src/HOL/Nitpick.thy
author nipkow
Mon Sep 13 11:13:15 2010 +0200 (2010-09-13)
changeset 39302 d7728f65b353
parent 39223 022f16801e4e
child 39365 9cab71c20613
permissions -rw-r--r--
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
blanchet@33192
     1
(*  Title:      HOL/Nitpick.thy
blanchet@33192
     2
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@35807
     3
    Copyright   2008, 2009, 2010
blanchet@33192
     4
blanchet@33192
     5
Nitpick: Yet another counterexample generator for Isabelle/HOL.
blanchet@33192
     6
*)
blanchet@33192
     7
blanchet@33192
     8
header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}
blanchet@33192
     9
blanchet@33192
    10
theory Nitpick
haftmann@38393
    11
imports Map Quotient SAT Record
blanchet@33192
    12
uses ("Tools/Nitpick/kodkod.ML")
blanchet@33192
    13
     ("Tools/Nitpick/kodkod_sat.ML")
blanchet@33192
    14
     ("Tools/Nitpick/nitpick_util.ML")
blanchet@33192
    15
     ("Tools/Nitpick/nitpick_hol.ML")
blanchet@35070
    16
     ("Tools/Nitpick/nitpick_preproc.ML")
blanchet@33192
    17
     ("Tools/Nitpick/nitpick_mono.ML")
blanchet@33192
    18
     ("Tools/Nitpick/nitpick_scope.ML")
blanchet@33192
    19
     ("Tools/Nitpick/nitpick_peephole.ML")
blanchet@33192
    20
     ("Tools/Nitpick/nitpick_rep.ML")
blanchet@33192
    21
     ("Tools/Nitpick/nitpick_nut.ML")
blanchet@33192
    22
     ("Tools/Nitpick/nitpick_kodkod.ML")
blanchet@33192
    23
     ("Tools/Nitpick/nitpick_model.ML")
blanchet@33192
    24
     ("Tools/Nitpick/nitpick.ML")
blanchet@33192
    25
     ("Tools/Nitpick/nitpick_isar.ML")
blanchet@33192
    26
     ("Tools/Nitpick/nitpick_tests.ML")
blanchet@33192
    27
begin
blanchet@33192
    28
blanchet@33192
    29
typedecl bisim_iterator
blanchet@33192
    30
blanchet@33192
    31
axiomatization unknown :: 'a
blanchet@34938
    32
           and is_unknown :: "'a \<Rightarrow> bool"
blanchet@33192
    33
           and undefined_fast_The :: 'a
blanchet@33192
    34
           and undefined_fast_Eps :: 'a
blanchet@33192
    35
           and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
blanchet@33192
    36
           and bisim_iterator_max :: bisim_iterator
blanchet@34938
    37
           and Quot :: "'a \<Rightarrow> 'b"
blanchet@35671
    38
           and safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
blanchet@35671
    39
           and safe_Eps :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
blanchet@33192
    40
blanchet@35665
    41
datatype ('a, 'b) fin_fun = FinFun "('a \<Rightarrow> 'b)"
blanchet@35665
    42
datatype ('a, 'b) fun_box = FunBox "('a \<Rightarrow> 'b)"
blanchet@33192
    43
datatype ('a, 'b) pair_box = PairBox 'a 'b
blanchet@34124
    44
blanchet@34124
    45
typedecl unsigned_bit
blanchet@34124
    46
typedecl signed_bit
blanchet@34124
    47
blanchet@34124
    48
datatype 'a word = Word "('a set)"
blanchet@33192
    49
blanchet@33192
    50
text {*
blanchet@33192
    51
Alternative definitions.
blanchet@33192
    52
*}
blanchet@33192
    53
blanchet@36918
    54
lemma If_def [nitpick_def, no_atp]:
blanchet@33192
    55
"(if P then Q else R) \<equiv> (P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R)"
blanchet@33192
    56
by (rule eq_reflection) (rule if_bool_eq_conj)
blanchet@33192
    57
blanchet@36918
    58
lemma Ex1_def [nitpick_def, no_atp]:
blanchet@33192
    59
"Ex1 P \<equiv> \<exists>x. P = {x}"
blanchet@33192
    60
apply (rule eq_reflection)
nipkow@39302
    61
apply (simp add: Ex1_def set_eq_iff)
blanchet@33192
    62
apply (rule iffI)
blanchet@33192
    63
 apply (erule exE)
blanchet@33192
    64
 apply (erule conjE)
blanchet@33192
    65
 apply (rule_tac x = x in exI)
blanchet@33192
    66
 apply (rule allI)
blanchet@33192
    67
 apply (rename_tac y)
blanchet@33192
    68
 apply (erule_tac x = y in allE)
blanchet@33192
    69
by (auto simp: mem_def)
blanchet@33192
    70
blanchet@36918
    71
lemma rtrancl_def [nitpick_def, no_atp]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>="
blanchet@33192
    72
by simp
blanchet@33192
    73
blanchet@36918
    74
lemma rtranclp_def [nitpick_def, no_atp]:
blanchet@33192
    75
"rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)"
blanchet@33192
    76
by (rule eq_reflection) (auto dest: rtranclpD)
blanchet@33192
    77
blanchet@36918
    78
lemma tranclp_def [nitpick_def, no_atp]:
blanchet@33192
    79
"tranclp r a b \<equiv> trancl (split r) (a, b)"
blanchet@33192
    80
by (simp add: trancl_def Collect_def mem_def)
blanchet@33192
    81
blanchet@33192
    82
definition refl' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
blanchet@33192
    83
"refl' r \<equiv> \<forall>x. (x, x) \<in> r"
blanchet@33192
    84
blanchet@33192
    85
definition wf' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
blanchet@33192
    86
"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)"
blanchet@33192
    87
blanchet@33192
    88
axiomatization wf_wfrec :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
blanchet@33192
    89
blanchet@33192
    90
definition wf_wfrec' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
blanchet@33192
    91
[nitpick_simp]: "wf_wfrec' R F x = F (Recdef.cut (wf_wfrec R F) R x) x"
blanchet@33192
    92
blanchet@33192
    93
definition wfrec' ::  "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
blanchet@33192
    94
"wfrec' R F x \<equiv> if wf R then wf_wfrec' R F x
blanchet@33192
    95
                else THE y. wfrec_rel R (%f x. F (Recdef.cut f R x) x) x y"
blanchet@33192
    96
blanchet@33192
    97
definition card' :: "('a \<Rightarrow> bool) \<Rightarrow> nat" where
blanchet@35699
    98
"card' A \<equiv> if finite A then length (safe_Eps (\<lambda>xs. set xs = A \<and> distinct xs)) else 0"
blanchet@33192
    99
blanchet@33192
   100
definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'b" where
blanchet@35699
   101
"setsum' f A \<equiv> if finite A then listsum (map f (safe_Eps (\<lambda>xs. set xs = A \<and> distinct xs))) else 0"
blanchet@33192
   102
blanchet@33192
   103
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool" where
blanchet@33192
   104
"fold_graph' f z {} z" |
blanchet@33192
   105
"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)"
blanchet@33192
   106
blanchet@33192
   107
text {*
blanchet@33192
   108
The following lemmas are not strictly necessary but they help the
blanchet@33192
   109
\textit{special\_level} optimization.
blanchet@33192
   110
*}
blanchet@33192
   111
blanchet@36918
   112
lemma The_psimp [nitpick_psimp, no_atp]:
blanchet@33192
   113
"P = {x} \<Longrightarrow> The P = x"
blanchet@33192
   114
by (subgoal_tac "{x} = (\<lambda>y. y = x)") (auto simp: mem_def)
blanchet@33192
   115
blanchet@36918
   116
lemma Eps_psimp [nitpick_psimp, no_atp]:
blanchet@33192
   117
"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x"
blanchet@33192
   118
apply (case_tac "P (Eps P)")
blanchet@33192
   119
 apply auto
blanchet@33192
   120
apply (erule contrapos_np)
blanchet@33192
   121
by (rule someI)
blanchet@33192
   122
blanchet@36918
   123
lemma unit_case_def [nitpick_def, no_atp]:
blanchet@33192
   124
"unit_case x u \<equiv> x"
blanchet@33192
   125
apply (subgoal_tac "u = ()")
blanchet@33192
   126
 apply (simp only: unit.cases)
blanchet@33192
   127
by simp
blanchet@33192
   128
blanchet@33556
   129
declare unit.cases [nitpick_simp del]
blanchet@33556
   130
blanchet@36918
   131
lemma nat_case_def [nitpick_def, no_atp]:
blanchet@33192
   132
"nat_case x f n \<equiv> if n = 0 then x else f (n - 1)"
blanchet@33192
   133
apply (rule eq_reflection)
blanchet@33192
   134
by (case_tac n) auto
blanchet@33192
   135
blanchet@33556
   136
declare nat.cases [nitpick_simp del]
blanchet@33556
   137
blanchet@36918
   138
lemma list_size_simp [nitpick_simp, no_atp]:
blanchet@33192
   139
"list_size f xs = (if xs = [] then 0
blanchet@33192
   140
                   else Suc (f (hd xs) + list_size f (tl xs)))"
blanchet@33192
   141
"size xs = (if xs = [] then 0 else Suc (size (tl xs)))"
blanchet@33192
   142
by (case_tac xs) auto
blanchet@33192
   143
blanchet@33192
   144
text {*
blanchet@33192
   145
Auxiliary definitions used to provide an alternative representation for
blanchet@33192
   146
@{text rat} and @{text real}.
blanchet@33192
   147
*}
blanchet@33192
   148
blanchet@33192
   149
function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   150
[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"
blanchet@33192
   151
by auto
blanchet@33192
   152
termination
blanchet@33192
   153
apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))")
blanchet@33192
   154
 apply auto
blanchet@33192
   155
 apply (metis mod_less_divisor xt1(9))
blanchet@33192
   156
by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))
blanchet@33192
   157
blanchet@33192
   158
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   159
"nat_lcm x y = x * y div (nat_gcd x y)"
blanchet@33192
   160
blanchet@33192
   161
definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   162
"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"
blanchet@33192
   163
blanchet@33192
   164
definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   165
"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"
blanchet@33192
   166
blanchet@33192
   167
definition Frac :: "int \<times> int \<Rightarrow> bool" where
blanchet@33192
   168
"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1"
blanchet@33192
   169
blanchet@33192
   170
axiomatization Abs_Frac :: "int \<times> int \<Rightarrow> 'a"
blanchet@33192
   171
           and Rep_Frac :: "'a \<Rightarrow> int \<times> int"
blanchet@33192
   172
blanchet@33192
   173
definition zero_frac :: 'a where
blanchet@33192
   174
"zero_frac \<equiv> Abs_Frac (0, 1)"
blanchet@33192
   175
blanchet@33192
   176
definition one_frac :: 'a where
blanchet@33192
   177
"one_frac \<equiv> Abs_Frac (1, 1)"
blanchet@33192
   178
blanchet@33192
   179
definition num :: "'a \<Rightarrow> int" where
blanchet@33192
   180
"num \<equiv> fst o Rep_Frac"
blanchet@33192
   181
blanchet@33192
   182
definition denom :: "'a \<Rightarrow> int" where
blanchet@33192
   183
"denom \<equiv> snd o Rep_Frac"
blanchet@33192
   184
blanchet@33192
   185
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
blanchet@33192
   186
[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b)
blanchet@33192
   187
                              else if a = 0 \<or> b = 0 then (0, 1)
blanchet@33192
   188
                              else let c = int_gcd a b in (a div c, b div c))"
blanchet@33192
   189
by pat_completeness auto
blanchet@33192
   190
termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto
blanchet@33192
   191
blanchet@33192
   192
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where
blanchet@33192
   193
"frac a b \<equiv> Abs_Frac (norm_frac a b)"
blanchet@33192
   194
blanchet@33192
   195
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   196
[nitpick_simp]:
blanchet@33192
   197
"plus_frac q r = (let d = int_lcm (denom q) (denom r) in
blanchet@33192
   198
                    frac (num q * (d div denom q) + num r * (d div denom r)) d)"
blanchet@33192
   199
blanchet@33192
   200
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   201
[nitpick_simp]:
blanchet@33192
   202
"times_frac q r = frac (num q * num r) (denom q * denom r)"
blanchet@33192
   203
blanchet@33192
   204
definition uminus_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   205
"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)"
blanchet@33192
   206
blanchet@33192
   207
definition number_of_frac :: "int \<Rightarrow> 'a" where
blanchet@33192
   208
"number_of_frac n \<equiv> Abs_Frac (n, 1)"
blanchet@33192
   209
blanchet@33192
   210
definition inverse_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   211
"inverse_frac q \<equiv> frac (denom q) (num q)"
blanchet@33192
   212
blanchet@37397
   213
definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@37397
   214
[nitpick_simp]:
blanchet@37397
   215
"less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0"
blanchet@37397
   216
blanchet@33192
   217
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@33192
   218
[nitpick_simp]:
blanchet@33192
   219
"less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0"
blanchet@33192
   220
blanchet@33192
   221
definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where
blanchet@33192
   222
"of_frac q \<equiv> of_int (num q) / of_int (denom q)"
blanchet@33192
   223
blanchet@33192
   224
use "Tools/Nitpick/kodkod.ML"
blanchet@33192
   225
use "Tools/Nitpick/kodkod_sat.ML"
blanchet@33192
   226
use "Tools/Nitpick/nitpick_util.ML"
blanchet@33192
   227
use "Tools/Nitpick/nitpick_hol.ML"
blanchet@35665
   228
use "Tools/Nitpick/nitpick_mono.ML"
blanchet@35070
   229
use "Tools/Nitpick/nitpick_preproc.ML"
blanchet@33192
   230
use "Tools/Nitpick/nitpick_scope.ML"
blanchet@33192
   231
use "Tools/Nitpick/nitpick_peephole.ML"
blanchet@33192
   232
use "Tools/Nitpick/nitpick_rep.ML"
blanchet@33192
   233
use "Tools/Nitpick/nitpick_nut.ML"
blanchet@33192
   234
use "Tools/Nitpick/nitpick_kodkod.ML"
blanchet@33192
   235
use "Tools/Nitpick/nitpick_model.ML"
blanchet@33192
   236
use "Tools/Nitpick/nitpick.ML"
blanchet@33192
   237
use "Tools/Nitpick/nitpick_isar.ML"
blanchet@33192
   238
use "Tools/Nitpick/nitpick_tests.ML"
blanchet@33192
   239
blanchet@33561
   240
setup {* Nitpick_Isar.setup *}
blanchet@33561
   241
wenzelm@36176
   242
hide_const (open) unknown is_unknown undefined_fast_The undefined_fast_Eps bisim 
blanchet@35671
   243
    bisim_iterator_max Quot safe_The safe_Eps FinFun FunBox PairBox Word refl'
blanchet@35671
   244
    wf' wf_wfrec wf_wfrec' wfrec' card' setsum' fold_graph' nat_gcd nat_lcm
blanchet@35671
   245
    int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac one_frac num denom
blanchet@35671
   246
    norm_frac frac plus_frac times_frac uminus_frac number_of_frac inverse_frac
blanchet@37397
   247
    less_frac less_eq_frac of_frac
wenzelm@36176
   248
hide_type (open) bisim_iterator fin_fun fun_box pair_box unsigned_bit signed_bit
blanchet@35665
   249
    word
blanchet@37704
   250
hide_fact (open) If_def Ex1_def rtrancl_def rtranclp_def tranclp_def refl'_def
blanchet@37704
   251
    wf'_def wf_wfrec'_def wfrec'_def card'_def setsum'_def fold_graph'_def
blanchet@37704
   252
    The_psimp Eps_psimp unit_case_def nat_case_def list_size_simp nat_gcd_def
blanchet@37704
   253
    nat_lcm_def int_gcd_def int_lcm_def Frac_def zero_frac_def one_frac_def
blanchet@37704
   254
    num_def denom_def norm_frac_def frac_def plus_frac_def times_frac_def
blanchet@37704
   255
    uminus_frac_def number_of_frac_def inverse_frac_def less_frac_def
blanchet@37704
   256
    less_eq_frac_def of_frac_def
blanchet@33192
   257
blanchet@33192
   258
end