nipkow@13913
  1323
nipkow@17501
  1324
text{* The following two lemmmas could be generalized to an arbitrary
nipkow@17501
  1325
property. *}
nipkow@17501
  1326
nipkow@17501
  1327
lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1328
 takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
nipkow@17501
  1329
by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
nipkow@17501
  1330
nipkow@17501
  1331
lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1332
  dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
nipkow@17501
  1333
apply(induct xs)
nipkow@17501
  1334
 apply simp
nipkow@17501
  1335
apply auto
nipkow@17501
  1336
apply(subst dropWhile_append2)
nipkow@17501
  1337
apply auto
nipkow@17501
  1338
done
nipkow@17501
  1339
nipkow@18423
  1340
lemma takeWhile_not_last:
nipkow@18423
  1341
 "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
nipkow@18423
  1342
apply(induct xs)
nipkow@18423
  1343
 apply simp
nipkow@18423
  1344
apply(case_tac xs)
nipkow@18423
  1345
apply(auto)
nipkow@18423
  1346
done
nipkow@18423
  1347
krauss@18336
  1348
lemma takeWhile_cong [recdef_cong]:
krauss@18336
  1349
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
krauss@18336
  1350
  ==> takeWhile P l = takeWhile Q k"
krauss@18336
  1351
  by (induct k fixing: l, simp_all)
krauss@18336
  1352
krauss@18336
  1353
lemma dropWhile_cong [recdef_cong]:
krauss@18336
  1354
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
krauss@18336
  1355
  ==> dropWhile P l = dropWhile Q k"
krauss@18336
  1356
  by (induct k fixing: l, simp_all)
krauss@18336
  1357
wenzelm@13114
  1358
nipkow@15392
  1359
subsubsection {* @{text zip} *}
wenzelm@13114
  1360
wenzelm@13142
  1361
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1362
by (induct ys) auto
wenzelm@13114
  1363
wenzelm@13142
  1364
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1365
by simp
wenzelm@13114
  1366
wenzelm@13142
  1367
declare zip_Cons [simp del]
wenzelm@13114
  1368
nipkow@15281
  1369
lemma zip_Cons1:
nipkow@15281
  1370
 "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
nipkow@15281
  1371
by(auto split:list.split)
nipkow@15281
  1372
wenzelm@13142
  1373
lemma length_zip [simp]:
nipkow@13145
  1374
"!!xs. length (zip xs ys) = min (length xs) (length ys)"
paulson@14208
  1375
apply (induct ys, simp)
paulson@14208
  1376
apply (case_tac xs, auto)
nipkow@13145
  1377
done
wenzelm@13114
  1378
wenzelm@13114
  1379
lemma zip_append1:
nipkow@13145
  1380
"!!xs. zip (xs @ ys) zs =
nipkow@13145
  1381
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
paulson@14208
  1382
apply (induct zs, simp)
paulson@14208
  1383
apply (case_tac xs, simp_all)
nipkow@13145
  1384
done
wenzelm@13114
  1385
wenzelm@13114
  1386
lemma zip_append2:
nipkow@13145
  1387
"!!ys. zip xs (ys @ zs) =
nipkow@13145
  1388
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
paulson@14208
  1389
apply (induct xs, simp)
paulson@14208
  1390
apply (case_tac ys, simp_all)
nipkow@13145
  1391
done
wenzelm@13114
  1392
wenzelm@13142
  1393
lemma zip_append [simp]:
wenzelm@13142
  1394
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1395
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1396
by (simp add: zip_append1)
wenzelm@13114
  1397
wenzelm@13114
  1398
lemma zip_rev:
nipkow@14247
  1399
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1400
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1401
wenzelm@13142
  1402
lemma nth_zip [simp]:
nipkow@13145
  1403
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1404
apply (induct ys, simp)
nipkow@13145
  1405
apply (case_tac xs)
nipkow@13145
  1406
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1407
done
wenzelm@13114
  1408
wenzelm@13114
  1409
lemma set_zip:
nipkow@13145
  1410
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1411
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1412
wenzelm@13114
  1413
lemma zip_update:
nipkow@13145
  1414
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1415
by (rule sym, simp add: update_zip)
wenzelm@13114
  1416
wenzelm@13142
  1417
lemma zip_replicate [simp]:
nipkow@13145
  1418
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1419
apply (induct i, auto)
paulson@14208
  1420
apply (case_tac j, auto)
nipkow@13145
  1421
done
wenzelm@13114
  1422
nipkow@19487
  1423
lemma take_zip:
nipkow@19487
  1424
 "!!xs ys. take n (zip xs ys) = zip (take n xs) (take n ys)"
nipkow@19487
  1425
apply (induct n)
nipkow@19487
  1426
 apply simp
nipkow@19487
  1427
apply (case_tac xs, simp)
nipkow@19487
  1428
apply (case_tac ys, simp_all)
nipkow@19487
  1429
done
nipkow@19487
  1430
nipkow@19487
  1431
lemma drop_zip:
nipkow@19487
  1432
 "!!xs ys. drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
nipkow@19487
  1433
apply (induct n)
nipkow@19487
  1434
 apply simp
nipkow@19487
  1435
apply (case_tac xs, simp)
nipkow@19487
  1436
apply (case_tac ys, simp_all)
nipkow@19487
  1437
done
nipkow@19487
  1438
wenzelm@13142
  1439
nipkow@15392
  1440
subsubsection {* @{text list_all2} *}
wenzelm@13114
  1441
kleing@14316
  1442
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1443
  "list_all2 P xs ys ==> length xs = length ys"
nipkow@13145
  1444
by (simp add: list_all2_def)
wenzelm@13114
  1445
nipkow@17090
  1446
lemma list_all2_Nil [iff,code]: "list_all2 P [] ys = (ys = [])"
nipkow@13145
  1447
by (simp add: list_all2_def)
wenzelm@13114
  1448
wenzelm@13142
  1449
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])"
nipkow@13145
  1450
by (simp add: list_all2_def)
wenzelm@13114
  1451
nipkow@17090
  1452
lemma list_all2_Cons [iff,code]:
nipkow@13145
  1453
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
nipkow@13145
  1454
by (auto simp add: list_all2_def)
wenzelm@13114
  1455
wenzelm@13114
  1456
lemma list_all2_Cons1:
nipkow@13145
  1457
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1458
by (cases ys) auto
wenzelm@13114
  1459
wenzelm@13114
  1460
lemma list_all2_Cons2:
nipkow@13145
  1461
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1462
by (cases xs) auto
wenzelm@13114
  1463
wenzelm@13142
  1464
lemma list_all2_rev [iff]:
nipkow@13145
  1465
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1466
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1467
kleing@13863
  1468
lemma list_all2_rev1:
kleing@13863
  1469
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1470
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1471
wenzelm@13114
  1472
lemma list_all2_append1:
nipkow@13145
  1473
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1474
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1475
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1476
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1477
apply (rule iffI)
nipkow@13145
  1478
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1479
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1480
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1481
apply (simp add: ball_Un)
nipkow@13145
  1482
done
wenzelm@13114
  1483
wenzelm@13114
  1484
lemma list_all2_append2:
nipkow@13145
  1485
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1486
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1487
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1488
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1489
apply (rule iffI)
nipkow@13145
  1490
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1491
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1492
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1493
apply (simp add: ball_Un)
nipkow@13145
  1494
done
wenzelm@13114
  1495
kleing@13863
  1496
lemma list_all2_append:
nipkow@14247
  1497
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1498
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1499
by (induct rule:list_induct2, simp_all)
kleing@13863
  1500
kleing@13863
  1501
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1502
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1503
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1504
wenzelm@13114
  1505
lemma list_all2_conv_all_nth:
nipkow@13145
  1506
"list_all2 P xs ys =
nipkow@13145
  1507
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1508
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1509
berghofe@13883
  1510
lemma list_all2_trans:
berghofe@13883
  1511
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1512
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1513
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1514
proof (induct as)
berghofe@13883
  1515
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1516
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1517
  proof (induct bs)
berghofe@13883
  1518
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1519
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1520
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1521
  qed simp
berghofe@13883
  1522
qed simp
berghofe@13883
  1523
kleing@13863
  1524
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1525
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1526
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1527
paulson@14395
  1528
lemma list_all2I:
paulson@14395
  1529
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1530
  by (simp add: list_all2_def)
paulson@14395
  1531
kleing@14328
  1532
lemma list_all2_nthD:
kleing@13863
  1533
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1534
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1535
nipkow@14302
  1536
lemma list_all2_nthD2:
nipkow@14302
  1537
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1538
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1539
kleing@13863
  1540
lemma list_all2_map1: 
kleing@13863
  1541
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1542
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1543
kleing@13863
  1544
lemma list_all2_map2: 
kleing@13863
  1545
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1546
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1547
kleing@14316
  1548
lemma list_all2_refl [intro?]:
kleing@13863
  1549
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1550
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1551
kleing@13863
  1552
lemma list_all2_update_cong:
kleing@13863
  1553
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1554
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1555
kleing@13863
  1556
lemma list_all2_update_cong2:
kleing@13863
  1557
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1558
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1559
nipkow@14302
  1560
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1561
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1562
  apply (induct xs)
nipkow@14302
  1563
   apply simp
nipkow@14302
  1564
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1565
  apply (case_tac n)
nipkow@14302
  1566
  apply auto
nipkow@14302
  1567
  done
nipkow@14302
  1568
nipkow@14302
  1569
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1570
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1571
  apply (induct as, simp)
kleing@13863
  1572
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1573
  apply (case_tac n, simp, simp)
kleing@13863
  1574
  done
kleing@13863
  1575
kleing@14327
  1576
lemma list_all2_mono [intro?]:
kleing@13863
  1577
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1578
  apply (induct x, simp)
paulson@14208
  1579
  apply (case_tac y, auto)
kleing@13863
  1580
  done
kleing@13863
  1581
wenzelm@13142
  1582
nipkow@15392
  1583
subsubsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1584
wenzelm@13142
  1585
lemma foldl_append [simp]:
nipkow@13145
  1586
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1587
by (induct xs) auto
wenzelm@13142
  1588
nipkow@14402
  1589
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1590
by (induct xs) auto
nipkow@14402
  1591
krauss@18336
  1592
lemma foldl_cong [recdef_cong]:
krauss@18336
  1593
  "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] 
krauss@18336
  1594
  ==> foldl f a l = foldl g b k"
krauss@18336
  1595
  by (induct k fixing: a b l, simp_all)
krauss@18336
  1596
krauss@18336
  1597
lemma foldr_cong [recdef_cong]:
krauss@18336
  1598
  "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] 
krauss@18336
  1599
  ==> foldr f l a = foldr g k b"
krauss@18336
  1600
  by (induct k fixing: a b l, simp_all)
krauss@18336
  1601
nipkow@14402
  1602
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1603
by (induct xs) auto
nipkow@14402
  1604
nipkow@14402
  1605
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1606
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1607
wenzelm@13142
  1608
text {*
nipkow@13145
  1609
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1610
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1611
*}
wenzelm@13142
  1612
wenzelm@13142
  1613
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1614
by (induct ns) auto
wenzelm@13142
  1615
wenzelm@13142
  1616
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1617
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1618
wenzelm@13142
  1619
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1620
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1621
by (induct ns) auto
wenzelm@13114
  1622
wenzelm@13114
  1623
nipkow@15392
  1624
subsubsection {* @{text upto} *}
wenzelm@13114
  1625
nipkow@17090
  1626
lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
nipkow@17090
  1627
-- {* simp does not terminate! *}
nipkow@13145
  1628
by (induct j) auto
wenzelm@13142
  1629
nipkow@15425
  1630
lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
nipkow@13145
  1631
by (subst upt_rec) simp
wenzelm@13114
  1632
nipkow@15425
  1633
lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
nipkow@15281
  1634
by(induct j)simp_all
nipkow@15281
  1635
nipkow@15281
  1636
lemma upt_eq_Cons_conv:
nipkow@15425
  1637
 "!!x xs. ([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)"
nipkow@15281
  1638
apply(induct j)
nipkow@15281
  1639
 apply simp
nipkow@15281
  1640
apply(clarsimp simp add: append_eq_Cons_conv)
nipkow@15281
  1641
apply arith
nipkow@15281
  1642
done
nipkow@15281
  1643
nipkow@15425
  1644
lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
nipkow@13145
  1645
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1646
by simp
wenzelm@13114
  1647
nipkow@15425
  1648
lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
nipkow@13145
  1649
apply(rule trans)
nipkow@13145
  1650
apply(subst upt_rec)
paulson@14208
  1651
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1652
done
wenzelm@13114
  1653
nipkow@15425
  1654
lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
nipkow@13145
  1655
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1656
by (induct k) auto
wenzelm@13114
  1657
nipkow@15425
  1658
lemma length_upt [simp]: "length [i..<j] = j - i"
nipkow@13145
  1659
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1660
nipkow@15425
  1661
lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
nipkow@13145
  1662
apply (induct j)
nipkow@13145
  1663
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1664
done
wenzelm@13114
  1665
nipkow@17906
  1666
nipkow@17906
  1667
lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
nipkow@17906
  1668
by(simp add:upt_conv_Cons)
nipkow@17906
  1669
nipkow@17906
  1670
lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
nipkow@17906
  1671
apply(cases j)
nipkow@17906
  1672
 apply simp
nipkow@17906
  1673
by(simp add:upt_Suc_append)
nipkow@17906
  1674
nipkow@15425
  1675
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..<n] = [i..<i+m]"
paulson@14208
  1676
apply (induct m, simp)
nipkow@13145
  1677
apply (subst upt_rec)
nipkow@13145
  1678
apply (rule sym)
nipkow@13145
  1679
apply (subst upt_rec)
nipkow@13145
  1680
apply (simp del: upt.simps)
nipkow@13145
  1681
done
nipkow@3507
  1682
nipkow@17501
  1683
lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
nipkow@17501
  1684
apply(induct j)
nipkow@17501
  1685
apply auto
nipkow@17501
  1686
apply arith
nipkow@17501
  1687
done
nipkow@17501
  1688
nipkow@15425
  1689
lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..n]"
nipkow@13145
  1690
by (induct n) auto
wenzelm@13114
  1691
nipkow@15425
  1692
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
nipkow@13145
  1693
apply (induct n m rule: diff_induct)
nipkow@13145
  1694
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1695
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1696
done
wenzelm@13114
  1697
berghofe@13883
  1698
lemma nth_take_lemma:
berghofe@13883
  1699
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1700
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1701
apply (atomize, induct k)
paulson@14208
  1702
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1703
txt {* Both lists must be non-empty *}
paulson@14208
  1704
apply (case_tac xs, simp)
paulson@14208
  1705
apply (case_tac ys, clarify)
nipkow@13145
  1706
 apply (simp (no_asm_use))
nipkow@13145
  1707
apply clarify
nipkow@13145
  1708
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1709
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1710
apply blast
nipkow@13145
  1711
done
wenzelm@13114
  1712
wenzelm@13114
  1713
lemma nth_equalityI:
wenzelm@13114
  1714
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1715
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1716
apply (simp_all add: take_all)
nipkow@13145
  1717
done
wenzelm@13142
  1718
kleing@13863
  1719
(* needs nth_equalityI *)
kleing@13863
  1720
lemma list_all2_antisym:
kleing@13863
  1721
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1722
  \<Longrightarrow> xs = ys"
kleing@13863
  1723
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1724
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1725
  done
kleing@13863
  1726
wenzelm@13142
  1727
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1728
-- {* The famous take-lemma. *}
nipkow@13145
  1729
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1730
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1731
done
wenzelm@13142
  1732
wenzelm@13142
  1733
nipkow@15302
  1734
lemma take_Cons':
nipkow@15302
  1735
     "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@15302
  1736
by (cases n) simp_all
nipkow@15302
  1737
nipkow@15302
  1738
lemma drop_Cons':
nipkow@15302
  1739
     "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@15302
  1740
by (cases n) simp_all
nipkow@15302
  1741
nipkow@15302
  1742
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@15302
  1743
by (cases n) simp_all
nipkow@15302
  1744
paulson@18622
  1745
lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard]
paulson@18622
  1746
lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard]
paulson@18622
  1747
lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard]
paulson@18622
  1748
paulson@18622
  1749
declare take_Cons_number_of [simp] 
paulson@18622
  1750
        drop_Cons_number_of [simp] 
paulson@18622
  1751
        nth_Cons_number_of [simp] 
nipkow@15302
  1752
nipkow@15302
  1753
nipkow@15392
  1754
subsubsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1755
wenzelm@13142
  1756
lemma distinct_append [simp]:
nipkow@13145
  1757
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1758
by (induct xs) auto
wenzelm@13142
  1759
nipkow@15305
  1760
lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs"
nipkow@15305
  1761
by(induct xs) auto
nipkow@15305
  1762
wenzelm@13142
  1763
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1764
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1765
wenzelm@13142
  1766
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1767
by (induct xs) auto
wenzelm@13142
  1768
paulson@15072
  1769
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
paulson@15251
  1770
  by (induct x, auto) 
paulson@15072
  1771
paulson@15072
  1772
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
paulson@15251
  1773
  by (induct x, auto)
paulson@15072
  1774
nipkow@15245
  1775
lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
nipkow@15245
  1776
by (induct xs) auto
nipkow@15245
  1777
nipkow@15245
  1778
lemma length_remdups_eq[iff]:
nipkow@15245
  1779
  "(length (remdups xs) = length xs) = (remdups xs = xs)"
nipkow@15245
  1780
apply(induct xs)
nipkow@15245
  1781
 apply auto
nipkow@15245
  1782
apply(subgoal_tac "length (remdups xs) <= length xs")
nipkow@15245
  1783
 apply arith
nipkow@15245
  1784
apply(rule length_remdups_leq)
nipkow@15245
  1785
done
nipkow@15245
  1786
nipkow@18490
  1787
nipkow@18490
  1788
lemma distinct_map:
nipkow@18490
  1789
  "distinct(map f xs) = (distinct xs & inj_on f (set xs))"
nipkow@18490
  1790
by (induct xs) auto
nipkow@18490
  1791
nipkow@18490
  1792
wenzelm@13142
  1793
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1794
by (induct xs) auto
wenzelm@13114
  1795
nipkow@17501
  1796
lemma distinct_upt[simp]: "distinct[i..<j]"
nipkow@17501
  1797
by (induct j) auto
nipkow@17501
  1798
nipkow@17501
  1799
lemma distinct_take[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (take i xs)"
nipkow@17501
  1800
apply(induct xs)
nipkow@17501
  1801
 apply simp
nipkow@17501
  1802
apply (case_tac i)
nipkow@17501
  1803
 apply simp_all
nipkow@17501
  1804
apply(blast dest:in_set_takeD)
nipkow@17501
  1805
done
nipkow@17501
  1806
nipkow@17501
  1807
lemma distinct_drop[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (drop i xs)"
nipkow@17501
  1808
apply(induct xs)
nipkow@17501
  1809
 apply simp
nipkow@17501
  1810
apply (case_tac i)
nipkow@17501
  1811
 apply simp_all
nipkow@17501
  1812
done
nipkow@17501
  1813
nipkow@17501
  1814
lemma distinct_list_update:
nipkow@17501
  1815
assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
nipkow@17501
  1816
shows "distinct (xs[i:=a])"
nipkow@17501
  1817
proof (cases "i < length xs")
nipkow@17501
  1818
  case True
nipkow@17501
  1819
  with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
nipkow@17501
  1820
    apply (drule_tac id_take_nth_drop) by simp
nipkow@17501
  1821
  with d True show ?thesis
nipkow@17501
  1822
    apply (simp add: upd_conv_take_nth_drop)
nipkow@17501
  1823
    apply (drule subst [OF id_take_nth_drop]) apply assumption
nipkow@17501
  1824
    apply simp apply (cases "a = xs!i") apply simp by blast
nipkow@17501
  1825
next
nipkow@17501
  1826
  case False with d show ?thesis by auto
nipkow@17501
  1827
qed
nipkow@17501
  1828
nipkow@17501
  1829
nipkow@17501
  1830
text {* It is best to avoid this indexed version of distinct, but
nipkow@17501
  1831
sometimes it is useful. *}
nipkow@17501
  1832
wenzelm@13142
  1833
lemma distinct_conv_nth:
nipkow@17501
  1834
"distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@15251
  1835
apply (induct xs, simp, simp)
paulson@14208
  1836
apply (rule iffI, clarsimp)
nipkow@13145
  1837
 apply (case_tac i)
paulson@14208
  1838
apply (case_tac j, simp)
nipkow@13145
  1839
apply (simp add: set_conv_nth)
nipkow@13145
  1840
 apply (case_tac j)
paulson@14208
  1841
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  1842
apply (rule conjI)
nipkow@13145
  1843
 apply (clarsimp simp add: set_conv_nth)
nipkow@17501
  1844
 apply (erule_tac x = 0 in allE, simp)
paulson@14208
  1845
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@17501
  1846
apply (erule_tac x = "Suc i" in allE, simp)
paulson@14208
  1847
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  1848
done
wenzelm@13114
  1849
nipkow@18490
  1850
lemma nth_eq_iff_index_eq:
nipkow@18490
  1851
 "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)"
nipkow@18490
  1852
by(auto simp: distinct_conv_nth)
nipkow@18490
  1853
nipkow@15110
  1854
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
kleing@14388
  1855
  by (induct xs) auto
kleing@14388
  1856
nipkow@15110
  1857
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
kleing@14388
  1858
proof (induct xs)
kleing@14388
  1859
  case Nil thus ?case by simp
kleing@14388
  1860
next
kleing@14388
  1861
  case (Cons x xs)
kleing@14388
  1862
  show ?case
kleing@14388
  1863
  proof (cases "x \<in> set xs")
kleing@14388
  1864
    case False with Cons show ?thesis by simp
kleing@14388
  1865
  next
kleing@14388
  1866
    case True with Cons.prems
kleing@14388
  1867
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1868
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1869
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1870
    ultimately have False by simp
kleing@14388
  1871
    thus ?thesis ..
kleing@14388
  1872
  qed
kleing@14388
  1873
qed
kleing@14388
  1874
nipkow@18490
  1875
nipkow@18490
  1876
lemma length_remdups_concat:
nipkow@18490
  1877
 "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)"
nipkow@18490
  1878
by(simp add: distinct_card[symmetric])
nipkow@17906
  1879
nipkow@17906
  1880
nipkow@15392
  1881
subsubsection {* @{text remove1} *}
nipkow@15110
  1882
nipkow@18049
  1883
lemma remove1_append:
nipkow@18049
  1884
  "remove1 x (xs @ ys) =
nipkow@18049
  1885
  (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)"
nipkow@18049
  1886
by (induct xs) auto
nipkow@18049
  1887
nipkow@15110
  1888
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
nipkow@15110
  1889
apply(induct xs)
nipkow@15110
  1890
 apply simp
nipkow@15110
  1891
apply simp
nipkow@15110
  1892
apply blast
nipkow@15110
  1893
done
nipkow@15110
  1894
paulson@17724
  1895
lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
nipkow@15110
  1896
apply(induct xs)
nipkow@15110
  1897
 apply simp
nipkow@15110
  1898
apply simp
nipkow@15110
  1899
apply blast
nipkow@15110
  1900
done
nipkow@15110
  1901
nipkow@18049
  1902
lemma remove1_filter_not[simp]:
nipkow@18049
  1903
  "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs"
nipkow@18049
  1904
by(induct xs) auto
nipkow@18049
  1905
nipkow@15110
  1906
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
nipkow@15110
  1907
apply(insert set_remove1_subset)
nipkow@15110
  1908
apply fast
nipkow@15110
  1909
done
nipkow@15110
  1910
nipkow@15110
  1911
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
nipkow@15110
  1912
by (induct xs) simp_all
nipkow@15110
  1913
wenzelm@13114
  1914
nipkow@15392
  1915
subsubsection {* @{text replicate} *}
wenzelm@13114
  1916
wenzelm@13142
  1917
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  1918
by (induct n) auto
nipkow@13124
  1919
wenzelm@13142
  1920
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  1921
by (induct n) auto
wenzelm@13114
  1922
wenzelm@13114
  1923
lemma replicate_app_Cons_same:
nipkow@13145
  1924
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  1925
by (induct n) auto
wenzelm@13114
  1926
wenzelm@13142
  1927
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  1928
apply (induct n, simp)
nipkow@13145
  1929
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  1930
done
wenzelm@13114
  1931
wenzelm@13142
  1932
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  1933
by (induct n) auto
wenzelm@13114
  1934
nipkow@16397
  1935
text{* Courtesy of Matthias Daum: *}
nipkow@16397
  1936
lemma append_replicate_commute:
nipkow@16397
  1937
  "replicate n x @ replicate k x = replicate k x @ replicate n x"
nipkow@16397
  1938
apply (simp add: replicate_add [THEN sym])
nipkow@16397
  1939
apply (simp add: add_commute)
nipkow@16397
  1940
done
nipkow@16397
  1941
wenzelm@13142
  1942
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  1943
by (induct n) auto
wenzelm@13114
  1944
wenzelm@13142
  1945
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  1946
by (induct n) auto
wenzelm@13114
  1947
wenzelm@13142
  1948
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  1949
by (atomize (full), induct n) auto
wenzelm@13114
  1950
wenzelm@13142
  1951
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  1952
apply (induct n, simp)
nipkow@13145
  1953
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  1954
done
wenzelm@13114
  1955
nipkow@16397
  1956
text{* Courtesy of Matthias Daum (2 lemmas): *}
nipkow@16397
  1957
lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
nipkow@16397
  1958
apply (case_tac "k \<le> i")
nipkow@16397
  1959
 apply  (simp add: min_def)
nipkow@16397
  1960
apply (drule not_leE)
nipkow@16397
  1961
apply (simp add: min_def)
nipkow@16397
  1962
apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
nipkow@16397
  1963
 apply  simp
nipkow@16397
  1964
apply (simp add: replicate_add [symmetric])
nipkow@16397
  1965
done
nipkow@16397
  1966
nipkow@16397
  1967
lemma drop_replicate[simp]: "!!i. drop i (replicate k x) = replicate (k-i) x"
nipkow@16397
  1968
apply (induct k)
nipkow@16397
  1969
 apply simp
nipkow@16397
  1970
apply clarsimp
nipkow@16397
  1971
apply (case_tac i)
nipkow@16397
  1972
 apply simp
nipkow@16397
  1973
apply clarsimp
nipkow@16397
  1974
done
nipkow@16397
  1975
nipkow@16397
  1976
wenzelm@13142
  1977
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  1978
by (induct n) auto
wenzelm@13114
  1979
wenzelm@13142
  1980
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  1981
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  1982
wenzelm@13142
  1983
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  1984
by auto
wenzelm@13114
  1985
wenzelm@13142
  1986
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  1987
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  1988
wenzelm@13114
  1989
nipkow@15392
  1990
subsubsection{*@{text rotate1} and @{text rotate}*}
nipkow@15302
  1991
nipkow@15302
  1992
lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]"
nipkow@15302
  1993
by(simp add:rotate1_def)
nipkow@15302
  1994
nipkow@15302
  1995
lemma rotate0[simp]: "rotate 0 = id"
nipkow@15302
  1996
by(simp add:rotate_def)
nipkow@15302
  1997
nipkow@15302
  1998
lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)"
nipkow@15302
  1999
by(simp add:rotate_def)
nipkow@15302
  2000
nipkow@15302
  2001
lemma rotate_add:
nipkow@15302
  2002
  "rotate (m+n) = rotate m o rotate n"
nipkow@15302
  2003
by(simp add:rotate_def funpow_add)
nipkow@15302
  2004
nipkow@15302
  2005
lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs"
nipkow@15302
  2006
by(simp add:rotate_add)
nipkow@15302
  2007
nipkow@18049
  2008
lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)"
nipkow@18049
  2009
by(simp add:rotate_def funpow_swap1)
nipkow@18049
  2010
nipkow@15302
  2011
lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
nipkow@15302
  2012
by(cases xs) simp_all
nipkow@15302
  2013
nipkow@15302
  2014
lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  2015
apply(induct n)
nipkow@15302
  2016
 apply simp
nipkow@15302
  2017
apply (simp add:rotate_def)
nipkow@13145
  2018
done
wenzelm@13114
  2019
nipkow@15302
  2020
lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
nipkow@15302
  2021
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2022
nipkow@15302
  2023
lemma rotate_drop_take:
nipkow@15302
  2024
  "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
nipkow@15302
  2025
apply(induct n)
nipkow@15302
  2026
 apply simp
nipkow@15302
  2027
apply(simp add:rotate_def)
nipkow@15302
  2028
apply(cases "xs = []")
nipkow@15302
  2029
 apply (simp)
nipkow@15302
  2030
apply(case_tac "n mod length xs = 0")
nipkow@15302
  2031
 apply(simp add:mod_Suc)
nipkow@15302
  2032
 apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
nipkow@15302
  2033
apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
nipkow@15302
  2034
                take_hd_drop linorder_not_le)
nipkow@13145
  2035
done
wenzelm@13114
  2036
nipkow@15302
  2037
lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
nipkow@15302
  2038
by(simp add:rotate_drop_take)
nipkow@15302
  2039
nipkow@15302
  2040
lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  2041
by(simp add:rotate_drop_take)
nipkow@15302
  2042
nipkow@15302
  2043
lemma length_rotate1[simp]: "length(rotate1 xs) = length xs"
nipkow@15302
  2044
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2045
nipkow@15302
  2046
lemma length_rotate[simp]: "!!xs. length(rotate n xs) = length xs"
nipkow@15302
  2047
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2048
nipkow@15302
  2049
lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs"
nipkow@15302
  2050
by(simp add:rotate1_def split:list.split) blast
nipkow@15302
  2051
nipkow@15302
  2052
lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs"
nipkow@15302
  2053
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2054
nipkow@15302
  2055
lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)"
nipkow@15302
  2056
by(simp add:rotate_drop_take take_map drop_map)
nipkow@15302
  2057
nipkow@15302
  2058
lemma set_rotate1[simp]: "set(rotate1 xs) = set xs"
nipkow@15302
  2059
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2060
nipkow@15302
  2061
lemma set_rotate[simp]: "set(rotate n xs) = set xs"
nipkow@15302
  2062
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2063
nipkow@15302
  2064
lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])"
nipkow@15302
  2065
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2066
nipkow@15302
  2067
lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])"
nipkow@15302
  2068
by (induct n) (simp_all add:rotate_def)
wenzelm@13114
  2069
nipkow@15439
  2070
lemma rotate_rev:
nipkow@15439
  2071
  "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)"
nipkow@15439
  2072
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  2073
apply(cases "length xs = 0")
nipkow@15439
  2074
 apply simp
nipkow@15439
  2075
apply(cases "n mod length xs = 0")
nipkow@15439
  2076
 apply simp
nipkow@15439
  2077
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  2078
done
nipkow@15439
  2079
nipkow@18423
  2080
lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
nipkow@18423
  2081
apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
nipkow@18423
  2082
apply(subgoal_tac "length xs \<noteq> 0")
nipkow@18423
  2083
 prefer 2 apply simp
nipkow@18423
  2084
using mod_less_divisor[of "length xs" n] by arith
nipkow@18423
  2085
wenzelm@13114
  2086
nipkow@15392
  2087
subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  2088
wenzelm@13142
  2089
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  2090
by (auto simp add: sublist_def)
wenzelm@13114
  2091
wenzelm@13142
  2092
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  2093
by (auto simp add: sublist_def)
wenzelm@13114
  2094
nipkow@15281
  2095
lemma length_sublist:
nipkow@15281
  2096
  "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
nipkow@15281
  2097
by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
nipkow@15281
  2098
nipkow@15281
  2099
lemma sublist_shift_lemma_Suc:
nipkow@15281
  2100
  "!!is. map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
nipkow@15281
  2101
         map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
nipkow@15281
  2102
apply(induct xs)
nipkow@15281
  2103
 apply simp
nipkow@15281
  2104
apply (case_tac "is")
nipkow@15281
  2105
 apply simp
nipkow@15281
  2106
apply simp
nipkow@15281
  2107
done
nipkow@15281
  2108
wenzelm@13114
  2109
lemma sublist_shift_lemma:
nipkow@15425
  2110
     "map fst [p:zip xs [i..<i + length xs] . snd p : A] =
nipkow@15425
  2111
      map fst [p:zip xs [0..<length xs] . snd p + i : A]"
nipkow@13145
  2112
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  2113
wenzelm@13114
  2114
lemma sublist_append:
paulson@15168
  2115
     "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  2116
apply (unfold sublist_def)
paulson@14208
  2117
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  2118
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  2119
apply (simp add: add_commute)
nipkow@13145
  2120
done
wenzelm@13114
  2121
wenzelm@13114
  2122
lemma sublist_Cons:
nipkow@13145
  2123
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  2124
apply (induct l rule: rev_induct)
nipkow@13145
  2125
 apply (simp add: sublist_def)
nipkow@13145
  2126
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  2127
done
wenzelm@13114
  2128
nipkow@15281
  2129
lemma set_sublist: "!!I. set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
nipkow@15281
  2130
apply(induct xs)
nipkow@15281
  2131
 apply simp
nipkow@15281
  2132
apply(auto simp add:sublist_Cons nth_Cons split:nat.split elim: lessE)
nipkow@15281
  2133
 apply(erule lessE)
nipkow@15281
  2134
  apply auto
nipkow@15281
  2135
apply(erule lessE)
nipkow@15281
  2136
apply auto
nipkow@15281
  2137
done
nipkow@15281
  2138
nipkow@15281
  2139
lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
nipkow@15281
  2140
by(auto simp add:set_sublist)
nipkow@15281
  2141
nipkow@15281
  2142
lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
nipkow@15281
  2143
by(auto simp add:set_sublist)
nipkow@15281
  2144
nipkow@15281
  2145
lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
nipkow@15281
  2146
by(auto simp add:set_sublist)
nipkow@15281
  2147
wenzelm@13142
  2148
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  2149
by (simp add: sublist_Cons)
wenzelm@13114
  2150
nipkow@15281
  2151
nipkow@15281
  2152
lemma distinct_sublistI[simp]: "!!I. distinct xs \<Longrightarrow> distinct(sublist xs I)"
nipkow@15281
  2153
apply(induct xs)
nipkow@15281
  2154
 apply simp
nipkow@15281
  2155
apply(auto simp add:sublist_Cons)
nipkow@15281
  2156
done
nipkow@15281
  2157
nipkow@15281
  2158
nipkow@15045
  2159
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
paulson@14208
  2160
apply (induct l rule: rev_induct, simp)
nipkow@13145
  2161
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  2162
done
wenzelm@13114
  2163
nipkow@17501
  2164
lemma filter_in_sublist: "\<And>s. distinct xs \<Longrightarrow>
nipkow@17501
  2165
  filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s"
nipkow@17501
  2166
proof (induct xs)
nipkow@17501
  2167
  case Nil thus ?case by simp
nipkow@17501
  2168
next
nipkow@17501
  2169
  case (Cons a xs)
nipkow@17501
  2170
  moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto
nipkow@17501
  2171
  ultimately show ?case by(simp add: sublist_Cons cong:filter_cong)
nipkow@17501
  2172
qed
nipkow@17501
  2173
wenzelm@13114
  2174
nipkow@19390
  2175
subsubsection {* @{const splice} *}
nipkow@19390
  2176
nipkow@19390
  2177
lemma splice_Nil2[simp]:
nipkow@19390
  2178
 "splice xs [] = xs"
nipkow@19390
  2179
by (cases xs) simp_all
nipkow@19390
  2180
nipkow@19390
  2181
lemma splice_Cons_Cons[simp]:
nipkow@19390
  2182
 "splice (x#xs) (y#ys) = x # y # splice xs ys"
nipkow@19390
  2183
by simp
nipkow@19390
  2184
nipkow@19390
  2185
declare splice.simps(2)[simp del]
nipkow@19390
  2186
nipkow@15392
  2187
subsubsection{*Sets of Lists*}
nipkow@15392
  2188
nipkow@15392
  2189
subsubsection {* @{text lists}: the list-forming operator over sets *}
nipkow@15302
  2190
nipkow@15302
  2191
consts lists :: "'a set => 'a list set"
nipkow@15302
  2192
inductive "lists A"
nipkow@15302
  2193
 intros
nipkow@15302
  2194
  Nil [intro!]: "[]: lists A"
nipkow@15302
  2195
  Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
nipkow@15302
  2196
nipkow@15302
  2197
inductive_cases listsE [elim!]: "x#l : lists A"
nipkow@15302
  2198
nipkow@15302
  2199
lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B"
nipkow@15302
  2200
by (unfold lists.defs) (blast intro!: lfp_mono)
nipkow@15302
  2201
nipkow@15302
  2202
lemma lists_IntI:
nipkow@15302
  2203
  assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l
nipkow@15302
  2204
  by induct blast+
nipkow@15302
  2205
nipkow@15302
  2206
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
nipkow@15302
  2207
proof (rule mono_Int [THEN equalityI])
nipkow@15302
  2208
  show "mono lists" by (simp add: mono_def lists_mono)
nipkow@15302
  2209
  show "lists A \<inter> lists B \<subseteq> lists (A \<inter> B)" by (blast intro: lists_IntI)
kleing@14388
  2210
qed
kleing@14388
  2211
nipkow@15302
  2212
lemma append_in_lists_conv [iff]:
nipkow@15302
  2213
     "(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
nipkow@15302
  2214
by (induct xs) auto
nipkow@15302
  2215
nipkow@15302
  2216
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
nipkow@15302
  2217
-- {* eliminate @{text lists} in favour of @{text set} *}
nipkow@15302
  2218
by (induct xs) auto
nipkow@15302
  2219
nipkow@15302
  2220
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
nipkow@15302
  2221
by (rule in_lists_conv_set [THEN iffD1])
nipkow@15302
  2222
nipkow@15302
  2223
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
nipkow@15302
  2224
by (rule in_lists_conv_set [THEN iffD2])
nipkow@15302
  2225
nipkow@15302
  2226
lemma lists_UNIV [simp]: "lists UNIV = UNIV"
nipkow@15302
  2227
by auto
nipkow@15302
  2228
nipkow@17086
  2229
subsubsection {* For efficiency *}
nipkow@17086
  2230
nipkow@17086
  2231
text{* Only use @{text mem} for generating executable code.  Otherwise
nipkow@17086
  2232
use @{prop"x : set xs"} instead --- it is much easier to reason about.
nipkow@17086
  2233
The same is true for @{const list_all} and @{const list_ex}: write
nipkow@17086
  2234
@{text"\<forall>x\<in>set xs"} and @{text"\<exists>x\<in>set xs"} instead because the HOL
nipkow@17090
  2235
quantifiers are aleady known to the automatic provers. In fact, the declarations in the Code subsection make sure that @{text"\<in>"}, @{text"\<forall>x\<in>set xs"}
nipkow@17090
  2236
and @{text"\<exists>x\<in>set xs"} are implemented efficiently.
nipkow@17086
  2237
nipkow@17086
  2238
The functions @{const itrev}, @{const filtermap} and @{const
nipkow@17086
  2239
map_filter} are just there to generate efficient code. Do not use them
nipkow@17086
  2240
for modelling and proving. *}
nipkow@17086
  2241
nipkow@17086
  2242
lemma mem_iff: "(x mem xs) = (x : set xs)"
nipkow@17086
  2243
by (induct xs) auto
nipkow@17086
  2244
nipkow@17086
  2245
lemma list_inter_conv: "set(list_inter xs ys) = set xs \<inter> set ys"
nipkow@17086
  2246
by (induct xs) auto
nipkow@17086
  2247
nipkow@17086
  2248
lemma list_all_iff: "list_all P xs = (\<forall>x \<in> set xs. P x)"
nipkow@17086
  2249
by (induct xs) auto
nipkow@17086
  2250
nipkow@17086
  2251
lemma list_all_append [simp]:
nipkow@17086
  2252
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)"
nipkow@17086
  2253
by (induct xs) auto
nipkow@17086
  2254
nipkow@17086
  2255
lemma list_all_rev [simp]: "list_all P (rev xs) = list_all P xs"
nipkow@17086
  2256
by (simp add: list_all_iff)
nipkow@17086
  2257
nipkow@17086
  2258
lemma list_ex_iff: "list_ex P xs = (\<exists>x \<in> set xs. P x)"
nipkow@17086
  2259
by (induct xs) simp_all
nipkow@17086
  2260
nipkow@17086
  2261
lemma itrev[simp]: "ALL ys. itrev xs ys = rev xs @ ys"
nipkow@17086
  2262
by (induct xs) simp_all
nipkow@17086
  2263
nipkow@17086
  2264
lemma filtermap_conv:
paulson@18447
  2265
     "filtermap f xs = map (%x. the(f x)) (filter (%x. f x \<noteq> None) xs)"
paulson@18447
  2266
  by (induct xs) (simp_all split: option.split) 
nipkow@17086
  2267
nipkow@17086
  2268
lemma map_filter_conv[simp]: "map_filter f P xs = map f (filter P xs)"
nipkow@17086
  2269
by (induct xs) auto
nipkow@17086
  2270
nipkow@17086
  2271
nipkow@17086
  2272
subsubsection {* Code generation *}
nipkow@17086
  2273
nipkow@17086
  2274
text{* Defaults for generating efficient code for some standard functions. *}
nipkow@17086
  2275
nipkow@17090
  2276
lemmas in_set_code[code unfold] = mem_iff[symmetric, THEN eq_reflection]
nipkow@17090
  2277
nipkow@17090
  2278
lemma rev_code[code unfold]: "rev xs == itrev xs []"
nipkow@17086
  2279
by simp
nipkow@17086
  2280
nipkow@17090
  2281
lemma distinct_Cons_mem[code]: "distinct (x#xs) = (~(x mem xs) \<and> distinct xs)"
nipkow@17086
  2282
by (simp add:mem_iff)
nipkow@17086
  2283
nipkow@17090
  2284
lemma remdups_Cons_mem[code]:
nipkow@17086
  2285
 "remdups (x#xs) = (if x mem xs then remdups xs else x # remdups xs)"
nipkow@17086
  2286
by (simp add:mem_iff)
nipkow@17086
  2287
nipkow@17090
  2288
lemma list_inter_Cons_mem[code]:  "list_inter (a#as) bs =
nipkow@17086
  2289
  (if a mem bs then a#(list_inter as bs) else list_inter as bs)"
nipkow@17086
  2290
by(simp add:mem_iff)
nipkow@17086
  2291
nipkow@17090
  2292
text{* For implementing bounded quantifiers over lists by
nipkow@17090
  2293
@{const list_ex}/@{const list_all}: *}
nipkow@17090
  2294
nipkow@17090
  2295
lemmas list_bex_code[code unfold] = list_ex_iff[symmetric, THEN eq_reflection]
nipkow@17090
  2296
lemmas list_ball_code[code unfold] = list_all_iff[symmetric, THEN eq_reflection]
nipkow@17086
  2297
nipkow@17086
  2298
nipkow@17086
  2299
subsubsection{* Inductive definition for membership *}
nipkow@17086
  2300
nipkow@17086
  2301
consts ListMem :: "('a \<times> 'a list)set"
nipkow@17086
  2302
inductive ListMem
nipkow@17086
  2303
intros
nipkow@17086
  2304
 elem:  "(x,x#xs) \<in> ListMem"
nipkow@17086
  2305
 insert:  "(x,xs) \<in> ListMem \<Longrightarrow> (x,y#xs) \<in> ListMem"
nipkow@17086
  2306
nipkow@17086
  2307
lemma ListMem_iff: "((x,xs) \<in> ListMem) = (x \<in> set xs)"
nipkow@17086
  2308
apply (rule iffI)
nipkow@17086
  2309
 apply (induct set: ListMem)
nipkow@17086
  2310
  apply auto
nipkow@17086
  2311
apply (induct xs)
nipkow@17086
  2312
 apply (auto intro: ListMem.intros)
nipkow@17086
  2313
done
nipkow@17086
  2314
nipkow@17086
  2315
nipkow@17086
  2316
nipkow@15392
  2317
subsubsection{*Lists as Cartesian products*}
nipkow@15302
  2318
nipkow@15302
  2319
text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
nipkow@15302
  2320
@{term A} and tail drawn from @{term Xs}.*}
nipkow@15302
  2321
nipkow@15302
  2322
constdefs
nipkow@15302
  2323
  set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set"
nipkow@15302
  2324
  "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
nipkow@15302
  2325
paulson@17724
  2326
lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
nipkow@15302
  2327
by (auto simp add: set_Cons_def)
nipkow@15302
  2328
nipkow@15302
  2329
text{*Yields the set of lists, all of the same length as the argument and
nipkow@15302
  2330
with elements drawn from the corresponding element of the argument.*}
nipkow@15302
  2331
nipkow@15302
  2332
consts  listset :: "'a set list \<Rightarrow> 'a list set"
nipkow@15302
  2333
primrec
nipkow@15302
  2334
   "listset []    = {[]}"
nipkow@15302
  2335
   "listset(A#As) = set_Cons A (listset As)"
nipkow@15302
  2336
nipkow@15302
  2337
paulson@15656
  2338
subsection{*Relations on Lists*}
paulson@15656
  2339
paulson@15656
  2340
subsubsection {* Length Lexicographic Ordering *}
paulson@15656
  2341
paulson@15656
  2342
text{*These orderings preserve well-foundedness: shorter lists 
paulson@15656
  2343
  precede longer lists. These ordering are not used in dictionaries.*}
paulson@15656
  2344
paulson@15656
  2345
consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
paulson@15656
  2346
        --{*The lexicographic ordering for lists of the specified length*}
nipkow@15302
  2347
primrec
paulson@15656
  2348
  "lexn r 0 = {}"
paulson@15656
  2349
  "lexn r (Suc n) =
paulson@15656
  2350
    (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
paulson@15656
  2351
    {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@15302
  2352
nipkow@15302
  2353
constdefs
paulson@15656
  2354
  lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
paulson@15656
  2355
    "lex r == \<Union>n. lexn r n"
paulson@15656
  2356
        --{*Holds only between lists of the same length*}
paulson@15656
  2357
nipkow@15693
  2358
  lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@15693
  2359
    "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@15656
  2360
        --{*Compares lists by their length and then lexicographically*}
nipkow@15302
  2361
nipkow@15302
  2362
nipkow@15302
  2363
lemma wf_lexn: "wf r ==> wf (lexn r n)"
nipkow@15302
  2364
apply (induct n, simp, simp)
nipkow@15302
  2365
apply(rule wf_subset)
nipkow@15302
  2366
 prefer 2 apply (rule Int_lower1)
nipkow@15302
  2367
apply(rule wf_prod_fun_image)
nipkow@15302
  2368
 prefer 2 apply (rule inj_onI, auto)
nipkow@15302
  2369
done
nipkow@15302
  2370
nipkow@15302
  2371
lemma lexn_length:
nipkow@15302
  2372
     "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@15302
  2373
by (induct n) auto
nipkow@15302
  2374
nipkow@15302
  2375
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@15302
  2376
apply (unfold lex_def)
nipkow@15302
  2377
apply (rule wf_UN)
nipkow@15302
  2378
apply (blast intro: wf_lexn, clarify)
nipkow@15302
  2379
apply (rename_tac m n)
nipkow@15302
  2380
apply (subgoal_tac "m \<noteq> n")
nipkow@15302
  2381
 prefer 2 apply blast
nipkow@15302
  2382
apply (blast dest: lexn_length not_sym)
nipkow@15302
  2383
done
nipkow@15302
  2384
nipkow@15302
  2385
lemma lexn_conv:
paulson@15656
  2386
  "lexn r n =
paulson@15656
  2387
    {(xs,ys). length xs = n \<and> length ys = n \<and>
paulson@15656
  2388
    (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
nipkow@18423
  2389
apply (induct n, simp)
nipkow@15302
  2390
apply (simp add: image_Collect lex_prod_def, safe, blast)
nipkow@15302
  2391
 apply (rule_tac x = "ab # xys" in exI, simp)
nipkow@15302
  2392
apply (case_tac xys, simp_all, blast)
nipkow@15302
  2393
done
nipkow@15302
  2394
nipkow@15302
  2395
lemma lex_conv:
paulson@15656
  2396
  "lex r =
paulson@15656
  2397
    {(xs,ys). length xs = length ys \<and>
paulson@15656
  2398
    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@15302
  2399
by (force simp add: lex_def lexn_conv)
nipkow@15302
  2400
nipkow@15693
  2401
lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)"
nipkow@15693
  2402
by (unfold lenlex_def) blast
nipkow@15693
  2403
nipkow@15693
  2404
lemma lenlex_conv:
nipkow@15693
  2405
    "lenlex r = {(xs,ys). length xs < length ys |
paulson@15656
  2406
                 length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@15693
  2407
by (simp add: lenlex_def diag_def lex_prod_def measure_def inv_image_def)
nipkow@15302
  2408
nipkow@15302
  2409
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@15302
  2410
by (simp add: lex_conv)
nipkow@15302
  2411
nipkow@15302
  2412
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@15302
  2413
by (simp add:lex_conv)
nipkow@15302
  2414
paulson@18447
  2415
lemma Cons_in_lex [simp]:
paulson@15656
  2416
    "((x # xs, y # ys) : lex r) =
paulson@15656
  2417
      ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@15302
  2418
apply (simp add: lex_conv)
nipkow@15302
  2419
apply (rule iffI)
nipkow@15302
  2420
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
nipkow@15302
  2421
apply (case_tac xys, simp, simp)
nipkow@15302
  2422
apply blast
nipkow@15302
  2423
done
nipkow@15302
  2424
nipkow@15302
  2425
paulson@15656
  2426
subsubsection {* Lexicographic Ordering *}
paulson@15656
  2427
paulson@15656
  2428
text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
paulson@15656
  2429
    This ordering does \emph{not} preserve well-foundedness.
nipkow@17090
  2430
     Author: N. Voelker, March 2005. *} 
paulson@15656
  2431
paulson@15656
  2432
constdefs 
paulson@15656
  2433
  lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
paulson@15656
  2434
  "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
paulson@15656
  2435
            (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
paulson@15656
  2436
paulson@15656
  2437
lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
paulson@15656
  2438
  by (unfold lexord_def, induct_tac y, auto) 
paulson@15656
  2439
paulson@15656
  2440
lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
paulson@15656
  2441
  by (unfold lexord_def, induct_tac x, auto)
paulson@15656
  2442
paulson@15656
  2443
lemma lexord_cons_cons[simp]:
paulson@15656
  2444
     "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))"
paulson@15656
  2445
  apply (unfold lexord_def, safe, simp_all)
paulson@15656
  2446
  apply (case_tac u, simp, simp)
paulson@15656
  2447
  apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
paulson@15656
  2448
  apply (erule_tac x="b # u" in allE)
paulson@15656
  2449
  by force
paulson@15656
  2450
paulson@15656
  2451
lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
paulson@15656
  2452
paulson@15656
  2453
lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r"
paulson@15656
  2454
  by (induct_tac x, auto)  
paulson@15656
  2455
paulson@15656
  2456
lemma lexord_append_left_rightI:
paulson@15656
  2457
     "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
paulson@15656
  2458
  by (induct_tac u, auto)
paulson@15656
  2459
paulson@15656
  2460
lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
paulson@15656
  2461
  by (induct x, auto)
paulson@15656
  2462
paulson@15656
  2463
lemma lexord_append_leftD:
paulson@15656
  2464
     "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r"
paulson@15656
  2465
  by (erule rev_mp, induct_tac x, auto)
paulson@15656
  2466
paulson@15656
  2467
lemma lexord_take_index_conv: 
paulson@15656
  2468
   "((x,y) : lexord r) = 
paulson@15656
  2469
    ((length x < length y \<and> take (length x) y = x) \<or> 
paulson@15656
  2470
     (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))"
paulson@15656
  2471
  apply (unfold lexord_def Let_def, clarsimp) 
paulson@15656
  2472
  apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
paulson@15656
  2473
  apply auto 
paulson@15656
  2474
  apply (rule_tac x="hd (drop (length x) y)" in exI)
paulson@15656
  2475
  apply (rule_tac x="tl (drop (length x) y)" in exI)
paulson@15656
  2476
  apply (erule subst, simp add: min_def) 
paulson@15656
  2477
  apply (rule_tac x ="length u" in exI, simp) 
paulson@15656
  2478
  apply (rule_tac x ="take i x" in exI) 
paulson@15656
  2479
  apply (rule_tac x ="x ! i" in exI) 
paulson@15656
  2480
  apply (rule_tac x ="y ! i" in exI, safe) 
paulson@15656
  2481
  apply (rule_tac x="drop (Suc i) x" in exI)
paulson@15656
  2482
  apply (drule sym, simp add: drop_Suc_conv_tl) 
paulson@15656
  2483
  apply (rule_tac x="drop (Suc i) y" in exI)
paulson@15656
  2484
  by (simp add: drop_Suc_conv_tl) 
paulson@15656
  2485
paulson@15656
  2486
-- {* lexord is extension of partial ordering List.lex *} 
paulson@15656
  2487
lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
paulson@15656
  2488
  apply (rule_tac x = y in spec) 
paulson@15656
  2489
  apply (induct_tac x, clarsimp) 
paulson@15656
  2490
  by (clarify, case_tac x, simp, force)
paulson@15656
  2491
paulson@15656
  2492
lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r"
paulson@15656
  2493
  by (induct y, auto)
paulson@15656
  2494
paulson@15656
  2495
lemma lexord_trans: 
paulson@15656
  2496
    "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
paulson@15656
  2497
   apply (erule rev_mp)+
paulson@15656
  2498
   apply (rule_tac x = x in spec) 
paulson@15656
  2499
  apply (rule_tac x = z in spec) 
paulson@15656
  2500
  apply ( induct_tac y, simp, clarify)
paulson@15656
  2501
  apply (case_tac xa, erule ssubst) 
paulson@15656
  2502
  apply (erule allE, erule allE) -- {* avoid simp recursion *} 
paulson@15656
  2503
  apply (case_tac x, simp, simp) 
paulson@15656
  2504
  apply (case_tac x, erule allE, erule allE, simp) 
paulson@15656
  2505
  apply (erule_tac x = listb in allE) 
paulson@15656
  2506
  apply (erule_tac x = lista in allE, simp)
paulson@15656
  2507
  apply (unfold trans_def)
paulson@15656
  2508
  by blast
paulson@15656
  2509
paulson@15656
  2510
lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
paulson@15656
  2511
  by (rule transI, drule lexord_trans, blast) 
paulson@15656
  2512
paulson@15656
  2513
lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r"
paulson@15656
  2514
  apply (rule_tac x = y in spec) 
paulson@15656
  2515
  apply (induct_tac x, rule allI) 
paulson@15656
  2516
  apply (case_tac x, simp, simp) 
paulson@15656
  2517
  apply (rule allI, case_tac x, simp, simp) 
paulson@15656
  2518
  by blast
paulson@15656
  2519
paulson@15656
  2520
nipkow@15392
  2521
subsubsection{*Lifting a Relation on List Elements to the Lists*}
nipkow@15302
  2522
nipkow@15302
  2523
consts  listrel :: "('a * 'a)set => ('a list * 'a list)set"
nipkow@15302
  2524
nipkow@15302
  2525
inductive "listrel(r)"
nipkow@15302
  2526
 intros
nipkow@15302
  2527
   Nil:  "([],[]) \<in> listrel r"
nipkow@15302
  2528
   Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r"
nipkow@15302
  2529
nipkow@15302
  2530
inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r"
nipkow@15302
  2531
inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r"
nipkow@15302
  2532
inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r"
nipkow@15302
  2533
inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r"
nipkow@15302
  2534
nipkow@15302
  2535
nipkow@15302
  2536
lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
nipkow@15302
  2537
apply clarify  
nipkow@15302
  2538
apply (erule listrel.induct)
nipkow@15302
  2539
apply (blast intro: listrel.intros)+
nipkow@15302
  2540
done
nipkow@15302
  2541
nipkow@15302
  2542
lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
nipkow@15302
  2543
apply clarify 
nipkow@15302
  2544
apply (erule listrel.induct, auto) 
nipkow@15302
  2545
done
nipkow@15302
  2546
nipkow@15302
  2547
lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" 
nipkow@15302
  2548
apply (simp add: refl_def listrel_subset Ball_def)
nipkow@15302
  2549
apply (rule allI) 
nipkow@15302
  2550
apply (induct_tac x) 
nipkow@15302
  2551
apply (auto intro: listrel.intros)
nipkow@15302
  2552
done
nipkow@15302
  2553
nipkow@15302
  2554
lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
nipkow@15302
  2555
apply (auto simp add: sym_def)
nipkow@15302
  2556
apply (erule listrel.induct) 
nipkow@15302
  2557
apply (blast intro: listrel.intros)+
nipkow@15302
  2558
done
nipkow@15302
  2559
nipkow@15302
  2560
lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
nipkow@15302
  2561
apply (simp add: trans_def)
nipkow@15302
  2562
apply (intro allI) 
nipkow@15302
  2563
apply (rule impI) 
nipkow@15302
  2564
apply (erule listrel.induct) 
nipkow@15302
  2565
apply (blast intro: listrel.intros)+
nipkow@15302
  2566
done
nipkow@15302
  2567
nipkow@15302
  2568
theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
nipkow@15302
  2569
by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) 
nipkow@15302
  2570
nipkow@15302
  2571
lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
nipkow@15302
  2572
by (blast intro: listrel.intros)
nipkow@15302
  2573
nipkow@15302
  2574
lemma listrel_Cons:
nipkow@15302
  2575
     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
nipkow@15302
  2576
by (auto simp add: set_Cons_def intro: listrel.intros) 
nipkow@15302
  2577
nipkow@15302
  2578
nipkow@15392
  2579
subsection{*Miscellany*}
nipkow@15392
  2580
nipkow@15392
  2581
subsubsection {* Characters and strings *}
wenzelm@13366
  2582
wenzelm@13366
  2583
datatype nibble =
wenzelm@13366
  2584
    Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
wenzelm@13366
  2585
  | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
wenzelm@13366
  2586
wenzelm@13366
  2587
datatype char = Char nibble nibble
wenzelm@13366
  2588
  -- "Note: canonical order of character encoding coincides with standard term ordering"
wenzelm@13366
  2589
wenzelm@13366
  2590
types string = "char list"
wenzelm@13366
  2591
wenzelm@13366
  2592
syntax
wenzelm@13366
  2593
  "_Char" :: "xstr => char"    ("CHR _")
wenzelm@13366
  2594
  "_String" :: "xstr => string"    ("_")
wenzelm@13366
  2595
wenzelm@13366
  2596
parse_ast_translation {*
wenzelm@13366
  2597
  let
wenzelm@13366
  2598
    val constants = Syntax.Appl o map Syntax.Constant;
wenzelm@13366
  2599
wenzelm@13366
  2600
    fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10));
wenzelm@13366
  2601
    fun mk_char c =
wenzelm@13366
  2602
      if Symbol.is_ascii c andalso Symbol.is_printable c then
wenzelm@13366
  2603
        constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)]
wenzelm@13366
  2604
      else error ("Printable ASCII character expected: " ^ quote c);
wenzelm@13366
  2605
wenzelm@13366
  2606
    fun mk_string [] = Syntax.Constant "Nil"
wenzelm@13366
  2607
      | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs];
wenzelm@13366
  2608
wenzelm@13366
  2609
    fun char_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  2610
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  2611
          [c] => mk_char c
wenzelm@13366
  2612
        | _ => error ("Single character expected: " ^ xstr))
wenzelm@13366
  2613
      | char_ast_tr asts = raise AST ("char_ast_tr", asts);
wenzelm@13366
  2614
wenzelm@13366
  2615
    fun string_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  2616
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  2617
          [] => constants [Syntax.constrainC, "Nil", "string"]
wenzelm@13366
  2618
        | cs => mk_string cs)
wenzelm@13366
  2619
      | string_ast_tr asts = raise AST ("string_tr", asts);
wenzelm@13366
  2620
  in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
wenzelm@13366
  2621
*}
wenzelm@13366
  2622
berghofe@15064
  2623
ML {*
berghofe@15064
  2624
fun int_of_nibble h =
berghofe@15064
  2625
  if "0" <= h andalso h <= "9" then ord h - ord "0"
berghofe@15064
  2626
  else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10
berghofe@15064
  2627
  else raise Match;
berghofe@15064
  2628
berghofe@15064
  2629
fun nibble_of_int i =
berghofe@15064
  2630
  if i <= 9 then chr (ord "0" + i) else chr (ord "A" + i - 10);
berghofe@15064
  2631
*}
berghofe@15064
  2632
wenzelm@13366
  2633
print_ast_translation {*
wenzelm@13366
  2634
  let
wenzelm@13366
  2635
    fun dest_nib (Syntax.Constant c) =
wenzelm@13366
  2636
        (case explode c of
berghofe@15064
  2637
          ["N", "i", "b", "b", "l", "e", h] => int_of_nibble h
wenzelm@13366
  2638
        | _ => raise Match)
wenzelm@13366
  2639
      | dest_nib _ = raise Match;
wenzelm@13366
  2640
wenzelm@13366
  2641
    fun dest_chr c1 c2 =
wenzelm@13366
  2642
      let val c = chr (dest_nib c1 * 16 + dest_nib c2)
wenzelm@13366
  2643
      in if Symbol.is_printable c then c else raise Match end;
wenzelm@13366
  2644
wenzelm@13366
  2645
    fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2
wenzelm@13366
  2646
      | dest_char _ = raise Match;
wenzelm@13366
  2647
wenzelm@13366
  2648
    fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)];
wenzelm@13366
  2649
wenzelm@13366
  2650
    fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]]
wenzelm@13366
  2651
      | char_ast_tr' _ = raise Match;
wenzelm@13366
  2652
wenzelm@13366
  2653
    fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String",
wenzelm@13366
  2654
            xstr (map dest_char (Syntax.unfold_ast "_args" args))]
wenzelm@13366
  2655
      | list_ast_tr' ts = raise Match;
wenzelm@13366
  2656
  in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
wenzelm@13366
  2657
*}
wenzelm@13366
  2658
nipkow@15392
  2659
subsubsection {* Code generator setup *}
berghofe@15064
  2660
berghofe@15064
  2661
ML {*
berghofe@15064
  2662
local
berghofe@15064
  2663
berghofe@16634
  2664
fun list_codegen thy defs gr dep thyname b t =
berghofe@16634
  2665
  let val (gr', ps) = foldl_map (Codegen.invoke_codegen thy defs dep thyname false)
berghofe@15064
  2666
    (gr, HOLogic.dest_list t)
skalberg@15531
  2667
  in SOME (gr', Pretty.list "[" "]" ps) end handle TERM _ => NONE;
berghofe@15064
  2668
berghofe@15064
  2669
fun dest_nibble (Const (s, _)) = int_of_nibble (unprefix "List.nibble.Nibble" s)
berghofe@15064
  2670
  | dest_nibble _ = raise Match;
berghofe@15064
  2671
berghofe@16634
  2672
fun char_codegen thy defs gr dep thyname b (Const ("List.char.Char", _) $ c1 $ c2) =
berghofe@15064
  2673
    (let val c = chr (dest_nibble c1 * 16 + dest_nibble c2)
skalberg@15531
  2674
     in if Symbol.is_printable c then SOME (gr, Pretty.quote (Pretty.str c))
skalberg@15531
  2675
       else NONE
skalberg@15570
  2676
     end handle Fail _ => NONE | Match => NONE)
berghofe@16634
  2677
  | char_codegen thy defs gr dep thyname b _ = NONE;
berghofe@15064
  2678
berghofe@15064
  2679
in
berghofe@15064
  2680
wenzelm@18708
  2681
val list_codegen_setup =
wenzelm@18708
  2682
  Codegen.add_codegen "list_codegen" list_codegen #>
wenzelm@18708
  2683
  Codegen.add_codegen "char_codegen" char_codegen #>
haftmann@18704
  2684
  fold (CodegenPackage.add_pretty_list "Nil" "Cons") [
haftmann@18704
  2685
    ("ml", (7, "::")),
wenzelm@18708
  2686
    ("haskell", (5, ":"))];
berghofe@15064
  2687
berghofe@15064
  2688
end;
berghofe@16770
  2689
*}
berghofe@16770
  2690
berghofe@16770
  2691
types_code
berghofe@16770
  2692
  "list" ("_ list")
berghofe@16770
  2693
attach (term_of) {*
berghofe@15064
  2694
val term_of_list = HOLogic.mk_list;
berghofe@16770
  2695
*}
berghofe@16770
  2696
attach (test) {*
berghofe@15064
  2697
fun gen_list' aG i j = frequency
berghofe@15064
  2698
  [(i, fn () => aG j :: gen_list' aG (i-1) j), (1, fn () => [])] ()
berghofe@15064
  2699
and gen_list aG i = gen_list' aG i i;
berghofe@16770
  2700
*}
berghofe@16770
  2701
  "char" ("string")
berghofe@16770
  2702
attach (term_of) {*
berghofe@15064
  2703
val nibbleT = Type ("List.nibble", []);
berghofe@15064
  2704
berghofe@15064
  2705
fun term_of_char c =
berghofe@15064
  2706
  Const ("List.char.Char", nibbleT --> nibbleT --> Type ("List.char", [])) $
berghofe@15064
  2707
    Const ("List.nibble.Nibble" ^ nibble_of_int (ord c div 16), nibbleT) $
berghofe@15064
  2708
    Const ("List.nibble.Nibble" ^ nibble_of_int (ord c mod 16), nibbleT);
berghofe@16770
  2709
*}
berghofe@16770
  2710
attach (test) {*
berghofe@15064
  2711
fun gen_char i = chr (random_range (ord "a") (Int.min (ord "a" + i, ord "z")));
berghofe@15064
  2712
*}
berghofe@15064
  2713
berghofe@15064
  2714
consts_code "Cons" ("(_ ::/ _)")
berghofe@15064
  2715
haftmann@18702
  2716
code_alias
haftmann@18702
  2717
  "List.op @" "List.append"
haftmann@18702
  2718
  "List.op mem" "List.member"
haftmann@18702
  2719
haftmann@19138
  2720
code_generate Nil Cons
haftmann@19138
  2721
haftmann@18702
  2722
code_syntax_tyco
haftmann@18702
  2723
  list
haftmann@18702
  2724
    ml ("_ list")
haftmann@18757
  2725
    haskell (target_atom "[_]")
haftmann@18702
  2726
haftmann@18702
  2727
code_syntax_const
haftmann@18702
  2728
  Nil
haftmann@18757
  2729
    ml (target_atom "[]")
haftmann@18757
  2730
    haskell (target_atom "[]")
haftmann@18702
  2731
berghofe@15064
  2732
setup list_codegen_setup
berghofe@15064
  2733
wenzelm@18708
  2734
setup CodegenPackage.rename_inconsistent
haftmann@18451
  2735
wenzelm@13122
  2736
end