src/HOL/Tools/inductive_package.ML
author wenzelm
Tue Dec 18 02:17:20 2001 +0100 (2001-12-18)
changeset 12527 d6c91bc3e49c
parent 12494 58848edad3c4
child 12609 fb073a34b537
permissions -rw-r--r--
tuned Type.unify;
berghofe@5094
     1
(*  Title:      HOL/Tools/inductive_package.ML
berghofe@5094
     2
    ID:         $Id$
berghofe@5094
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@10735
     4
    Author:     Stefan Berghofer, TU Muenchen
wenzelm@10735
     5
    Author:     Markus Wenzel, TU Muenchen
wenzelm@11834
     6
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
berghofe@5094
     7
wenzelm@6424
     8
(Co)Inductive Definition module for HOL.
berghofe@5094
     9
berghofe@5094
    10
Features:
wenzelm@6424
    11
  * least or greatest fixedpoints
wenzelm@6424
    12
  * user-specified product and sum constructions
wenzelm@6424
    13
  * mutually recursive definitions
wenzelm@6424
    14
  * definitions involving arbitrary monotone operators
wenzelm@6424
    15
  * automatically proves introduction and elimination rules
berghofe@5094
    16
wenzelm@6424
    17
The recursive sets must *already* be declared as constants in the
wenzelm@6424
    18
current theory!
berghofe@5094
    19
berghofe@5094
    20
  Introduction rules have the form
wenzelm@8316
    21
  [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk
berghofe@5094
    22
  where M is some monotone operator (usually the identity)
berghofe@5094
    23
  P(x) is any side condition on the free variables
berghofe@5094
    24
  ti, t are any terms
berghofe@5094
    25
  Sj, Sk are two of the sets being defined in mutual recursion
berghofe@5094
    26
wenzelm@6424
    27
Sums are used only for mutual recursion.  Products are used only to
wenzelm@6424
    28
derive "streamlined" induction rules for relations.
berghofe@5094
    29
*)
berghofe@5094
    30
berghofe@5094
    31
signature INDUCTIVE_PACKAGE =
berghofe@5094
    32
sig
wenzelm@6424
    33
  val quiet_mode: bool ref
berghofe@7020
    34
  val unify_consts: Sign.sg -> term list -> term list -> term list * term list
berghofe@10988
    35
  val split_rule_vars: term list -> thm -> thm
berghofe@9116
    36
  val get_inductive: theory -> string -> ({names: string list, coind: bool} *
berghofe@9116
    37
    {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
berghofe@9116
    38
     intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}) option
wenzelm@12400
    39
  val the_mk_cases: theory -> string -> string -> thm
wenzelm@6437
    40
  val print_inductives: theory -> unit
berghofe@7710
    41
  val mono_add_global: theory attribute
berghofe@7710
    42
  val mono_del_global: theory attribute
berghofe@7710
    43
  val get_monos: theory -> thm list
wenzelm@10910
    44
  val inductive_forall_name: string
wenzelm@10910
    45
  val inductive_forall_def: thm
wenzelm@10910
    46
  val rulify: thm -> thm
wenzelm@10735
    47
  val inductive_cases: ((bstring * Args.src list) * string list) * Comment.text
wenzelm@10735
    48
    -> theory -> theory
wenzelm@10735
    49
  val inductive_cases_i: ((bstring * theory attribute list) * term list) * Comment.text
wenzelm@10735
    50
    -> theory -> theory
wenzelm@6424
    51
  val add_inductive_i: bool -> bool -> bstring -> bool -> bool -> bool -> term list ->
wenzelm@12180
    52
    ((bstring * term) * theory attribute list) list -> thm list -> theory -> theory *
wenzelm@6424
    53
      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
wenzelm@6437
    54
       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
wenzelm@11628
    55
  val add_inductive: bool -> bool -> string list ->
wenzelm@6521
    56
    ((bstring * string) * Args.src list) list -> (xstring * Args.src list) list ->
wenzelm@12180
    57
    theory -> theory *
wenzelm@6424
    58
      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
wenzelm@6437
    59
       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
wenzelm@6437
    60
  val setup: (theory -> theory) list
berghofe@5094
    61
end;
berghofe@5094
    62
wenzelm@6424
    63
structure InductivePackage: INDUCTIVE_PACKAGE =
berghofe@5094
    64
struct
berghofe@5094
    65
wenzelm@9598
    66
wenzelm@10729
    67
(** theory context references **)
wenzelm@10729
    68
wenzelm@11755
    69
val mono_name = "HOL.mono";
wenzelm@10735
    70
val gfp_name = "Gfp.gfp";
wenzelm@10735
    71
val lfp_name = "Lfp.lfp";
wenzelm@12259
    72
val vimage_name = "Set.vimage";
wenzelm@10735
    73
val Const _ $ (vimage_f $ _) $ _ = HOLogic.dest_Trueprop (Thm.concl_of vimageD);
wenzelm@10735
    74
wenzelm@11991
    75
val inductive_forall_name = "HOL.induct_forall";
wenzelm@11991
    76
val inductive_forall_def = thm "induct_forall_def";
wenzelm@11991
    77
val inductive_conj_name = "HOL.induct_conj";
wenzelm@11991
    78
val inductive_conj_def = thm "induct_conj_def";
wenzelm@11991
    79
val inductive_conj = thms "induct_conj";
wenzelm@11991
    80
val inductive_atomize = thms "induct_atomize";
wenzelm@11991
    81
val inductive_rulify1 = thms "induct_rulify1";
wenzelm@11991
    82
val inductive_rulify2 = thms "induct_rulify2";
wenzelm@10729
    83
wenzelm@10729
    84
wenzelm@10729
    85
wenzelm@10735
    86
(** theory data **)
berghofe@7710
    87
berghofe@7710
    88
(* data kind 'HOL/inductive' *)
berghofe@7710
    89
berghofe@7710
    90
type inductive_info =
berghofe@7710
    91
  {names: string list, coind: bool} * {defs: thm list, elims: thm list, raw_induct: thm,
berghofe@7710
    92
    induct: thm, intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm};
berghofe@7710
    93
berghofe@7710
    94
structure InductiveArgs =
berghofe@7710
    95
struct
berghofe@7710
    96
  val name = "HOL/inductive";
berghofe@7710
    97
  type T = inductive_info Symtab.table * thm list;
berghofe@7710
    98
berghofe@7710
    99
  val empty = (Symtab.empty, []);
berghofe@7710
   100
  val copy = I;
berghofe@7710
   101
  val prep_ext = I;
wenzelm@11502
   102
  fun merge ((tab1, monos1), (tab2, monos2)) =
wenzelm@11502
   103
    (Symtab.merge (K true) (tab1, tab2), Drule.merge_rules (monos1, monos2));
berghofe@7710
   104
berghofe@7710
   105
  fun print sg (tab, monos) =
wenzelm@8720
   106
    [Pretty.strs ("(co)inductives:" :: map #1 (Sign.cond_extern_table sg Sign.constK tab)),
wenzelm@10008
   107
     Pretty.big_list "monotonicity rules:" (map (Display.pretty_thm_sg sg) monos)]
wenzelm@8720
   108
    |> Pretty.chunks |> Pretty.writeln;
berghofe@7710
   109
end;
berghofe@7710
   110
berghofe@7710
   111
structure InductiveData = TheoryDataFun(InductiveArgs);
berghofe@7710
   112
val print_inductives = InductiveData.print;
berghofe@7710
   113
berghofe@7710
   114
berghofe@7710
   115
(* get and put data *)
berghofe@7710
   116
berghofe@9116
   117
fun get_inductive thy name = Symtab.lookup (fst (InductiveData.get thy), name);
berghofe@7710
   118
wenzelm@9598
   119
fun the_inductive thy name =
wenzelm@9598
   120
  (case get_inductive thy name of
wenzelm@9598
   121
    None => error ("Unknown (co)inductive set " ^ quote name)
wenzelm@9598
   122
  | Some info => info);
wenzelm@9598
   123
wenzelm@12400
   124
val the_mk_cases = (#mk_cases o #2) oo the_inductive;
wenzelm@12400
   125
berghofe@7710
   126
fun put_inductives names info thy =
berghofe@7710
   127
  let
berghofe@7710
   128
    fun upd ((tab, monos), name) = (Symtab.update_new ((name, info), tab), monos);
berghofe@7710
   129
    val tab_monos = foldl upd (InductiveData.get thy, names)
berghofe@7710
   130
      handle Symtab.DUP name => error ("Duplicate definition of (co)inductive set " ^ quote name);
berghofe@7710
   131
  in InductiveData.put tab_monos thy end;
berghofe@7710
   132
wenzelm@8277
   133
berghofe@7710
   134
berghofe@7710
   135
(** monotonicity rules **)
berghofe@7710
   136
wenzelm@9831
   137
val get_monos = #2 o InductiveData.get;
wenzelm@9831
   138
fun map_monos f = InductiveData.map (Library.apsnd f);
wenzelm@8277
   139
berghofe@7710
   140
fun mk_mono thm =
berghofe@7710
   141
  let
berghofe@7710
   142
    fun eq2mono thm' = [standard (thm' RS (thm' RS eq_to_mono))] @
berghofe@7710
   143
      (case concl_of thm of
berghofe@7710
   144
          (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
berghofe@7710
   145
        | _ => [standard (thm' RS (thm' RS eq_to_mono2))]);
berghofe@7710
   146
    val concl = concl_of thm
berghofe@7710
   147
  in
berghofe@7710
   148
    if Logic.is_equals concl then
berghofe@7710
   149
      eq2mono (thm RS meta_eq_to_obj_eq)
berghofe@7710
   150
    else if can (HOLogic.dest_eq o HOLogic.dest_Trueprop) concl then
berghofe@7710
   151
      eq2mono thm
berghofe@7710
   152
    else [thm]
berghofe@7710
   153
  end;
berghofe@7710
   154
wenzelm@8634
   155
wenzelm@8634
   156
(* attributes *)
berghofe@7710
   157
wenzelm@9831
   158
fun mono_add_global (thy, thm) = (map_monos (Drule.add_rules (mk_mono thm)) thy, thm);
wenzelm@9831
   159
fun mono_del_global (thy, thm) = (map_monos (Drule.del_rules (mk_mono thm)) thy, thm);
berghofe@7710
   160
berghofe@7710
   161
val mono_attr =
wenzelm@8634
   162
 (Attrib.add_del_args mono_add_global mono_del_global,
wenzelm@8634
   163
  Attrib.add_del_args Attrib.undef_local_attribute Attrib.undef_local_attribute);
berghofe@7710
   164
berghofe@7710
   165
wenzelm@7107
   166
wenzelm@10735
   167
(** misc utilities **)
wenzelm@6424
   168
berghofe@5662
   169
val quiet_mode = ref false;
wenzelm@10735
   170
fun message s = if ! quiet_mode then () else writeln s;
wenzelm@10735
   171
fun clean_message s = if ! quick_and_dirty then () else message s;
berghofe@5662
   172
wenzelm@6424
   173
fun coind_prefix true = "co"
wenzelm@6424
   174
  | coind_prefix false = "";
wenzelm@6424
   175
wenzelm@6424
   176
wenzelm@10735
   177
(*the following code ensures that each recursive set always has the
wenzelm@10735
   178
  same type in all introduction rules*)
berghofe@7020
   179
fun unify_consts sign cs intr_ts =
berghofe@7020
   180
  (let
berghofe@7020
   181
    val {tsig, ...} = Sign.rep_sg sign;
berghofe@7020
   182
    val add_term_consts_2 =
berghofe@7020
   183
      foldl_aterms (fn (cs, Const c) => c ins cs | (cs, _) => cs);
berghofe@7020
   184
    fun varify (t, (i, ts)) =
wenzelm@12494
   185
      let val t' = map_term_types (incr_tvar (i + 1)) (#1 (Type.varify (t, [])))
berghofe@7020
   186
      in (maxidx_of_term t', t'::ts) end;
berghofe@7020
   187
    val (i, cs') = foldr varify (cs, (~1, []));
berghofe@7020
   188
    val (i', intr_ts') = foldr varify (intr_ts, (i, []));
berghofe@7020
   189
    val rec_consts = foldl add_term_consts_2 ([], cs');
berghofe@7020
   190
    val intr_consts = foldl add_term_consts_2 ([], intr_ts');
berghofe@7020
   191
    fun unify (env, (cname, cT)) =
berghofe@7020
   192
      let val consts = map snd (filter (fn c => fst c = cname) intr_consts)
wenzelm@12527
   193
      in foldl (fn ((env', j'), Tp) => (Type.unify tsig (env', j') Tp))
berghofe@7020
   194
          (env, (replicate (length consts) cT) ~~ consts)
berghofe@7020
   195
      end;
berghofe@8410
   196
    val (env, _) = foldl unify ((Vartab.empty, i'), rec_consts);
berghofe@8410
   197
    fun typ_subst_TVars_2 env T = let val T' = typ_subst_TVars_Vartab env T
berghofe@7020
   198
      in if T = T' then T else typ_subst_TVars_2 env T' end;
berghofe@7020
   199
    val subst = fst o Type.freeze_thaw o
berghofe@7020
   200
      (map_term_types (typ_subst_TVars_2 env))
berghofe@7020
   201
berghofe@7020
   202
  in (map subst cs', map subst intr_ts')
berghofe@7020
   203
  end) handle Type.TUNIFY =>
berghofe@7020
   204
    (warning "Occurrences of recursive constant have non-unifiable types"; (cs, intr_ts));
berghofe@7020
   205
berghofe@7020
   206
wenzelm@10735
   207
(*make injections used in mutually recursive definitions*)
berghofe@5094
   208
fun mk_inj cs sumT c x =
berghofe@5094
   209
  let
berghofe@5094
   210
    fun mk_inj' T n i =
berghofe@5094
   211
      if n = 1 then x else
berghofe@5094
   212
      let val n2 = n div 2;
berghofe@5094
   213
          val Type (_, [T1, T2]) = T
berghofe@5094
   214
      in
berghofe@5094
   215
        if i <= n2 then
berghofe@5094
   216
          Const ("Inl", T1 --> T) $ (mk_inj' T1 n2 i)
berghofe@5094
   217
        else
berghofe@5094
   218
          Const ("Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
berghofe@5094
   219
      end
berghofe@5094
   220
  in mk_inj' sumT (length cs) (1 + find_index_eq c cs)
berghofe@5094
   221
  end;
berghofe@5094
   222
wenzelm@10735
   223
(*make "vimage" terms for selecting out components of mutually rec.def*)
berghofe@5094
   224
fun mk_vimage cs sumT t c = if length cs < 2 then t else
berghofe@5094
   225
  let
berghofe@5094
   226
    val cT = HOLogic.dest_setT (fastype_of c);
berghofe@5094
   227
    val vimageT = [cT --> sumT, HOLogic.mk_setT sumT] ---> HOLogic.mk_setT cT
berghofe@5094
   228
  in
berghofe@5094
   229
    Const (vimage_name, vimageT) $
berghofe@5094
   230
      Abs ("y", cT, mk_inj cs sumT c (Bound 0)) $ t
berghofe@5094
   231
  end;
berghofe@5094
   232
berghofe@10988
   233
(** proper splitting **)
berghofe@10988
   234
berghofe@10988
   235
fun prod_factors p (Const ("Pair", _) $ t $ u) =
berghofe@10988
   236
      p :: prod_factors (1::p) t @ prod_factors (2::p) u
berghofe@10988
   237
  | prod_factors p _ = [];
berghofe@10988
   238
berghofe@10988
   239
fun mg_prod_factors ts (fs, t $ u) = if t mem ts then
berghofe@10988
   240
        let val f = prod_factors [] u
berghofe@10988
   241
        in overwrite (fs, (t, f inter if_none (assoc (fs, t)) f)) end
berghofe@10988
   242
      else mg_prod_factors ts (mg_prod_factors ts (fs, t), u)
berghofe@10988
   243
  | mg_prod_factors ts (fs, Abs (_, _, t)) = mg_prod_factors ts (fs, t)
berghofe@10988
   244
  | mg_prod_factors ts (fs, _) = fs;
berghofe@10988
   245
berghofe@10988
   246
fun prodT_factors p ps (T as Type ("*", [T1, T2])) =
berghofe@10988
   247
      if p mem ps then prodT_factors (1::p) ps T1 @ prodT_factors (2::p) ps T2
berghofe@10988
   248
      else [T]
berghofe@10988
   249
  | prodT_factors _ _ T = [T];
berghofe@10988
   250
berghofe@10988
   251
fun ap_split p ps (Type ("*", [T1, T2])) T3 u =
berghofe@10988
   252
      if p mem ps then HOLogic.split_const (T1, T2, T3) $
berghofe@10988
   253
        Abs ("v", T1, ap_split (2::p) ps T2 T3 (ap_split (1::p) ps T1
berghofe@10988
   254
          (prodT_factors (2::p) ps T2 ---> T3) (incr_boundvars 1 u) $ Bound 0))
berghofe@10988
   255
      else u
berghofe@10988
   256
  | ap_split _ _ _ _ u =  u;
berghofe@10988
   257
berghofe@10988
   258
fun mk_tuple p ps (Type ("*", [T1, T2])) (tms as t::_) =
berghofe@10988
   259
      if p mem ps then HOLogic.mk_prod (mk_tuple (1::p) ps T1 tms, 
berghofe@10988
   260
        mk_tuple (2::p) ps T2 (drop (length (prodT_factors (1::p) ps T1), tms)))
berghofe@10988
   261
      else t
berghofe@10988
   262
  | mk_tuple _ _ _ (t::_) = t;
berghofe@10988
   263
berghofe@10988
   264
fun split_rule_var' ((t as Var (v, Type ("fun", [T1, T2])), ps), rl) =
berghofe@10988
   265
      let val T' = prodT_factors [] ps T1 ---> T2
berghofe@10988
   266
          val newt = ap_split [] ps T1 T2 (Var (v, T'))
berghofe@10988
   267
          val cterm = Thm.cterm_of (#sign (rep_thm rl))
berghofe@10988
   268
      in
berghofe@10988
   269
          instantiate ([], [(cterm t, cterm newt)]) rl
berghofe@10988
   270
      end
berghofe@10988
   271
  | split_rule_var' (_, rl) = rl;
berghofe@10988
   272
berghofe@10988
   273
val remove_split = rewrite_rule [split_conv RS eq_reflection];
berghofe@10988
   274
berghofe@10988
   275
fun split_rule_vars vs rl = standard (remove_split (foldr split_rule_var'
berghofe@10988
   276
  (mg_prod_factors vs ([], #prop (rep_thm rl)), rl)));
berghofe@10988
   277
berghofe@10988
   278
fun split_rule vs rl = standard (remove_split (foldr split_rule_var'
berghofe@10988
   279
  (mapfilter (fn (t as Var ((a, _), _)) =>
berghofe@10988
   280
    apsome (pair t) (assoc (vs, a))) (term_vars (#prop (rep_thm rl))), rl)));
wenzelm@6424
   281
wenzelm@6424
   282
wenzelm@10729
   283
(** process rules **)
wenzelm@10729
   284
wenzelm@10729
   285
local
berghofe@5094
   286
wenzelm@10729
   287
fun err_in_rule sg name t msg =
wenzelm@10729
   288
  error (cat_lines ["Ill-formed introduction rule " ^ quote name, Sign.string_of_term sg t, msg]);
wenzelm@10729
   289
wenzelm@10729
   290
fun err_in_prem sg name t p msg =
wenzelm@10729
   291
  error (cat_lines ["Ill-formed premise", Sign.string_of_term sg p,
wenzelm@10729
   292
    "in introduction rule " ^ quote name, Sign.string_of_term sg t, msg]);
berghofe@5094
   293
wenzelm@10729
   294
val bad_concl = "Conclusion of introduction rule must have form \"t : S_i\"";
wenzelm@10729
   295
paulson@11358
   296
val all_not_allowed = 
paulson@11358
   297
    "Introduction rule must not have a leading \"!!\" quantifier";
paulson@11358
   298
wenzelm@11781
   299
val atomize_cterm = Tactic.rewrite_cterm true inductive_atomize;
wenzelm@10729
   300
wenzelm@10729
   301
in
berghofe@5094
   302
wenzelm@10729
   303
fun check_rule sg cs ((name, rule), att) =
wenzelm@10729
   304
  let
wenzelm@10729
   305
    val concl = Logic.strip_imp_concl rule;
wenzelm@10729
   306
    val prems = Logic.strip_imp_prems rule;
wenzelm@10729
   307
    val aprems = prems |> map (Thm.term_of o atomize_cterm o Thm.cterm_of sg);
wenzelm@10729
   308
    val arule = Logic.list_implies (aprems, concl);
berghofe@5094
   309
wenzelm@10729
   310
    fun check_prem (prem, aprem) =
wenzelm@10729
   311
      if can HOLogic.dest_Trueprop aprem then ()
wenzelm@10729
   312
      else err_in_prem sg name rule prem "Non-atomic premise";
wenzelm@10729
   313
  in
paulson@11358
   314
    (case concl of
paulson@11358
   315
      Const ("Trueprop", _) $ (Const ("op :", _) $ t $ u) =>
wenzelm@10729
   316
        if u mem cs then
wenzelm@10729
   317
          if exists (Logic.occs o rpair t) cs then
wenzelm@10729
   318
            err_in_rule sg name rule "Recursion term on left of member symbol"
wenzelm@10729
   319
          else seq check_prem (prems ~~ aprems)
wenzelm@10729
   320
        else err_in_rule sg name rule bad_concl
paulson@11358
   321
      | Const ("all", _) $ _ => err_in_rule sg name rule all_not_allowed
wenzelm@10729
   322
      | _ => err_in_rule sg name rule bad_concl);
wenzelm@10729
   323
    ((name, arule), att)
wenzelm@10729
   324
  end;
berghofe@5094
   325
wenzelm@10729
   326
val rulify =
wenzelm@10804
   327
  standard o Tactic.norm_hhf o
wenzelm@11036
   328
  hol_simplify inductive_rulify2 o hol_simplify inductive_rulify1 o
wenzelm@11036
   329
  hol_simplify inductive_conj;
wenzelm@10729
   330
wenzelm@10729
   331
end;
wenzelm@10729
   332
berghofe@5094
   333
wenzelm@6424
   334
wenzelm@10735
   335
(** properties of (co)inductive sets **)
berghofe@5094
   336
wenzelm@10735
   337
(* elimination rules *)
berghofe@5094
   338
wenzelm@8375
   339
fun mk_elims cs cTs params intr_ts intr_names =
berghofe@5094
   340
  let
berghofe@5094
   341
    val used = foldr add_term_names (intr_ts, []);
berghofe@5094
   342
    val [aname, pname] = variantlist (["a", "P"], used);
berghofe@5094
   343
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@5094
   344
berghofe@5094
   345
    fun dest_intr r =
berghofe@5094
   346
      let val Const ("op :", _) $ t $ u =
berghofe@5094
   347
        HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   348
      in (u, t, Logic.strip_imp_prems r) end;
berghofe@5094
   349
wenzelm@8380
   350
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@5094
   351
berghofe@5094
   352
    fun mk_elim (c, T) =
berghofe@5094
   353
      let
berghofe@5094
   354
        val a = Free (aname, T);
berghofe@5094
   355
berghofe@5094
   356
        fun mk_elim_prem (_, t, ts) =
berghofe@5094
   357
          list_all_free (map dest_Free ((foldr add_term_frees (t::ts, [])) \\ params),
berghofe@5094
   358
            Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (a, t)) :: ts, P));
wenzelm@8375
   359
        val c_intrs = (filter (equal c o #1 o #1) intrs);
berghofe@5094
   360
      in
wenzelm@8375
   361
        (Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_mem (a, c)) ::
wenzelm@8375
   362
          map mk_elim_prem (map #1 c_intrs), P), map #2 c_intrs)
berghofe@5094
   363
      end
berghofe@5094
   364
  in
berghofe@5094
   365
    map mk_elim (cs ~~ cTs)
berghofe@5094
   366
  end;
wenzelm@9598
   367
wenzelm@6424
   368
wenzelm@10735
   369
(* premises and conclusions of induction rules *)
berghofe@5094
   370
berghofe@5094
   371
fun mk_indrule cs cTs params intr_ts =
berghofe@5094
   372
  let
berghofe@5094
   373
    val used = foldr add_term_names (intr_ts, []);
berghofe@5094
   374
berghofe@5094
   375
    (* predicates for induction rule *)
berghofe@5094
   376
berghofe@5094
   377
    val preds = map Free (variantlist (if length cs < 2 then ["P"] else
berghofe@5094
   378
      map (fn i => "P" ^ string_of_int i) (1 upto length cs), used) ~~
berghofe@5094
   379
        map (fn T => T --> HOLogic.boolT) cTs);
berghofe@5094
   380
berghofe@5094
   381
    (* transform an introduction rule into a premise for induction rule *)
berghofe@5094
   382
berghofe@5094
   383
    fun mk_ind_prem r =
berghofe@5094
   384
      let
berghofe@5094
   385
        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
berghofe@5094
   386
berghofe@7710
   387
        val pred_of = curry (Library.gen_assoc (op aconv)) (cs ~~ preds);
berghofe@5094
   388
berghofe@7710
   389
        fun subst (s as ((m as Const ("op :", T)) $ t $ u)) =
berghofe@7710
   390
              (case pred_of u of
berghofe@7710
   391
                  None => (m $ fst (subst t) $ fst (subst u), None)
wenzelm@10735
   392
                | Some P => (HOLogic.mk_binop inductive_conj_name (s, P $ t), Some (s, P $ t)))
berghofe@7710
   393
          | subst s =
berghofe@7710
   394
              (case pred_of s of
berghofe@7710
   395
                  Some P => (HOLogic.mk_binop "op Int"
berghofe@7710
   396
                    (s, HOLogic.Collect_const (HOLogic.dest_setT
berghofe@7710
   397
                      (fastype_of s)) $ P), None)
berghofe@7710
   398
                | None => (case s of
berghofe@7710
   399
                     (t $ u) => (fst (subst t) $ fst (subst u), None)
berghofe@7710
   400
                   | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), None)
berghofe@7710
   401
                   | _ => (s, None)));
berghofe@7710
   402
berghofe@7710
   403
        fun mk_prem (s, prems) = (case subst s of
berghofe@7710
   404
              (_, Some (t, u)) => t :: u :: prems
berghofe@7710
   405
            | (t, _) => t :: prems);
wenzelm@9598
   406
berghofe@5094
   407
        val Const ("op :", _) $ t $ u =
berghofe@5094
   408
          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   409
berghofe@5094
   410
      in list_all_free (frees,
berghofe@7710
   411
           Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem
berghofe@5094
   412
             (map HOLogic.dest_Trueprop (Logic.strip_imp_prems r), [])),
berghofe@7710
   413
               HOLogic.mk_Trueprop (the (pred_of u) $ t)))
berghofe@5094
   414
      end;
berghofe@5094
   415
berghofe@5094
   416
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@10988
   417
    val factors = foldl (mg_prod_factors preds) ([], ind_prems);
berghofe@5094
   418
berghofe@5094
   419
    (* make conclusions for induction rules *)
berghofe@5094
   420
berghofe@5094
   421
    fun mk_ind_concl ((c, P), (ts, x)) =
berghofe@5094
   422
      let val T = HOLogic.dest_setT (fastype_of c);
berghofe@10988
   423
          val ps = if_none (assoc (factors, P)) [];
berghofe@10988
   424
          val Ts = prodT_factors [] ps T;
berghofe@5094
   425
          val (frees, x') = foldr (fn (T', (fs, s)) =>
berghofe@5094
   426
            ((Free (s, T'))::fs, bump_string s)) (Ts, ([], x));
berghofe@10988
   427
          val tuple = mk_tuple [] ps T frees;
berghofe@5094
   428
      in ((HOLogic.mk_binop "op -->"
berghofe@5094
   429
        (HOLogic.mk_mem (tuple, c), P $ tuple))::ts, x')
berghofe@5094
   430
      end;
berghofe@5094
   431
berghofe@7710
   432
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
berghofe@5094
   433
        (fst (foldr mk_ind_concl (cs ~~ preds, ([], "xa")))))
berghofe@5094
   434
berghofe@10988
   435
  in (preds, ind_prems, mutual_ind_concl,
berghofe@10988
   436
    map (apfst (fst o dest_Free)) factors)
berghofe@5094
   437
  end;
berghofe@5094
   438
wenzelm@6424
   439
wenzelm@10735
   440
(* prepare cases and induct rules *)
wenzelm@8316
   441
wenzelm@8316
   442
(*
wenzelm@8316
   443
  transform mutual rule:
wenzelm@8316
   444
    HH ==> (x1:A1 --> P1 x1) & ... & (xn:An --> Pn xn)
wenzelm@8316
   445
  into i-th projection:
wenzelm@8316
   446
    xi:Ai ==> HH ==> Pi xi
wenzelm@8316
   447
*)
wenzelm@8316
   448
wenzelm@8316
   449
fun project_rules [name] rule = [(name, rule)]
wenzelm@8316
   450
  | project_rules names mutual_rule =
wenzelm@8316
   451
      let
wenzelm@8316
   452
        val n = length names;
wenzelm@8316
   453
        fun proj i =
wenzelm@8316
   454
          (if i < n then (fn th => th RS conjunct1) else I)
wenzelm@8316
   455
            (Library.funpow (i - 1) (fn th => th RS conjunct2) mutual_rule)
wenzelm@8316
   456
            RS mp |> Thm.permute_prems 0 ~1 |> Drule.standard;
wenzelm@8316
   457
      in names ~~ map proj (1 upto n) end;
wenzelm@8316
   458
wenzelm@12172
   459
fun add_cases_induct no_elim no_induct names elims induct =
wenzelm@8316
   460
  let
wenzelm@9405
   461
    fun cases_spec (name, elim) thy =
wenzelm@9405
   462
      thy
wenzelm@9405
   463
      |> Theory.add_path (Sign.base_name name)
wenzelm@10279
   464
      |> (#1 o PureThy.add_thms [(("cases", elim), [InductAttrib.cases_set_global name])])
wenzelm@9405
   465
      |> Theory.parent_path;
wenzelm@8375
   466
    val cases_specs = if no_elim then [] else map2 cases_spec (names, elims);
wenzelm@8316
   467
wenzelm@11005
   468
    fun induct_spec (name, th) = #1 o PureThy.add_thms
wenzelm@11005
   469
      [(("", RuleCases.save induct th), [InductAttrib.induct_set_global name])];
wenzelm@12172
   470
    val induct_specs = if no_induct then [] else map induct_spec (project_rules names induct);
wenzelm@9405
   471
  in Library.apply (cases_specs @ induct_specs) end;
wenzelm@8316
   472
wenzelm@8316
   473
wenzelm@8316
   474
wenzelm@10735
   475
(** proofs for (co)inductive sets **)
wenzelm@6424
   476
wenzelm@10735
   477
(* prove monotonicity -- NOT subject to quick_and_dirty! *)
berghofe@5094
   478
berghofe@5094
   479
fun prove_mono setT fp_fun monos thy =
wenzelm@10735
   480
 (message "  Proving monotonicity ...";
wenzelm@11880
   481
  Goals.prove_goalw_cterm []      (*NO quick_and_dirty_prove_goalw_cterm here!*)
wenzelm@10735
   482
    (Thm.cterm_of (Theory.sign_of thy) (HOLogic.mk_Trueprop
berghofe@5094
   483
      (Const (mono_name, (setT --> setT) --> HOLogic.boolT) $ fp_fun)))
wenzelm@11502
   484
    (fn _ => [rtac monoI 1, REPEAT (ares_tac (flat (map mk_mono monos) @ get_monos thy) 1)]));
berghofe@5094
   485
wenzelm@6424
   486
wenzelm@10735
   487
(* prove introduction rules *)
berghofe@5094
   488
wenzelm@12180
   489
fun prove_intrs coind mono fp_def intr_ts rec_sets_defs thy =
berghofe@5094
   490
  let
wenzelm@10735
   491
    val _ = clean_message "  Proving the introduction rules ...";
berghofe@5094
   492
berghofe@5094
   493
    val unfold = standard (mono RS (fp_def RS
nipkow@10186
   494
      (if coind then def_gfp_unfold else def_lfp_unfold)));
berghofe@5094
   495
berghofe@5094
   496
    fun select_disj 1 1 = []
berghofe@5094
   497
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   498
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   499
wenzelm@11880
   500
    val intrs = map (fn (i, intr) => quick_and_dirty_prove_goalw_cterm thy rec_sets_defs
wenzelm@10735
   501
      (Thm.cterm_of (Theory.sign_of thy) intr) (fn prems =>
berghofe@5094
   502
       [(*insert prems and underlying sets*)
berghofe@5094
   503
       cut_facts_tac prems 1,
berghofe@5094
   504
       stac unfold 1,
berghofe@5094
   505
       REPEAT (resolve_tac [vimageI2, CollectI] 1),
berghofe@5094
   506
       (*Now 1-2 subgoals: the disjunction, perhaps equality.*)
berghofe@5094
   507
       EVERY1 (select_disj (length intr_ts) i),
berghofe@5094
   508
       (*Not ares_tac, since refl must be tried before any equality assumptions;
berghofe@5094
   509
         backtracking may occur if the premises have extra variables!*)
wenzelm@10735
   510
       DEPTH_SOLVE_1 (resolve_tac [refl, exI, conjI] 1 APPEND assume_tac 1),
berghofe@5094
   511
       (*Now solve the equations like Inl 0 = Inl ?b2*)
wenzelm@10729
   512
       REPEAT (rtac refl 1)])
wenzelm@10729
   513
      |> rulify) (1 upto (length intr_ts) ~~ intr_ts)
berghofe@5094
   514
berghofe@5094
   515
  in (intrs, unfold) end;
berghofe@5094
   516
wenzelm@6424
   517
wenzelm@10735
   518
(* prove elimination rules *)
berghofe@5094
   519
wenzelm@8375
   520
fun prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs thy =
berghofe@5094
   521
  let
wenzelm@10735
   522
    val _ = clean_message "  Proving the elimination rules ...";
berghofe@5094
   523
berghofe@7710
   524
    val rules1 = [CollectE, disjE, make_elim vimageD, exE];
wenzelm@10735
   525
    val rules2 = [conjE, Inl_neq_Inr, Inr_neq_Inl] @ map make_elim [Inl_inject, Inr_inject];
wenzelm@8375
   526
  in
wenzelm@11005
   527
    mk_elims cs cTs params intr_ts intr_names |> map (fn (t, cases) =>
wenzelm@11880
   528
      quick_and_dirty_prove_goalw_cterm thy rec_sets_defs
wenzelm@11005
   529
        (Thm.cterm_of (Theory.sign_of thy) t) (fn prems =>
wenzelm@11005
   530
          [cut_facts_tac [hd prems] 1,
wenzelm@11005
   531
           dtac (unfold RS subst) 1,
wenzelm@11005
   532
           REPEAT (FIRSTGOAL (eresolve_tac rules1)),
wenzelm@11005
   533
           REPEAT (FIRSTGOAL (eresolve_tac rules2)),
wenzelm@11005
   534
           EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [prem, conjI] 1)) (tl prems))])
wenzelm@11005
   535
        |> rulify
wenzelm@11005
   536
        |> RuleCases.name cases)
wenzelm@8375
   537
  end;
berghofe@5094
   538
wenzelm@6424
   539
wenzelm@10735
   540
(* derivation of simplified elimination rules *)
berghofe@5094
   541
wenzelm@11682
   542
local
wenzelm@11682
   543
wenzelm@7107
   544
(*cprop should have the form t:Si where Si is an inductive set*)
wenzelm@11682
   545
val mk_cases_err = "mk_cases: proposition not of form \"t : S_i\"";
wenzelm@9598
   546
wenzelm@11682
   547
(*delete needless equality assumptions*)
wenzelm@11682
   548
val refl_thin = prove_goal HOL.thy "!!P. a = a ==> P ==> P" (fn _ => [assume_tac 1]);
wenzelm@11682
   549
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE, Pair_inject];
wenzelm@11682
   550
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
wenzelm@11682
   551
wenzelm@11682
   552
fun simp_case_tac solved ss i =
wenzelm@11682
   553
  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i
wenzelm@11682
   554
  THEN_MAYBE (if solved then no_tac else all_tac);
wenzelm@11682
   555
wenzelm@11682
   556
in
wenzelm@9598
   557
wenzelm@9598
   558
fun mk_cases_i elims ss cprop =
wenzelm@7107
   559
  let
wenzelm@7107
   560
    val prem = Thm.assume cprop;
wenzelm@11682
   561
    val tac = ALLGOALS (simp_case_tac false ss) THEN prune_params_tac;
wenzelm@9298
   562
    fun mk_elim rl = Drule.standard (Tactic.rule_by_tactic tac (prem RS rl));
wenzelm@7107
   563
  in
wenzelm@7107
   564
    (case get_first (try mk_elim) elims of
wenzelm@7107
   565
      Some r => r
wenzelm@7107
   566
    | None => error (Pretty.string_of (Pretty.block
wenzelm@9598
   567
        [Pretty.str mk_cases_err, Pretty.fbrk, Display.pretty_cterm cprop])))
wenzelm@7107
   568
  end;
wenzelm@7107
   569
paulson@6141
   570
fun mk_cases elims s =
wenzelm@9598
   571
  mk_cases_i elims (simpset()) (Thm.read_cterm (Thm.sign_of_thm (hd elims)) (s, propT));
wenzelm@9598
   572
wenzelm@9598
   573
fun smart_mk_cases thy ss cprop =
wenzelm@9598
   574
  let
wenzelm@9598
   575
    val c = #1 (Term.dest_Const (Term.head_of (#2 (HOLogic.dest_mem (HOLogic.dest_Trueprop
wenzelm@9598
   576
      (Logic.strip_imp_concl (Thm.term_of cprop))))))) handle TERM _ => error mk_cases_err;
wenzelm@9598
   577
    val (_, {elims, ...}) = the_inductive thy c;
wenzelm@9598
   578
  in mk_cases_i elims ss cprop end;
wenzelm@7107
   579
wenzelm@11682
   580
end;
wenzelm@11682
   581
wenzelm@7107
   582
wenzelm@7107
   583
(* inductive_cases(_i) *)
wenzelm@7107
   584
wenzelm@12172
   585
fun gen_inductive_cases prep_att prep_prop (((name, raw_atts), raw_props), comment) thy =
wenzelm@9598
   586
  let
wenzelm@9598
   587
    val ss = Simplifier.simpset_of thy;
wenzelm@9598
   588
    val sign = Theory.sign_of thy;
wenzelm@9598
   589
    val cprops = map (Thm.cterm_of sign o prep_prop (ProofContext.init thy)) raw_props;
wenzelm@9598
   590
    val atts = map (prep_att thy) raw_atts;
wenzelm@9598
   591
    val thms = map (smart_mk_cases thy ss) cprops;
wenzelm@11740
   592
  in
wenzelm@11740
   593
    thy |>
wenzelm@11740
   594
    IsarThy.have_theorems_i Drule.lemmaK [(((name, atts), map Thm.no_attributes thms), comment)]
wenzelm@11740
   595
  end;
berghofe@5094
   596
wenzelm@12172
   597
val inductive_cases = gen_inductive_cases Attrib.global_attribute ProofContext.read_prop;
wenzelm@12172
   598
val inductive_cases_i = gen_inductive_cases (K I) ProofContext.cert_prop;
wenzelm@7107
   599
wenzelm@6424
   600
wenzelm@9598
   601
(* mk_cases_meth *)
wenzelm@9598
   602
wenzelm@9598
   603
fun mk_cases_meth (ctxt, raw_props) =
wenzelm@9598
   604
  let
wenzelm@9598
   605
    val thy = ProofContext.theory_of ctxt;
wenzelm@9598
   606
    val ss = Simplifier.get_local_simpset ctxt;
wenzelm@9598
   607
    val cprops = map (Thm.cterm_of (Theory.sign_of thy) o ProofContext.read_prop ctxt) raw_props;
wenzelm@10743
   608
  in Method.erule 0 (map (smart_mk_cases thy ss) cprops) end;
wenzelm@9598
   609
wenzelm@9598
   610
val mk_cases_args = Method.syntax (Scan.lift (Scan.repeat1 Args.name));
wenzelm@9598
   611
wenzelm@9598
   612
wenzelm@10735
   613
(* prove induction rule *)
berghofe@5094
   614
berghofe@5094
   615
fun prove_indrule cs cTs sumT rec_const params intr_ts mono
berghofe@5094
   616
    fp_def rec_sets_defs thy =
berghofe@5094
   617
  let
wenzelm@10735
   618
    val _ = clean_message "  Proving the induction rule ...";
berghofe@5094
   619
wenzelm@6394
   620
    val sign = Theory.sign_of thy;
berghofe@5094
   621
berghofe@7293
   622
    val sum_case_rewrites = (case ThyInfo.lookup_theory "Datatype" of
berghofe@7293
   623
        None => []
berghofe@7293
   624
      | Some thy' => map mk_meta_eq (PureThy.get_thms thy' "sum.cases"));
berghofe@7293
   625
berghofe@10988
   626
    val (preds, ind_prems, mutual_ind_concl, factors) =
berghofe@10988
   627
      mk_indrule cs cTs params intr_ts;
berghofe@5094
   628
berghofe@5094
   629
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   630
berghofe@5094
   631
    fun mk_ind_pred _ [P] = P
berghofe@5094
   632
      | mk_ind_pred T Ps =
berghofe@5094
   633
         let val n = (length Ps) div 2;
berghofe@5094
   634
             val Type (_, [T1, T2]) = T
berghofe@7293
   635
         in Const ("Datatype.sum.sum_case",
berghofe@5094
   636
           [T1 --> HOLogic.boolT, T2 --> HOLogic.boolT, T] ---> HOLogic.boolT) $
berghofe@5094
   637
             mk_ind_pred T1 (take (n, Ps)) $ mk_ind_pred T2 (drop (n, Ps))
berghofe@5094
   638
         end;
berghofe@5094
   639
berghofe@5094
   640
    val ind_pred = mk_ind_pred sumT preds;
berghofe@5094
   641
berghofe@5094
   642
    val ind_concl = HOLogic.mk_Trueprop
berghofe@5094
   643
      (HOLogic.all_const sumT $ Abs ("x", sumT, HOLogic.mk_binop "op -->"
berghofe@5094
   644
        (HOLogic.mk_mem (Bound 0, rec_const), ind_pred $ Bound 0)));
berghofe@5094
   645
berghofe@5094
   646
    (* simplification rules for vimage and Collect *)
berghofe@5094
   647
berghofe@5094
   648
    val vimage_simps = if length cs < 2 then [] else
wenzelm@11880
   649
      map (fn c => quick_and_dirty_prove_goalw_cterm thy [] (Thm.cterm_of sign
berghofe@5094
   650
        (HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5094
   651
          (mk_vimage cs sumT (HOLogic.Collect_const sumT $ ind_pred) c,
berghofe@5094
   652
           HOLogic.Collect_const (HOLogic.dest_setT (fastype_of c)) $
berghofe@5094
   653
             nth_elem (find_index_eq c cs, preds)))))
wenzelm@10735
   654
        (fn _ => [rtac vimage_Collect 1, rewrite_goals_tac sum_case_rewrites, rtac refl 1])) cs;
berghofe@5094
   655
wenzelm@11880
   656
    val induct = quick_and_dirty_prove_goalw_cterm thy [inductive_conj_def] (Thm.cterm_of sign
berghofe@5094
   657
      (Logic.list_implies (ind_prems, ind_concl))) (fn prems =>
berghofe@5094
   658
        [rtac (impI RS allI) 1,
nipkow@10202
   659
         DETERM (etac (mono RS (fp_def RS def_lfp_induct)) 1),
berghofe@7710
   660
         rewrite_goals_tac (map mk_meta_eq (vimage_Int::Int_Collect::vimage_simps)),
berghofe@5094
   661
         fold_goals_tac rec_sets_defs,
berghofe@5094
   662
         (*This CollectE and disjE separates out the introduction rules*)
berghofe@7710
   663
         REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE, exE])),
berghofe@5094
   664
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   665
           some premise involves disjunction.*)
berghofe@7710
   666
         REPEAT (FIRSTGOAL (etac conjE ORELSE' hyp_subst_tac)),
berghofe@7293
   667
         rewrite_goals_tac sum_case_rewrites,
berghofe@5094
   668
         EVERY (map (fn prem =>
berghofe@5149
   669
           DEPTH_SOLVE_1 (ares_tac [prem, conjI, refl] 1)) prems)]);
berghofe@5094
   670
wenzelm@11880
   671
    val lemma = quick_and_dirty_prove_goalw_cterm thy rec_sets_defs (Thm.cterm_of sign
berghofe@5094
   672
      (Logic.mk_implies (ind_concl, mutual_ind_concl))) (fn prems =>
berghofe@5094
   673
        [cut_facts_tac prems 1,
berghofe@5094
   674
         REPEAT (EVERY
berghofe@5094
   675
           [REPEAT (resolve_tac [conjI, impI] 1),
berghofe@5094
   676
            TRY (dtac vimageD 1), etac allE 1, dtac mp 1, atac 1,
berghofe@7293
   677
            rewrite_goals_tac sum_case_rewrites,
berghofe@5094
   678
            atac 1])])
berghofe@5094
   679
berghofe@10988
   680
  in standard (split_rule factors (induct RS lemma)) end;
berghofe@5094
   681
wenzelm@6424
   682
wenzelm@6424
   683
wenzelm@10735
   684
(** specification of (co)inductive sets **)
berghofe@5094
   685
wenzelm@10729
   686
fun cond_declare_consts declare_consts cs paramTs cnames =
wenzelm@10729
   687
  if declare_consts then
wenzelm@10729
   688
    Theory.add_consts_i (map (fn (c, n) => (n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames))
wenzelm@10729
   689
  else I;
wenzelm@10729
   690
wenzelm@12180
   691
fun mk_ind_def declare_consts alt_name coind cs intr_ts monos thy
berghofe@9072
   692
      params paramTs cTs cnames =
berghofe@5094
   693
  let
berghofe@5094
   694
    val sumT = fold_bal (fn (T, U) => Type ("+", [T, U])) cTs;
berghofe@5094
   695
    val setT = HOLogic.mk_setT sumT;
berghofe@5094
   696
wenzelm@10735
   697
    val fp_name = if coind then gfp_name else lfp_name;
berghofe@5094
   698
berghofe@5149
   699
    val used = foldr add_term_names (intr_ts, []);
berghofe@5149
   700
    val [sname, xname] = variantlist (["S", "x"], used);
berghofe@5149
   701
berghofe@5094
   702
    (* transform an introduction rule into a conjunction  *)
berghofe@5094
   703
    (*   [| t : ... S_i ... ; ... |] ==> u : S_j          *)
berghofe@5094
   704
    (* is transformed into                                *)
berghofe@5094
   705
    (*   x = Inj_j u & t : ... Inj_i -`` S ... & ...      *)
berghofe@5094
   706
berghofe@5094
   707
    fun transform_rule r =
berghofe@5094
   708
      let
berghofe@5094
   709
        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
berghofe@5149
   710
        val subst = subst_free
berghofe@5149
   711
          (cs ~~ (map (mk_vimage cs sumT (Free (sname, setT))) cs));
berghofe@5094
   712
        val Const ("op :", _) $ t $ u =
berghofe@5094
   713
          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
berghofe@5094
   714
berghofe@5094
   715
      in foldr (fn ((x, T), P) => HOLogic.mk_exists (x, T, P))
berghofe@7710
   716
        (frees, foldr1 HOLogic.mk_conj
berghofe@5149
   717
          (((HOLogic.eq_const sumT) $ Free (xname, sumT) $ (mk_inj cs sumT u t))::
berghofe@5094
   718
            (map (subst o HOLogic.dest_Trueprop)
berghofe@5094
   719
              (Logic.strip_imp_prems r))))
berghofe@5094
   720
      end
berghofe@5094
   721
berghofe@5094
   722
    (* make a disjunction of all introduction rules *)
berghofe@5094
   723
berghofe@5149
   724
    val fp_fun = absfree (sname, setT, (HOLogic.Collect_const sumT) $
berghofe@7710
   725
      absfree (xname, sumT, foldr1 HOLogic.mk_disj (map transform_rule intr_ts)));
berghofe@5094
   726
berghofe@5094
   727
    (* add definiton of recursive sets to theory *)
berghofe@5094
   728
berghofe@5094
   729
    val rec_name = if alt_name = "" then space_implode "_" cnames else alt_name;
wenzelm@6394
   730
    val full_rec_name = Sign.full_name (Theory.sign_of thy) rec_name;
berghofe@5094
   731
berghofe@5094
   732
    val rec_const = list_comb
berghofe@5094
   733
      (Const (full_rec_name, paramTs ---> setT), params);
berghofe@5094
   734
berghofe@5094
   735
    val fp_def_term = Logic.mk_equals (rec_const,
wenzelm@10735
   736
      Const (fp_name, (setT --> setT) --> setT) $ fp_fun);
berghofe@5094
   737
berghofe@5094
   738
    val def_terms = fp_def_term :: (if length cs < 2 then [] else
berghofe@5094
   739
      map (fn c => Logic.mk_equals (c, mk_vimage cs sumT rec_const c)) cs);
berghofe@5094
   740
wenzelm@8433
   741
    val (thy', [fp_def :: rec_sets_defs]) =
wenzelm@8433
   742
      thy
wenzelm@10729
   743
      |> cond_declare_consts declare_consts cs paramTs cnames
wenzelm@8433
   744
      |> (if length cs < 2 then I
wenzelm@8433
   745
          else Theory.add_consts_i [(rec_name, paramTs ---> setT, NoSyn)])
wenzelm@8433
   746
      |> Theory.add_path rec_name
wenzelm@9315
   747
      |> PureThy.add_defss_i false [(("defs", def_terms), [])];
berghofe@5094
   748
berghofe@9072
   749
    val mono = prove_mono setT fp_fun monos thy'
berghofe@5094
   750
wenzelm@10735
   751
  in (thy', mono, fp_def, rec_sets_defs, rec_const, sumT) end;
berghofe@5094
   752
berghofe@9072
   753
fun add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs
wenzelm@12180
   754
    intros monos thy params paramTs cTs cnames induct_cases =
berghofe@9072
   755
  let
wenzelm@10735
   756
    val _ =
wenzelm@10735
   757
      if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive set(s) " ^
wenzelm@10735
   758
        commas_quote cnames) else ();
berghofe@9072
   759
berghofe@9072
   760
    val ((intr_names, intr_ts), intr_atts) = apfst split_list (split_list intros);
berghofe@9072
   761
wenzelm@9939
   762
    val (thy1, mono, fp_def, rec_sets_defs, rec_const, sumT) =
wenzelm@12180
   763
      mk_ind_def declare_consts alt_name coind cs intr_ts monos thy
berghofe@9072
   764
        params paramTs cTs cnames;
berghofe@9072
   765
wenzelm@12180
   766
    val (intrs, unfold) = prove_intrs coind mono fp_def intr_ts rec_sets_defs thy1;
berghofe@5094
   767
    val elims = if no_elim then [] else
wenzelm@9939
   768
      prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs thy1;
wenzelm@8312
   769
    val raw_induct = if no_ind then Drule.asm_rl else
berghofe@5094
   770
      if coind then standard (rule_by_tactic
oheimb@5553
   771
        (rewrite_tac [mk_meta_eq vimage_Un] THEN
berghofe@5094
   772
          fold_tac rec_sets_defs) (mono RS (fp_def RS def_Collect_coinduct)))
berghofe@5094
   773
      else
berghofe@5094
   774
        prove_indrule cs cTs sumT rec_const params intr_ts mono fp_def
wenzelm@9939
   775
          rec_sets_defs thy1;
wenzelm@12165
   776
    val induct =
wenzelm@12165
   777
      if coind orelse no_ind orelse length cs > 1 then (raw_induct, [RuleCases.consumes 0])
wenzelm@12165
   778
      else (raw_induct RSN (2, rev_mp), [RuleCases.consumes 1]);
berghofe@5094
   779
wenzelm@9939
   780
    val (thy2, intrs') =
wenzelm@9939
   781
      thy1 |> PureThy.add_thms ((intr_names ~~ intrs) ~~ intr_atts);
wenzelm@10735
   782
    val (thy3, ([intrs'', elims'], [induct'])) =
wenzelm@10735
   783
      thy2
wenzelm@11005
   784
      |> PureThy.add_thmss
wenzelm@11628
   785
        [(("intros", intrs'), []),
wenzelm@11005
   786
          (("elims", elims), [RuleCases.consumes 1])]
wenzelm@10735
   787
      |>>> PureThy.add_thms
wenzelm@12165
   788
        [((coind_prefix coind ^ "induct", rulify (#1 induct)),
wenzelm@12165
   789
         (RuleCases.case_names induct_cases :: #2 induct))]
wenzelm@8433
   790
      |>> Theory.parent_path;
wenzelm@9939
   791
  in (thy3,
wenzelm@10735
   792
    {defs = fp_def :: rec_sets_defs,
berghofe@5094
   793
     mono = mono,
berghofe@5094
   794
     unfold = unfold,
wenzelm@9939
   795
     intrs = intrs'',
wenzelm@7798
   796
     elims = elims',
wenzelm@7798
   797
     mk_cases = mk_cases elims',
wenzelm@10729
   798
     raw_induct = rulify raw_induct,
wenzelm@7798
   799
     induct = induct'})
berghofe@5094
   800
  end;
berghofe@5094
   801
wenzelm@6424
   802
wenzelm@10735
   803
(* external interfaces *)
berghofe@5094
   804
wenzelm@10735
   805
fun try_term f msg sign t =
wenzelm@10735
   806
  (case Library.try f t of
wenzelm@10735
   807
    Some x => x
wenzelm@10735
   808
  | None => error (msg ^ Sign.string_of_term sign t));
berghofe@5094
   809
wenzelm@12180
   810
fun add_inductive_i verbose declare_consts alt_name coind no_elim no_ind cs pre_intros monos thy =
berghofe@5094
   811
  let
wenzelm@6424
   812
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
wenzelm@6394
   813
    val sign = Theory.sign_of thy;
berghofe@5094
   814
berghofe@5094
   815
    (*parameters should agree for all mutually recursive components*)
berghofe@5094
   816
    val (_, params) = strip_comb (hd cs);
wenzelm@10735
   817
    val paramTs = map (try_term (snd o dest_Free) "Parameter in recursive\
berghofe@5094
   818
      \ component is not a free variable: " sign) params;
berghofe@5094
   819
wenzelm@10735
   820
    val cTs = map (try_term (HOLogic.dest_setT o fastype_of)
berghofe@5094
   821
      "Recursive component not of type set: " sign) cs;
berghofe@5094
   822
wenzelm@10735
   823
    val full_cnames = map (try_term (fst o dest_Const o head_of)
berghofe@5094
   824
      "Recursive set not previously declared as constant: " sign) cs;
wenzelm@6437
   825
    val cnames = map Sign.base_name full_cnames;
berghofe@5094
   826
wenzelm@10729
   827
    val save_sign =
wenzelm@10729
   828
      thy |> Theory.copy |> cond_declare_consts declare_consts cs paramTs cnames |> Theory.sign_of;
wenzelm@10729
   829
    val intros = map (check_rule save_sign cs) pre_intros;
wenzelm@8401
   830
    val induct_cases = map (#1 o #1) intros;
wenzelm@6437
   831
wenzelm@9405
   832
    val (thy1, result as {elims, induct, ...}) =
wenzelm@11628
   833
      add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs intros monos
wenzelm@12180
   834
        thy params paramTs cTs cnames induct_cases;
wenzelm@8307
   835
    val thy2 = thy1
wenzelm@8307
   836
      |> put_inductives full_cnames ({names = full_cnames, coind = coind}, result)
wenzelm@12172
   837
      |> add_cases_induct no_elim (no_ind orelse coind orelse length cs > 1)
wenzelm@12172
   838
          full_cnames elims induct;
wenzelm@6437
   839
  in (thy2, result) end;
berghofe@5094
   840
wenzelm@12180
   841
fun add_inductive verbose coind c_strings intro_srcs raw_monos thy =
berghofe@5094
   842
  let
wenzelm@6394
   843
    val sign = Theory.sign_of thy;
wenzelm@12338
   844
    val cs = map (term_of o HOLogic.read_cterm sign) c_strings;
wenzelm@6424
   845
wenzelm@6424
   846
    val intr_names = map (fst o fst) intro_srcs;
wenzelm@9405
   847
    fun read_rule s = Thm.read_cterm sign (s, propT)
wenzelm@9405
   848
      handle ERROR => error ("The error(s) above occurred for " ^ s);
wenzelm@9405
   849
    val intr_ts = map (Thm.term_of o read_rule o snd o fst) intro_srcs;
wenzelm@6424
   850
    val intr_atts = map (map (Attrib.global_attribute thy) o snd) intro_srcs;
berghofe@7020
   851
    val (cs', intr_ts') = unify_consts sign cs intr_ts;
berghofe@5094
   852
wenzelm@12180
   853
    val (thy', monos) = thy |> IsarThy.apply_theorems raw_monos;
wenzelm@6424
   854
  in
berghofe@7020
   855
    add_inductive_i verbose false "" coind false false cs'
wenzelm@12180
   856
      ((intr_names ~~ intr_ts') ~~ intr_atts) monos thy'
berghofe@5094
   857
  end;
berghofe@5094
   858
wenzelm@6424
   859
wenzelm@6424
   860
wenzelm@6437
   861
(** package setup **)
wenzelm@6437
   862
wenzelm@6437
   863
(* setup theory *)
wenzelm@6437
   864
wenzelm@8634
   865
val setup =
wenzelm@8634
   866
 [InductiveData.init,
wenzelm@9625
   867
  Method.add_methods [("ind_cases", mk_cases_meth oo mk_cases_args,
wenzelm@9598
   868
    "dynamic case analysis on sets")],
wenzelm@9893
   869
  Attrib.add_attributes [("mono", mono_attr, "declaration of monotonicity rule")]];
wenzelm@6437
   870
wenzelm@6437
   871
wenzelm@6437
   872
(* outer syntax *)
wenzelm@6424
   873
wenzelm@6723
   874
local structure P = OuterParse and K = OuterSyntax.Keyword in
wenzelm@6424
   875
wenzelm@12180
   876
fun mk_ind coind ((sets, intrs), monos) =
wenzelm@12180
   877
  #1 o add_inductive true coind sets (map P.triple_swap intrs) monos;
wenzelm@6424
   878
wenzelm@6424
   879
fun ind_decl coind =
wenzelm@6729
   880
  (Scan.repeat1 P.term --| P.marg_comment) --
wenzelm@9598
   881
  (P.$$$ "intros" |--
wenzelm@11628
   882
    P.!!! (Scan.repeat1 (P.opt_thm_name ":" -- P.prop --| P.marg_comment))) --
wenzelm@12180
   883
  Scan.optional (P.$$$ "monos" |-- P.!!! P.xthms1 --| P.marg_comment) []
wenzelm@6424
   884
  >> (Toplevel.theory o mk_ind coind);
wenzelm@6424
   885
wenzelm@6723
   886
val inductiveP =
wenzelm@6723
   887
  OuterSyntax.command "inductive" "define inductive sets" K.thy_decl (ind_decl false);
wenzelm@6723
   888
wenzelm@6723
   889
val coinductiveP =
wenzelm@6723
   890
  OuterSyntax.command "coinductive" "define coinductive sets" K.thy_decl (ind_decl true);
wenzelm@6424
   891
wenzelm@7107
   892
wenzelm@7107
   893
val ind_cases =
wenzelm@9625
   894
  P.opt_thm_name ":" -- Scan.repeat1 P.prop -- P.marg_comment
wenzelm@7107
   895
  >> (Toplevel.theory o inductive_cases);
wenzelm@7107
   896
wenzelm@7107
   897
val inductive_casesP =
wenzelm@9804
   898
  OuterSyntax.command "inductive_cases"
wenzelm@9598
   899
    "create simplified instances of elimination rules (improper)" K.thy_script ind_cases;
wenzelm@7107
   900
wenzelm@12180
   901
val _ = OuterSyntax.add_keywords ["intros", "monos"];
wenzelm@7107
   902
val _ = OuterSyntax.add_parsers [inductiveP, coinductiveP, inductive_casesP];
wenzelm@6424
   903
berghofe@5094
   904
end;
wenzelm@6424
   905
wenzelm@6424
   906
end;