src/HOL/Set.thy
author nipkow
Fri Dec 16 16:59:32 2005 +0100 (2005-12-16)
changeset 18423 d7859164447f
parent 18413 50c0c118e96d
child 18447 da548623916a
permissions -rw-r--r--
new lemmas
clasohm@923
     1
(*  Title:      HOL/Set.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@12257
     3
    Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@11979
     6
header {* Set theory for higher-order logic *}
wenzelm@11979
     7
nipkow@15131
     8
theory Set
wenzelm@17508
     9
imports LOrder
nipkow@15131
    10
begin
wenzelm@11979
    11
wenzelm@11979
    12
text {* A set in HOL is simply a predicate. *}
clasohm@923
    13
wenzelm@2261
    14
wenzelm@11979
    15
subsection {* Basic syntax *}
wenzelm@2261
    16
wenzelm@3947
    17
global
wenzelm@3947
    18
wenzelm@11979
    19
typedecl 'a set
wenzelm@12338
    20
arities set :: (type) type
wenzelm@3820
    21
clasohm@923
    22
consts
wenzelm@11979
    23
  "{}"          :: "'a set"                             ("{}")
wenzelm@11979
    24
  UNIV          :: "'a set"
wenzelm@11979
    25
  insert        :: "'a => 'a set => 'a set"
wenzelm@11979
    26
  Collect       :: "('a => bool) => 'a set"              -- "comprehension"
wenzelm@11979
    27
  Int           :: "'a set => 'a set => 'a set"          (infixl 70)
wenzelm@11979
    28
  Un            :: "'a set => 'a set => 'a set"          (infixl 65)
wenzelm@11979
    29
  UNION         :: "'a set => ('a => 'b set) => 'b set"  -- "general union"
wenzelm@11979
    30
  INTER         :: "'a set => ('a => 'b set) => 'b set"  -- "general intersection"
wenzelm@11979
    31
  Union         :: "'a set set => 'a set"                -- "union of a set"
wenzelm@11979
    32
  Inter         :: "'a set set => 'a set"                -- "intersection of a set"
wenzelm@11979
    33
  Pow           :: "'a set => 'a set set"                -- "powerset"
wenzelm@11979
    34
  Ball          :: "'a set => ('a => bool) => bool"      -- "bounded universal quantifiers"
wenzelm@11979
    35
  Bex           :: "'a set => ('a => bool) => bool"      -- "bounded existential quantifiers"
wenzelm@11979
    36
  image         :: "('a => 'b) => 'a set => 'b set"      (infixr "`" 90)
wenzelm@11979
    37
wenzelm@11979
    38
syntax
wenzelm@11979
    39
  "op :"        :: "'a => 'a set => bool"                ("op :")
wenzelm@11979
    40
consts
wenzelm@11979
    41
  "op :"        :: "'a => 'a set => bool"                ("(_/ : _)" [50, 51] 50)  -- "membership"
wenzelm@11979
    42
wenzelm@11979
    43
local
wenzelm@11979
    44
wenzelm@14692
    45
instance set :: (type) "{ord, minus}" ..
clasohm@923
    46
clasohm@923
    47
wenzelm@11979
    48
subsection {* Additional concrete syntax *}
wenzelm@2261
    49
clasohm@923
    50
syntax
wenzelm@11979
    51
  range         :: "('a => 'b) => 'b set"             -- "of function"
clasohm@923
    52
wenzelm@11979
    53
  "op ~:"       :: "'a => 'a set => bool"                 ("op ~:")  -- "non-membership"
wenzelm@11979
    54
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ ~: _)" [50, 51] 50)
wenzelm@7238
    55
wenzelm@11979
    56
  "@Finset"     :: "args => 'a set"                       ("{(_)}")
wenzelm@11979
    57
  "@Coll"       :: "pttrn => bool => 'a set"              ("(1{_./ _})")
wenzelm@11979
    58
  "@SetCompr"   :: "'a => idts => bool => 'a set"         ("(1{_ |/_./ _})")
nipkow@15535
    59
  "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ :/ _./ _})")
wenzelm@11979
    60
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" 10)
wenzelm@11979
    61
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" 10)
wenzelm@11979
    62
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" 10)
wenzelm@11979
    63
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" 10)
clasohm@923
    64
wenzelm@11979
    65
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
wenzelm@11979
    66
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
clasohm@923
    67
wenzelm@7238
    68
syntax (HOL)
wenzelm@11979
    69
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
wenzelm@11979
    70
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
clasohm@923
    71
clasohm@923
    72
translations
nipkow@10832
    73
  "range f"     == "f`UNIV"
clasohm@923
    74
  "x ~: y"      == "~ (x : y)"
clasohm@923
    75
  "{x, xs}"     == "insert x {xs}"
clasohm@923
    76
  "{x}"         == "insert x {}"
nipkow@13764
    77
  "{x. P}"      == "Collect (%x. P)"
nipkow@15535
    78
  "{x:A. P}"    => "{x. x:A & P}"
paulson@4159
    79
  "UN x y. B"   == "UN x. UN y. B"
paulson@4159
    80
  "UN x. B"     == "UNION UNIV (%x. B)"
nipkow@13858
    81
  "UN x. B"     == "UN x:UNIV. B"
wenzelm@7238
    82
  "INT x y. B"  == "INT x. INT y. B"
paulson@4159
    83
  "INT x. B"    == "INTER UNIV (%x. B)"
nipkow@13858
    84
  "INT x. B"    == "INT x:UNIV. B"
nipkow@13764
    85
  "UN x:A. B"   == "UNION A (%x. B)"
nipkow@13764
    86
  "INT x:A. B"  == "INTER A (%x. B)"
nipkow@13764
    87
  "ALL x:A. P"  == "Ball A (%x. P)"
nipkow@13764
    88
  "EX x:A. P"   == "Bex A (%x. P)"
clasohm@923
    89
wenzelm@12633
    90
syntax (output)
wenzelm@11979
    91
  "_setle"      :: "'a set => 'a set => bool"             ("op <=")
wenzelm@11979
    92
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ <= _)" [50, 51] 50)
wenzelm@11979
    93
  "_setless"    :: "'a set => 'a set => bool"             ("op <")
wenzelm@11979
    94
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ < _)" [50, 51] 50)
clasohm@923
    95
wenzelm@12114
    96
syntax (xsymbols)
wenzelm@11979
    97
  "_setle"      :: "'a set => 'a set => bool"             ("op \<subseteq>")
wenzelm@11979
    98
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ \<subseteq> _)" [50, 51] 50)
wenzelm@11979
    99
  "_setless"    :: "'a set => 'a set => bool"             ("op \<subset>")
wenzelm@11979
   100
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ \<subset> _)" [50, 51] 50)
wenzelm@11979
   101
  "op Int"      :: "'a set => 'a set => 'a set"           (infixl "\<inter>" 70)
wenzelm@11979
   102
  "op Un"       :: "'a set => 'a set => 'a set"           (infixl "\<union>" 65)
wenzelm@11979
   103
  "op :"        :: "'a => 'a set => bool"                 ("op \<in>")
wenzelm@11979
   104
  "op :"        :: "'a => 'a set => bool"                 ("(_/ \<in> _)" [50, 51] 50)
wenzelm@11979
   105
  "op ~:"       :: "'a => 'a set => bool"                 ("op \<notin>")
wenzelm@11979
   106
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ \<notin> _)" [50, 51] 50)
nipkow@14381
   107
  Union         :: "'a set set => 'a set"                 ("\<Union>_" [90] 90)
nipkow@14381
   108
  Inter         :: "'a set set => 'a set"                 ("\<Inter>_" [90] 90)
nipkow@14381
   109
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
nipkow@14381
   110
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
nipkow@14381
   111
kleing@14565
   112
syntax (HTML output)
kleing@14565
   113
  "_setle"      :: "'a set => 'a set => bool"             ("op \<subseteq>")
kleing@14565
   114
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ \<subseteq> _)" [50, 51] 50)
kleing@14565
   115
  "_setless"    :: "'a set => 'a set => bool"             ("op \<subset>")
kleing@14565
   116
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ \<subset> _)" [50, 51] 50)
kleing@14565
   117
  "op Int"      :: "'a set => 'a set => 'a set"           (infixl "\<inter>" 70)
kleing@14565
   118
  "op Un"       :: "'a set => 'a set => 'a set"           (infixl "\<union>" 65)
kleing@14565
   119
  "op :"        :: "'a => 'a set => bool"                 ("op \<in>")
kleing@14565
   120
  "op :"        :: "'a => 'a set => bool"                 ("(_/ \<in> _)" [50, 51] 50)
kleing@14565
   121
  "op ~:"       :: "'a => 'a set => bool"                 ("op \<notin>")
kleing@14565
   122
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ \<notin> _)" [50, 51] 50)
kleing@14565
   123
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
kleing@14565
   124
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
kleing@14565
   125
nipkow@15120
   126
syntax (xsymbols)
nipkow@15535
   127
  "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ \<in>/ _./ _})")
wenzelm@11979
   128
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" 10)
wenzelm@11979
   129
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" 10)
wenzelm@11979
   130
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" 10)
wenzelm@11979
   131
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" 10)
nipkow@15120
   132
(*
nipkow@14381
   133
syntax (xsymbols)
wenzelm@14845
   134
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" 10)
wenzelm@14845
   135
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" 10)
wenzelm@14845
   136
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
wenzelm@14845
   137
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
nipkow@15120
   138
*)
nipkow@15120
   139
syntax (latex output)
nipkow@15120
   140
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" 10)
nipkow@15120
   141
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" 10)
nipkow@15120
   142
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
nipkow@15120
   143
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10)
nipkow@15120
   144
nipkow@15120
   145
text{* Note the difference between ordinary xsymbol syntax of indexed
nipkow@15120
   146
unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
nipkow@15120
   147
and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
nipkow@15120
   148
former does not make the index expression a subscript of the
nipkow@15120
   149
union/intersection symbol because this leads to problems with nested
nipkow@15120
   150
subscripts in Proof General.  *}
wenzelm@2261
   151
kleing@14565
   152
wenzelm@2412
   153
translations
wenzelm@11979
   154
  "op \<subseteq>" => "op <= :: _ set => _ set => bool"
wenzelm@11979
   155
  "op \<subset>" => "op <  :: _ set => _ set => bool"
wenzelm@2261
   156
wenzelm@11979
   157
typed_print_translation {*
wenzelm@11979
   158
  let
wenzelm@11979
   159
    fun le_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
wenzelm@11979
   160
          list_comb (Syntax.const "_setle", ts)
wenzelm@11979
   161
      | le_tr' _ _ _ = raise Match;
wenzelm@11979
   162
wenzelm@11979
   163
    fun less_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
wenzelm@11979
   164
          list_comb (Syntax.const "_setless", ts)
wenzelm@11979
   165
      | less_tr' _ _ _ = raise Match;
wenzelm@11979
   166
  in [("op <=", le_tr'), ("op <", less_tr')] end
wenzelm@11979
   167
*}
wenzelm@2261
   168
nipkow@14804
   169
nipkow@14804
   170
subsubsection "Bounded quantifiers"
nipkow@14804
   171
nipkow@14804
   172
syntax
nipkow@14804
   173
  "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
nipkow@14804
   174
  "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
nipkow@14804
   175
  "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
nipkow@14804
   176
  "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
nipkow@14804
   177
nipkow@14804
   178
syntax (xsymbols)
nipkow@14804
   179
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
nipkow@14804
   180
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
nipkow@14804
   181
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
nipkow@14804
   182
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
nipkow@14804
   183
nipkow@14804
   184
syntax (HOL)
nipkow@14804
   185
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
nipkow@14804
   186
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
nipkow@14804
   187
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
nipkow@14804
   188
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
nipkow@14804
   189
nipkow@14804
   190
syntax (HTML output)
nipkow@14804
   191
  "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
nipkow@14804
   192
  "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
nipkow@14804
   193
  "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
nipkow@14804
   194
  "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
nipkow@14804
   195
nipkow@14804
   196
translations
nipkow@14804
   197
 "\<forall>A\<subset>B. P"   =>  "ALL A. A \<subset> B --> P"
nipkow@14804
   198
 "\<exists>A\<subset>B. P"    =>  "EX A. A \<subset> B & P"
nipkow@14804
   199
 "\<forall>A\<subseteq>B. P"  =>  "ALL A. A \<subseteq> B --> P"
nipkow@14804
   200
 "\<exists>A\<subseteq>B. P"   =>  "EX A. A \<subseteq> B & P"
nipkow@14804
   201
nipkow@14804
   202
print_translation {*
nipkow@14804
   203
let
nipkow@14804
   204
  fun
nipkow@14804
   205
    all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
nipkow@14804
   206
             Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
nipkow@14804
   207
  (if v=v' andalso T="set"
nipkow@14804
   208
   then Syntax.const "_setlessAll" $ Syntax.mark_bound v' $ n $ P
nipkow@14804
   209
   else raise Match)
nipkow@14804
   210
nipkow@14804
   211
  | all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
nipkow@14804
   212
             Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
nipkow@14804
   213
  (if v=v' andalso T="set"
nipkow@14804
   214
   then Syntax.const "_setleAll" $ Syntax.mark_bound v' $ n $ P
nipkow@14804
   215
   else raise Match);
nipkow@14804
   216
nipkow@14804
   217
  fun
nipkow@14804
   218
    ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
nipkow@14804
   219
            Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
nipkow@14804
   220
  (if v=v' andalso T="set"
nipkow@14804
   221
   then Syntax.const "_setlessEx" $ Syntax.mark_bound v' $ n $ P
nipkow@14804
   222
   else raise Match)
nipkow@14804
   223
nipkow@14804
   224
  | ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
nipkow@14804
   225
            Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
nipkow@14804
   226
  (if v=v' andalso T="set"
nipkow@14804
   227
   then Syntax.const "_setleEx" $ Syntax.mark_bound v' $ n $ P
nipkow@14804
   228
   else raise Match)
nipkow@14804
   229
in
nipkow@14804
   230
[("ALL ", all_tr'), ("EX ", ex_tr')]
nipkow@14804
   231
end
nipkow@14804
   232
*}
nipkow@14804
   233
nipkow@14804
   234
nipkow@14804
   235
wenzelm@11979
   236
text {*
wenzelm@11979
   237
  \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
wenzelm@11979
   238
  "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
wenzelm@11979
   239
  only translated if @{text "[0..n] subset bvs(e)"}.
wenzelm@11979
   240
*}
wenzelm@11979
   241
wenzelm@11979
   242
parse_translation {*
wenzelm@11979
   243
  let
wenzelm@11979
   244
    val ex_tr = snd (mk_binder_tr ("EX ", "Ex"));
wenzelm@3947
   245
wenzelm@11979
   246
    fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1
wenzelm@11979
   247
      | nvars _ = 1;
wenzelm@11979
   248
wenzelm@11979
   249
    fun setcompr_tr [e, idts, b] =
wenzelm@11979
   250
      let
wenzelm@11979
   251
        val eq = Syntax.const "op =" $ Bound (nvars idts) $ e;
wenzelm@11979
   252
        val P = Syntax.const "op &" $ eq $ b;
wenzelm@11979
   253
        val exP = ex_tr [idts, P];
wenzelm@17784
   254
      in Syntax.const "Collect" $ Term.absdummy (dummyT, exP) end;
wenzelm@11979
   255
wenzelm@11979
   256
  in [("@SetCompr", setcompr_tr)] end;
wenzelm@11979
   257
*}
clasohm@923
   258
nipkow@13763
   259
(* To avoid eta-contraction of body: *)
wenzelm@11979
   260
print_translation {*
nipkow@13763
   261
let
nipkow@13763
   262
  fun btr' syn [A,Abs abs] =
nipkow@13763
   263
    let val (x,t) = atomic_abs_tr' abs
nipkow@13763
   264
    in Syntax.const syn $ x $ A $ t end
nipkow@13763
   265
in
nipkow@13858
   266
[("Ball", btr' "_Ball"),("Bex", btr' "_Bex"),
nipkow@13858
   267
 ("UNION", btr' "@UNION"),("INTER", btr' "@INTER")]
nipkow@13763
   268
end
nipkow@13763
   269
*}
nipkow@13763
   270
nipkow@13763
   271
print_translation {*
nipkow@13763
   272
let
nipkow@13763
   273
  val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY"));
nipkow@13763
   274
nipkow@13763
   275
  fun setcompr_tr' [Abs (abs as (_, _, P))] =
nipkow@13763
   276
    let
nipkow@13763
   277
      fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1)
nipkow@13763
   278
        | check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) =
nipkow@13763
   279
            n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso
nipkow@13763
   280
            ((0 upto (n - 1)) subset add_loose_bnos (e, 0, []))
nipkow@13764
   281
        | check _ = false
clasohm@923
   282
wenzelm@11979
   283
        fun tr' (_ $ abs) =
wenzelm@11979
   284
          let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs]
wenzelm@11979
   285
          in Syntax.const "@SetCompr" $ e $ idts $ Q end;
nipkow@13763
   286
    in if check (P, 0) then tr' P
nipkow@15535
   287
       else let val (x as _ $ Free(xN,_), t) = atomic_abs_tr' abs
nipkow@15535
   288
                val M = Syntax.const "@Coll" $ x $ t
nipkow@15535
   289
            in case t of
nipkow@15535
   290
                 Const("op &",_)
nipkow@15535
   291
                   $ (Const("op :",_) $ (Const("_bound",_) $ Free(yN,_)) $ A)
nipkow@15535
   292
                   $ P =>
nipkow@15535
   293
                   if xN=yN then Syntax.const "@Collect" $ x $ A $ P else M
nipkow@15535
   294
               | _ => M
nipkow@15535
   295
            end
nipkow@13763
   296
    end;
wenzelm@11979
   297
  in [("Collect", setcompr_tr')] end;
wenzelm@11979
   298
*}
wenzelm@11979
   299
wenzelm@11979
   300
wenzelm@11979
   301
subsection {* Rules and definitions *}
wenzelm@11979
   302
wenzelm@11979
   303
text {* Isomorphisms between predicates and sets. *}
clasohm@923
   304
wenzelm@11979
   305
axioms
paulson@17085
   306
  mem_Collect_eq: "(a : {x. P(x)}) = P(a)"
paulson@17085
   307
  Collect_mem_eq: "{x. x:A} = A"
wenzelm@17702
   308
finalconsts
wenzelm@17702
   309
  Collect
wenzelm@17702
   310
  "op :"
wenzelm@11979
   311
wenzelm@11979
   312
defs
wenzelm@11979
   313
  Ball_def:     "Ball A P       == ALL x. x:A --> P(x)"
wenzelm@11979
   314
  Bex_def:      "Bex A P        == EX x. x:A & P(x)"
wenzelm@11979
   315
wenzelm@11979
   316
defs (overloaded)
wenzelm@11979
   317
  subset_def:   "A <= B         == ALL x:A. x:B"
wenzelm@11979
   318
  psubset_def:  "A < B          == (A::'a set) <= B & ~ A=B"
wenzelm@11979
   319
  Compl_def:    "- A            == {x. ~x:A}"
wenzelm@12257
   320
  set_diff_def: "A - B          == {x. x:A & ~x:B}"
clasohm@923
   321
clasohm@923
   322
defs
wenzelm@11979
   323
  Un_def:       "A Un B         == {x. x:A | x:B}"
wenzelm@11979
   324
  Int_def:      "A Int B        == {x. x:A & x:B}"
wenzelm@11979
   325
  INTER_def:    "INTER A B      == {y. ALL x:A. y: B(x)}"
wenzelm@11979
   326
  UNION_def:    "UNION A B      == {y. EX x:A. y: B(x)}"
wenzelm@11979
   327
  Inter_def:    "Inter S        == (INT x:S. x)"
wenzelm@11979
   328
  Union_def:    "Union S        == (UN x:S. x)"
wenzelm@11979
   329
  Pow_def:      "Pow A          == {B. B <= A}"
wenzelm@11979
   330
  empty_def:    "{}             == {x. False}"
wenzelm@11979
   331
  UNIV_def:     "UNIV           == {x. True}"
wenzelm@11979
   332
  insert_def:   "insert a B     == {x. x=a} Un B"
wenzelm@11979
   333
  image_def:    "f`A            == {y. EX x:A. y = f(x)}"
wenzelm@11979
   334
wenzelm@11979
   335
wenzelm@11979
   336
subsection {* Lemmas and proof tool setup *}
wenzelm@11979
   337
wenzelm@11979
   338
subsubsection {* Relating predicates and sets *}
wenzelm@11979
   339
paulson@17085
   340
declare mem_Collect_eq [iff]  Collect_mem_eq [simp]
paulson@17085
   341
wenzelm@12257
   342
lemma CollectI: "P(a) ==> a : {x. P(x)}"
wenzelm@11979
   343
  by simp
wenzelm@11979
   344
wenzelm@11979
   345
lemma CollectD: "a : {x. P(x)} ==> P(a)"
wenzelm@11979
   346
  by simp
wenzelm@11979
   347
wenzelm@11979
   348
lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
wenzelm@11979
   349
  by simp
wenzelm@11979
   350
wenzelm@12257
   351
lemmas CollectE = CollectD [elim_format]
wenzelm@11979
   352
wenzelm@11979
   353
wenzelm@11979
   354
subsubsection {* Bounded quantifiers *}
wenzelm@11979
   355
wenzelm@11979
   356
lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x"
wenzelm@11979
   357
  by (simp add: Ball_def)
wenzelm@11979
   358
wenzelm@11979
   359
lemmas strip = impI allI ballI
wenzelm@11979
   360
wenzelm@11979
   361
lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x"
wenzelm@11979
   362
  by (simp add: Ball_def)
wenzelm@11979
   363
wenzelm@11979
   364
lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
wenzelm@11979
   365
  by (unfold Ball_def) blast
oheimb@14098
   366
ML {* bind_thm("rev_ballE",permute_prems 1 1 (thm "ballE")) *}
wenzelm@11979
   367
wenzelm@11979
   368
text {*
wenzelm@11979
   369
  \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
wenzelm@11979
   370
  @{prop "a:A"}; creates assumption @{prop "P a"}.
wenzelm@11979
   371
*}
wenzelm@11979
   372
wenzelm@11979
   373
ML {*
wenzelm@11979
   374
  local val ballE = thm "ballE"
wenzelm@11979
   375
  in fun ball_tac i = etac ballE i THEN contr_tac (i + 1) end;
wenzelm@11979
   376
*}
wenzelm@11979
   377
wenzelm@11979
   378
text {*
wenzelm@11979
   379
  Gives better instantiation for bound:
wenzelm@11979
   380
*}
wenzelm@11979
   381
wenzelm@11979
   382
ML_setup {*
wenzelm@17875
   383
  change_claset (fn cs => cs addbefore ("bspec", datac (thm "bspec") 1));
wenzelm@11979
   384
*}
wenzelm@11979
   385
wenzelm@11979
   386
lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x"
wenzelm@11979
   387
  -- {* Normally the best argument order: @{prop "P x"} constrains the
wenzelm@11979
   388
    choice of @{prop "x:A"}. *}
wenzelm@11979
   389
  by (unfold Bex_def) blast
wenzelm@11979
   390
wenzelm@13113
   391
lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x"
wenzelm@11979
   392
  -- {* The best argument order when there is only one @{prop "x:A"}. *}
wenzelm@11979
   393
  by (unfold Bex_def) blast
wenzelm@11979
   394
wenzelm@11979
   395
lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x"
wenzelm@11979
   396
  by (unfold Bex_def) blast
wenzelm@11979
   397
wenzelm@11979
   398
lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q"
wenzelm@11979
   399
  by (unfold Bex_def) blast
wenzelm@11979
   400
wenzelm@11979
   401
lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)"
wenzelm@11979
   402
  -- {* Trival rewrite rule. *}
wenzelm@11979
   403
  by (simp add: Ball_def)
wenzelm@11979
   404
wenzelm@11979
   405
lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)"
wenzelm@11979
   406
  -- {* Dual form for existentials. *}
wenzelm@11979
   407
  by (simp add: Bex_def)
wenzelm@11979
   408
wenzelm@11979
   409
lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)"
wenzelm@11979
   410
  by blast
wenzelm@11979
   411
wenzelm@11979
   412
lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)"
wenzelm@11979
   413
  by blast
wenzelm@11979
   414
wenzelm@11979
   415
lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)"
wenzelm@11979
   416
  by blast
wenzelm@11979
   417
wenzelm@11979
   418
lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)"
wenzelm@11979
   419
  by blast
wenzelm@11979
   420
wenzelm@11979
   421
lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)"
wenzelm@11979
   422
  by blast
wenzelm@11979
   423
wenzelm@11979
   424
lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
wenzelm@11979
   425
  by blast
wenzelm@11979
   426
wenzelm@11979
   427
ML_setup {*
wenzelm@13462
   428
  local
wenzelm@18328
   429
    val unfold_bex_tac = unfold_tac [thm "Bex_def"];
wenzelm@18328
   430
    fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac;
wenzelm@11979
   431
    val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac;
wenzelm@11979
   432
wenzelm@18328
   433
    val unfold_ball_tac = unfold_tac [thm "Ball_def"];
wenzelm@18328
   434
    fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac;
wenzelm@11979
   435
    val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac;
wenzelm@11979
   436
  in
wenzelm@18328
   437
    val defBEX_regroup = Simplifier.simproc (the_context ())
wenzelm@13462
   438
      "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex;
wenzelm@18328
   439
    val defBALL_regroup = Simplifier.simproc (the_context ())
wenzelm@13462
   440
      "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball;
wenzelm@11979
   441
  end;
wenzelm@13462
   442
wenzelm@13462
   443
  Addsimprocs [defBALL_regroup, defBEX_regroup];
wenzelm@11979
   444
*}
wenzelm@11979
   445
wenzelm@11979
   446
wenzelm@11979
   447
subsubsection {* Congruence rules *}
wenzelm@11979
   448
berghofe@16636
   449
lemma ball_cong:
wenzelm@11979
   450
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
wenzelm@11979
   451
    (ALL x:A. P x) = (ALL x:B. Q x)"
wenzelm@11979
   452
  by (simp add: Ball_def)
wenzelm@11979
   453
berghofe@16636
   454
lemma strong_ball_cong [cong]:
berghofe@16636
   455
  "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
berghofe@16636
   456
    (ALL x:A. P x) = (ALL x:B. Q x)"
berghofe@16636
   457
  by (simp add: simp_implies_def Ball_def)
berghofe@16636
   458
berghofe@16636
   459
lemma bex_cong:
wenzelm@11979
   460
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
wenzelm@11979
   461
    (EX x:A. P x) = (EX x:B. Q x)"
wenzelm@11979
   462
  by (simp add: Bex_def cong: conj_cong)
regensbu@1273
   463
berghofe@16636
   464
lemma strong_bex_cong [cong]:
berghofe@16636
   465
  "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
berghofe@16636
   466
    (EX x:A. P x) = (EX x:B. Q x)"
berghofe@16636
   467
  by (simp add: simp_implies_def Bex_def cong: conj_cong)
berghofe@16636
   468
wenzelm@7238
   469
wenzelm@11979
   470
subsubsection {* Subsets *}
wenzelm@11979
   471
wenzelm@12897
   472
lemma subsetI [intro!]: "(!!x. x:A ==> x:B) ==> A \<subseteq> B"
wenzelm@11979
   473
  by (simp add: subset_def)
wenzelm@11979
   474
wenzelm@11979
   475
text {*
wenzelm@11979
   476
  \medskip Map the type @{text "'a set => anything"} to just @{typ
wenzelm@11979
   477
  'a}; for overloading constants whose first argument has type @{typ
wenzelm@11979
   478
  "'a set"}.
wenzelm@11979
   479
*}
wenzelm@11979
   480
wenzelm@12897
   481
lemma subsetD [elim]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B"
wenzelm@11979
   482
  -- {* Rule in Modus Ponens style. *}
wenzelm@11979
   483
  by (unfold subset_def) blast
wenzelm@11979
   484
wenzelm@11979
   485
declare subsetD [intro?] -- FIXME
wenzelm@11979
   486
wenzelm@12897
   487
lemma rev_subsetD: "c \<in> A ==> A \<subseteq> B ==> c \<in> B"
wenzelm@11979
   488
  -- {* The same, with reversed premises for use with @{text erule} --
wenzelm@11979
   489
      cf @{text rev_mp}. *}
wenzelm@11979
   490
  by (rule subsetD)
wenzelm@11979
   491
wenzelm@11979
   492
declare rev_subsetD [intro?] -- FIXME
wenzelm@11979
   493
wenzelm@11979
   494
text {*
wenzelm@12897
   495
  \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
wenzelm@11979
   496
*}
wenzelm@11979
   497
wenzelm@11979
   498
ML {*
wenzelm@11979
   499
  local val rev_subsetD = thm "rev_subsetD"
wenzelm@11979
   500
  in fun impOfSubs th = th RSN (2, rev_subsetD) end;
wenzelm@11979
   501
*}
wenzelm@11979
   502
wenzelm@12897
   503
lemma subsetCE [elim]: "A \<subseteq>  B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P"
wenzelm@11979
   504
  -- {* Classical elimination rule. *}
wenzelm@11979
   505
  by (unfold subset_def) blast
wenzelm@11979
   506
wenzelm@11979
   507
text {*
wenzelm@12897
   508
  \medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and
wenzelm@12897
   509
  creates the assumption @{prop "c \<in> B"}.
wenzelm@11979
   510
*}
wenzelm@11979
   511
wenzelm@11979
   512
ML {*
wenzelm@11979
   513
  local val subsetCE = thm "subsetCE"
wenzelm@11979
   514
  in fun set_mp_tac i = etac subsetCE i THEN mp_tac i end;
wenzelm@11979
   515
*}
wenzelm@11979
   516
wenzelm@12897
   517
lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A"
wenzelm@11979
   518
  by blast
wenzelm@11979
   519
paulson@18315
   520
lemma subset_refl [simp]: "A \<subseteq> A"
wenzelm@11979
   521
  by fast
wenzelm@11979
   522
wenzelm@12897
   523
lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C"
wenzelm@11979
   524
  by blast
clasohm@923
   525
wenzelm@2261
   526
wenzelm@11979
   527
subsubsection {* Equality *}
wenzelm@11979
   528
paulson@13865
   529
lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B"
paulson@13865
   530
  apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals])
paulson@13865
   531
   apply (rule Collect_mem_eq)
paulson@13865
   532
  apply (rule Collect_mem_eq)
paulson@13865
   533
  done
paulson@13865
   534
nipkow@15554
   535
(* Due to Brian Huffman *)
nipkow@15554
   536
lemma expand_set_eq: "(A = B) = (ALL x. (x:A) = (x:B))"
nipkow@15554
   537
by(auto intro:set_ext)
nipkow@15554
   538
wenzelm@12897
   539
lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
wenzelm@11979
   540
  -- {* Anti-symmetry of the subset relation. *}
nipkow@17589
   541
  by (iprover intro: set_ext subsetD)
wenzelm@12897
   542
wenzelm@12897
   543
lemmas equalityI [intro!] = subset_antisym
wenzelm@11979
   544
wenzelm@11979
   545
text {*
wenzelm@11979
   546
  \medskip Equality rules from ZF set theory -- are they appropriate
wenzelm@11979
   547
  here?
wenzelm@11979
   548
*}
wenzelm@11979
   549
wenzelm@12897
   550
lemma equalityD1: "A = B ==> A \<subseteq> B"
wenzelm@11979
   551
  by (simp add: subset_refl)
wenzelm@11979
   552
wenzelm@12897
   553
lemma equalityD2: "A = B ==> B \<subseteq> A"
wenzelm@11979
   554
  by (simp add: subset_refl)
wenzelm@11979
   555
wenzelm@11979
   556
text {*
wenzelm@11979
   557
  \medskip Be careful when adding this to the claset as @{text
wenzelm@11979
   558
  subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
wenzelm@12897
   559
  \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
wenzelm@11979
   560
*}
wenzelm@11979
   561
wenzelm@12897
   562
lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P"
wenzelm@11979
   563
  by (simp add: subset_refl)
clasohm@923
   564
wenzelm@11979
   565
lemma equalityCE [elim]:
wenzelm@12897
   566
    "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P"
wenzelm@11979
   567
  by blast
wenzelm@11979
   568
wenzelm@11979
   569
lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)"
wenzelm@11979
   570
  by simp
wenzelm@11979
   571
paulson@13865
   572
lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)"
paulson@13865
   573
  by simp
paulson@13865
   574
wenzelm@11979
   575
wenzelm@11979
   576
subsubsection {* The universal set -- UNIV *}
wenzelm@11979
   577
wenzelm@11979
   578
lemma UNIV_I [simp]: "x : UNIV"
wenzelm@11979
   579
  by (simp add: UNIV_def)
wenzelm@11979
   580
wenzelm@11979
   581
declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}
wenzelm@11979
   582
wenzelm@11979
   583
lemma UNIV_witness [intro?]: "EX x. x : UNIV"
wenzelm@11979
   584
  by simp
wenzelm@11979
   585
paulson@18144
   586
lemma subset_UNIV [simp]: "A \<subseteq> UNIV"
wenzelm@11979
   587
  by (rule subsetI) (rule UNIV_I)
wenzelm@2388
   588
wenzelm@11979
   589
text {*
wenzelm@11979
   590
  \medskip Eta-contracting these two rules (to remove @{text P})
wenzelm@11979
   591
  causes them to be ignored because of their interaction with
wenzelm@11979
   592
  congruence rules.
wenzelm@11979
   593
*}
wenzelm@11979
   594
wenzelm@11979
   595
lemma ball_UNIV [simp]: "Ball UNIV P = All P"
wenzelm@11979
   596
  by (simp add: Ball_def)
wenzelm@11979
   597
wenzelm@11979
   598
lemma bex_UNIV [simp]: "Bex UNIV P = Ex P"
wenzelm@11979
   599
  by (simp add: Bex_def)
wenzelm@11979
   600
wenzelm@11979
   601
wenzelm@11979
   602
subsubsection {* The empty set *}
wenzelm@11979
   603
wenzelm@11979
   604
lemma empty_iff [simp]: "(c : {}) = False"
wenzelm@11979
   605
  by (simp add: empty_def)
wenzelm@11979
   606
wenzelm@11979
   607
lemma emptyE [elim!]: "a : {} ==> P"
wenzelm@11979
   608
  by simp
wenzelm@11979
   609
wenzelm@12897
   610
lemma empty_subsetI [iff]: "{} \<subseteq> A"
wenzelm@11979
   611
    -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
wenzelm@11979
   612
  by blast
wenzelm@11979
   613
wenzelm@12897
   614
lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
wenzelm@11979
   615
  by blast
wenzelm@2388
   616
wenzelm@12897
   617
lemma equals0D: "A = {} ==> a \<notin> A"
wenzelm@11979
   618
    -- {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *}
wenzelm@11979
   619
  by blast
wenzelm@11979
   620
wenzelm@11979
   621
lemma ball_empty [simp]: "Ball {} P = True"
wenzelm@11979
   622
  by (simp add: Ball_def)
wenzelm@11979
   623
wenzelm@11979
   624
lemma bex_empty [simp]: "Bex {} P = False"
wenzelm@11979
   625
  by (simp add: Bex_def)
wenzelm@11979
   626
wenzelm@11979
   627
lemma UNIV_not_empty [iff]: "UNIV ~= {}"
wenzelm@11979
   628
  by (blast elim: equalityE)
wenzelm@11979
   629
wenzelm@11979
   630
wenzelm@12023
   631
subsubsection {* The Powerset operator -- Pow *}
wenzelm@11979
   632
wenzelm@12897
   633
lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)"
wenzelm@11979
   634
  by (simp add: Pow_def)
wenzelm@11979
   635
wenzelm@12897
   636
lemma PowI: "A \<subseteq> B ==> A \<in> Pow B"
wenzelm@11979
   637
  by (simp add: Pow_def)
wenzelm@11979
   638
wenzelm@12897
   639
lemma PowD: "A \<in> Pow B ==> A \<subseteq> B"
wenzelm@11979
   640
  by (simp add: Pow_def)
wenzelm@11979
   641
wenzelm@12897
   642
lemma Pow_bottom: "{} \<in> Pow B"
wenzelm@11979
   643
  by simp
wenzelm@11979
   644
wenzelm@12897
   645
lemma Pow_top: "A \<in> Pow A"
wenzelm@11979
   646
  by (simp add: subset_refl)
wenzelm@2684
   647
wenzelm@2388
   648
wenzelm@11979
   649
subsubsection {* Set complement *}
wenzelm@11979
   650
wenzelm@12897
   651
lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)"
wenzelm@11979
   652
  by (unfold Compl_def) blast
wenzelm@11979
   653
wenzelm@12897
   654
lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A"
wenzelm@11979
   655
  by (unfold Compl_def) blast
wenzelm@11979
   656
wenzelm@11979
   657
text {*
wenzelm@11979
   658
  \medskip This form, with negated conclusion, works well with the
wenzelm@11979
   659
  Classical prover.  Negated assumptions behave like formulae on the
wenzelm@11979
   660
  right side of the notional turnstile ... *}
wenzelm@11979
   661
paulson@17084
   662
lemma ComplD [dest!]: "c : -A ==> c~:A"
wenzelm@11979
   663
  by (unfold Compl_def) blast
wenzelm@11979
   664
paulson@17084
   665
lemmas ComplE = ComplD [elim_format]
wenzelm@11979
   666
wenzelm@11979
   667
wenzelm@11979
   668
subsubsection {* Binary union -- Un *}
clasohm@923
   669
wenzelm@11979
   670
lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
wenzelm@11979
   671
  by (unfold Un_def) blast
wenzelm@11979
   672
wenzelm@11979
   673
lemma UnI1 [elim?]: "c:A ==> c : A Un B"
wenzelm@11979
   674
  by simp
wenzelm@11979
   675
wenzelm@11979
   676
lemma UnI2 [elim?]: "c:B ==> c : A Un B"
wenzelm@11979
   677
  by simp
clasohm@923
   678
wenzelm@11979
   679
text {*
wenzelm@11979
   680
  \medskip Classical introduction rule: no commitment to @{prop A} vs
wenzelm@11979
   681
  @{prop B}.
wenzelm@11979
   682
*}
wenzelm@11979
   683
wenzelm@11979
   684
lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B"
wenzelm@11979
   685
  by auto
wenzelm@11979
   686
wenzelm@11979
   687
lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P"
wenzelm@11979
   688
  by (unfold Un_def) blast
wenzelm@11979
   689
wenzelm@11979
   690
wenzelm@12023
   691
subsubsection {* Binary intersection -- Int *}
clasohm@923
   692
wenzelm@11979
   693
lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
wenzelm@11979
   694
  by (unfold Int_def) blast
wenzelm@11979
   695
wenzelm@11979
   696
lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B"
wenzelm@11979
   697
  by simp
wenzelm@11979
   698
wenzelm@11979
   699
lemma IntD1: "c : A Int B ==> c:A"
wenzelm@11979
   700
  by simp
wenzelm@11979
   701
wenzelm@11979
   702
lemma IntD2: "c : A Int B ==> c:B"
wenzelm@11979
   703
  by simp
wenzelm@11979
   704
wenzelm@11979
   705
lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P"
wenzelm@11979
   706
  by simp
wenzelm@11979
   707
wenzelm@11979
   708
wenzelm@12023
   709
subsubsection {* Set difference *}
wenzelm@11979
   710
wenzelm@11979
   711
lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)"
wenzelm@11979
   712
  by (unfold set_diff_def) blast
clasohm@923
   713
wenzelm@11979
   714
lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B"
wenzelm@11979
   715
  by simp
wenzelm@11979
   716
wenzelm@11979
   717
lemma DiffD1: "c : A - B ==> c : A"
wenzelm@11979
   718
  by simp
wenzelm@11979
   719
wenzelm@11979
   720
lemma DiffD2: "c : A - B ==> c : B ==> P"
wenzelm@11979
   721
  by simp
wenzelm@11979
   722
wenzelm@11979
   723
lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
wenzelm@11979
   724
  by simp
wenzelm@11979
   725
wenzelm@11979
   726
wenzelm@11979
   727
subsubsection {* Augmenting a set -- insert *}
wenzelm@11979
   728
wenzelm@11979
   729
lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"
wenzelm@11979
   730
  by (unfold insert_def) blast
wenzelm@11979
   731
wenzelm@11979
   732
lemma insertI1: "a : insert a B"
wenzelm@11979
   733
  by simp
wenzelm@11979
   734
wenzelm@11979
   735
lemma insertI2: "a : B ==> a : insert b B"
wenzelm@11979
   736
  by simp
clasohm@923
   737
wenzelm@11979
   738
lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P"
wenzelm@11979
   739
  by (unfold insert_def) blast
wenzelm@11979
   740
wenzelm@11979
   741
lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B"
wenzelm@11979
   742
  -- {* Classical introduction rule. *}
wenzelm@11979
   743
  by auto
wenzelm@11979
   744
wenzelm@12897
   745
lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
wenzelm@11979
   746
  by auto
wenzelm@11979
   747
wenzelm@11979
   748
wenzelm@11979
   749
subsubsection {* Singletons, using insert *}
wenzelm@11979
   750
wenzelm@11979
   751
lemma singletonI [intro!]: "a : {a}"
wenzelm@11979
   752
    -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
wenzelm@11979
   753
  by (rule insertI1)
wenzelm@11979
   754
paulson@17084
   755
lemma singletonD [dest!]: "b : {a} ==> b = a"
wenzelm@11979
   756
  by blast
wenzelm@11979
   757
paulson@17084
   758
lemmas singletonE = singletonD [elim_format]
wenzelm@11979
   759
wenzelm@11979
   760
lemma singleton_iff: "(b : {a}) = (b = a)"
wenzelm@11979
   761
  by blast
wenzelm@11979
   762
wenzelm@11979
   763
lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
wenzelm@11979
   764
  by blast
wenzelm@11979
   765
wenzelm@12897
   766
lemma singleton_insert_inj_eq [iff]: "({b} = insert a A) = (a = b & A \<subseteq> {b})"
wenzelm@11979
   767
  by blast
wenzelm@11979
   768
wenzelm@12897
   769
lemma singleton_insert_inj_eq' [iff]: "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
wenzelm@11979
   770
  by blast
wenzelm@11979
   771
wenzelm@12897
   772
lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
wenzelm@11979
   773
  by fast
wenzelm@11979
   774
wenzelm@11979
   775
lemma singleton_conv [simp]: "{x. x = a} = {a}"
wenzelm@11979
   776
  by blast
wenzelm@11979
   777
wenzelm@11979
   778
lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
wenzelm@11979
   779
  by blast
clasohm@923
   780
wenzelm@12897
   781
lemma diff_single_insert: "A - {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B"
wenzelm@11979
   782
  by blast
wenzelm@11979
   783
wenzelm@11979
   784
wenzelm@11979
   785
subsubsection {* Unions of families *}
wenzelm@11979
   786
wenzelm@11979
   787
text {*
wenzelm@11979
   788
  @{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}.
wenzelm@11979
   789
*}
wenzelm@11979
   790
wenzelm@11979
   791
lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)"
wenzelm@11979
   792
  by (unfold UNION_def) blast
wenzelm@11979
   793
wenzelm@11979
   794
lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)"
wenzelm@11979
   795
  -- {* The order of the premises presupposes that @{term A} is rigid;
wenzelm@11979
   796
    @{term b} may be flexible. *}
wenzelm@11979
   797
  by auto
wenzelm@11979
   798
wenzelm@11979
   799
lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R"
wenzelm@11979
   800
  by (unfold UNION_def) blast
clasohm@923
   801
wenzelm@11979
   802
lemma UN_cong [cong]:
wenzelm@11979
   803
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
wenzelm@11979
   804
  by (simp add: UNION_def)
wenzelm@11979
   805
wenzelm@11979
   806
wenzelm@11979
   807
subsubsection {* Intersections of families *}
wenzelm@11979
   808
wenzelm@11979
   809
text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *}
wenzelm@11979
   810
wenzelm@11979
   811
lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)"
wenzelm@11979
   812
  by (unfold INTER_def) blast
clasohm@923
   813
wenzelm@11979
   814
lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)"
wenzelm@11979
   815
  by (unfold INTER_def) blast
wenzelm@11979
   816
wenzelm@11979
   817
lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a"
wenzelm@11979
   818
  by auto
wenzelm@11979
   819
wenzelm@11979
   820
lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R"
wenzelm@11979
   821
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
wenzelm@11979
   822
  by (unfold INTER_def) blast
wenzelm@11979
   823
wenzelm@11979
   824
lemma INT_cong [cong]:
wenzelm@11979
   825
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)"
wenzelm@11979
   826
  by (simp add: INTER_def)
wenzelm@7238
   827
clasohm@923
   828
wenzelm@11979
   829
subsubsection {* Union *}
wenzelm@11979
   830
wenzelm@11979
   831
lemma Union_iff [simp]: "(A : Union C) = (EX X:C. A:X)"
wenzelm@11979
   832
  by (unfold Union_def) blast
wenzelm@11979
   833
wenzelm@11979
   834
lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C"
wenzelm@11979
   835
  -- {* The order of the premises presupposes that @{term C} is rigid;
wenzelm@11979
   836
    @{term A} may be flexible. *}
wenzelm@11979
   837
  by auto
wenzelm@11979
   838
wenzelm@11979
   839
lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R"
wenzelm@11979
   840
  by (unfold Union_def) blast
wenzelm@11979
   841
wenzelm@11979
   842
wenzelm@11979
   843
subsubsection {* Inter *}
wenzelm@11979
   844
wenzelm@11979
   845
lemma Inter_iff [simp]: "(A : Inter C) = (ALL X:C. A:X)"
wenzelm@11979
   846
  by (unfold Inter_def) blast
wenzelm@11979
   847
wenzelm@11979
   848
lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
wenzelm@11979
   849
  by (simp add: Inter_def)
wenzelm@11979
   850
wenzelm@11979
   851
text {*
wenzelm@11979
   852
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
wenzelm@11979
   853
  contains @{term A} as an element, but @{prop "A:X"} can hold when
wenzelm@11979
   854
  @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
wenzelm@11979
   855
*}
wenzelm@11979
   856
wenzelm@11979
   857
lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X"
wenzelm@11979
   858
  by auto
wenzelm@11979
   859
wenzelm@11979
   860
lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
wenzelm@11979
   861
  -- {* ``Classical'' elimination rule -- does not require proving
wenzelm@11979
   862
    @{prop "X:C"}. *}
wenzelm@11979
   863
  by (unfold Inter_def) blast
wenzelm@11979
   864
wenzelm@11979
   865
text {*
wenzelm@11979
   866
  \medskip Image of a set under a function.  Frequently @{term b} does
wenzelm@11979
   867
  not have the syntactic form of @{term "f x"}.
wenzelm@11979
   868
*}
wenzelm@11979
   869
wenzelm@11979
   870
lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A"
wenzelm@11979
   871
  by (unfold image_def) blast
wenzelm@11979
   872
wenzelm@11979
   873
lemma imageI: "x : A ==> f x : f ` A"
wenzelm@11979
   874
  by (rule image_eqI) (rule refl)
wenzelm@11979
   875
wenzelm@11979
   876
lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A"
wenzelm@11979
   877
  -- {* This version's more effective when we already have the
wenzelm@11979
   878
    required @{term x}. *}
wenzelm@11979
   879
  by (unfold image_def) blast
wenzelm@11979
   880
wenzelm@11979
   881
lemma imageE [elim!]:
wenzelm@11979
   882
  "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P"
wenzelm@11979
   883
  -- {* The eta-expansion gives variable-name preservation. *}
wenzelm@11979
   884
  by (unfold image_def) blast
wenzelm@11979
   885
wenzelm@11979
   886
lemma image_Un: "f`(A Un B) = f`A Un f`B"
wenzelm@11979
   887
  by blast
wenzelm@11979
   888
wenzelm@11979
   889
lemma image_iff: "(z : f`A) = (EX x:A. z = f x)"
wenzelm@11979
   890
  by blast
wenzelm@11979
   891
wenzelm@12897
   892
lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)"
wenzelm@11979
   893
  -- {* This rewrite rule would confuse users if made default. *}
wenzelm@11979
   894
  by blast
wenzelm@11979
   895
wenzelm@12897
   896
lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)"
wenzelm@11979
   897
  apply safe
wenzelm@11979
   898
   prefer 2 apply fast
paulson@14208
   899
  apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
wenzelm@11979
   900
  done
wenzelm@11979
   901
wenzelm@12897
   902
lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B"
wenzelm@11979
   903
  -- {* Replaces the three steps @{text subsetI}, @{text imageE},
wenzelm@11979
   904
    @{text hypsubst}, but breaks too many existing proofs. *}
wenzelm@11979
   905
  by blast
wenzelm@11979
   906
wenzelm@11979
   907
text {*
wenzelm@11979
   908
  \medskip Range of a function -- just a translation for image!
wenzelm@11979
   909
*}
wenzelm@11979
   910
wenzelm@12897
   911
lemma range_eqI: "b = f x ==> b \<in> range f"
wenzelm@11979
   912
  by simp
wenzelm@11979
   913
wenzelm@12897
   914
lemma rangeI: "f x \<in> range f"
wenzelm@11979
   915
  by simp
wenzelm@11979
   916
wenzelm@12897
   917
lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P"
wenzelm@11979
   918
  by blast
wenzelm@11979
   919
wenzelm@11979
   920
wenzelm@11979
   921
subsubsection {* Set reasoning tools *}
wenzelm@11979
   922
wenzelm@11979
   923
text {*
wenzelm@11979
   924
  Rewrite rules for boolean case-splitting: faster than @{text
wenzelm@11979
   925
  "split_if [split]"}.
wenzelm@11979
   926
*}
wenzelm@11979
   927
wenzelm@11979
   928
lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))"
wenzelm@11979
   929
  by (rule split_if)
wenzelm@11979
   930
wenzelm@11979
   931
lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))"
wenzelm@11979
   932
  by (rule split_if)
wenzelm@11979
   933
wenzelm@11979
   934
text {*
wenzelm@11979
   935
  Split ifs on either side of the membership relation.  Not for @{text
wenzelm@11979
   936
  "[simp]"} -- can cause goals to blow up!
wenzelm@11979
   937
*}
wenzelm@11979
   938
wenzelm@11979
   939
lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))"
wenzelm@11979
   940
  by (rule split_if)
wenzelm@11979
   941
wenzelm@11979
   942
lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))"
wenzelm@11979
   943
  by (rule split_if)
wenzelm@11979
   944
wenzelm@11979
   945
lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2
wenzelm@11979
   946
wenzelm@11979
   947
lemmas mem_simps =
wenzelm@11979
   948
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
wenzelm@11979
   949
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
wenzelm@11979
   950
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
wenzelm@11979
   951
wenzelm@11979
   952
(*Would like to add these, but the existing code only searches for the
wenzelm@11979
   953
  outer-level constant, which in this case is just "op :"; we instead need
wenzelm@11979
   954
  to use term-nets to associate patterns with rules.  Also, if a rule fails to
wenzelm@11979
   955
  apply, then the formula should be kept.
wenzelm@11979
   956
  [("uminus", Compl_iff RS iffD1), ("op -", [Diff_iff RS iffD1]),
wenzelm@11979
   957
   ("op Int", [IntD1,IntD2]),
wenzelm@11979
   958
   ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
wenzelm@11979
   959
 *)
wenzelm@11979
   960
wenzelm@11979
   961
ML_setup {*
wenzelm@11979
   962
  val mksimps_pairs = [("Ball", [thm "bspec"])] @ mksimps_pairs;
wenzelm@17875
   963
  change_simpset (fn ss => ss setmksimps (mksimps mksimps_pairs));
wenzelm@11979
   964
*}
wenzelm@11979
   965
wenzelm@11979
   966
wenzelm@11979
   967
subsubsection {* The ``proper subset'' relation *}
wenzelm@11979
   968
wenzelm@12897
   969
lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B"
wenzelm@11979
   970
  by (unfold psubset_def) blast
wenzelm@11979
   971
paulson@13624
   972
lemma psubsetE [elim!]: 
paulson@13624
   973
    "[|A \<subset> B;  [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R"
paulson@13624
   974
  by (unfold psubset_def) blast
paulson@13624
   975
wenzelm@11979
   976
lemma psubset_insert_iff:
wenzelm@12897
   977
  "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
wenzelm@12897
   978
  by (auto simp add: psubset_def subset_insert_iff)
wenzelm@12897
   979
wenzelm@12897
   980
lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)"
wenzelm@11979
   981
  by (simp only: psubset_def)
wenzelm@11979
   982
wenzelm@12897
   983
lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B"
wenzelm@11979
   984
  by (simp add: psubset_eq)
wenzelm@11979
   985
paulson@14335
   986
lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C"
paulson@14335
   987
apply (unfold psubset_def)
paulson@14335
   988
apply (auto dest: subset_antisym)
paulson@14335
   989
done
paulson@14335
   990
paulson@14335
   991
lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B"
paulson@14335
   992
apply (unfold psubset_def)
paulson@14335
   993
apply (auto dest: subsetD)
paulson@14335
   994
done
paulson@14335
   995
wenzelm@12897
   996
lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C"
wenzelm@11979
   997
  by (auto simp add: psubset_eq)
wenzelm@11979
   998
wenzelm@12897
   999
lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C"
wenzelm@11979
  1000
  by (auto simp add: psubset_eq)
wenzelm@11979
  1001
wenzelm@12897
  1002
lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)"
wenzelm@11979
  1003
  by (unfold psubset_def) blast
wenzelm@11979
  1004
wenzelm@11979
  1005
lemma atomize_ball:
wenzelm@12897
  1006
    "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)"
wenzelm@11979
  1007
  by (simp only: Ball_def atomize_all atomize_imp)
wenzelm@11979
  1008
wenzelm@11979
  1009
declare atomize_ball [symmetric, rulify]
wenzelm@11979
  1010
wenzelm@11979
  1011
wenzelm@11979
  1012
subsection {* Further set-theory lemmas *}
wenzelm@11979
  1013
wenzelm@12897
  1014
subsubsection {* Derived rules involving subsets. *}
wenzelm@12897
  1015
wenzelm@12897
  1016
text {* @{text insert}. *}
wenzelm@12897
  1017
wenzelm@12897
  1018
lemma subset_insertI: "B \<subseteq> insert a B"
wenzelm@12897
  1019
  apply (rule subsetI)
wenzelm@12897
  1020
  apply (erule insertI2)
wenzelm@12897
  1021
  done
wenzelm@12897
  1022
nipkow@14302
  1023
lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B"
nipkow@14302
  1024
by blast
nipkow@14302
  1025
wenzelm@12897
  1026
lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)"
wenzelm@12897
  1027
  by blast
wenzelm@12897
  1028
wenzelm@12897
  1029
wenzelm@12897
  1030
text {* \medskip Big Union -- least upper bound of a set. *}
wenzelm@12897
  1031
wenzelm@12897
  1032
lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A"
nipkow@17589
  1033
  by (iprover intro: subsetI UnionI)
wenzelm@12897
  1034
wenzelm@12897
  1035
lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C"
nipkow@17589
  1036
  by (iprover intro: subsetI elim: UnionE dest: subsetD)
wenzelm@12897
  1037
wenzelm@12897
  1038
wenzelm@12897
  1039
text {* \medskip General union. *}
wenzelm@12897
  1040
wenzelm@12897
  1041
lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)"
wenzelm@12897
  1042
  by blast
wenzelm@12897
  1043
wenzelm@12897
  1044
lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C"
nipkow@17589
  1045
  by (iprover intro: subsetI elim: UN_E dest: subsetD)
wenzelm@12897
  1046
wenzelm@12897
  1047
wenzelm@12897
  1048
text {* \medskip Big Intersection -- greatest lower bound of a set. *}
wenzelm@12897
  1049
wenzelm@12897
  1050
lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B"
wenzelm@12897
  1051
  by blast
wenzelm@12897
  1052
ballarin@14551
  1053
lemma Inter_subset:
ballarin@14551
  1054
  "[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
ballarin@14551
  1055
  by blast
ballarin@14551
  1056
wenzelm@12897
  1057
lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A"
nipkow@17589
  1058
  by (iprover intro: InterI subsetI dest: subsetD)
wenzelm@12897
  1059
wenzelm@12897
  1060
lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a"
wenzelm@12897
  1061
  by blast
wenzelm@12897
  1062
wenzelm@12897
  1063
lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)"
nipkow@17589
  1064
  by (iprover intro: INT_I subsetI dest: subsetD)
wenzelm@12897
  1065
wenzelm@12897
  1066
wenzelm@12897
  1067
text {* \medskip Finite Union -- the least upper bound of two sets. *}
wenzelm@12897
  1068
wenzelm@12897
  1069
lemma Un_upper1: "A \<subseteq> A \<union> B"
wenzelm@12897
  1070
  by blast
wenzelm@12897
  1071
wenzelm@12897
  1072
lemma Un_upper2: "B \<subseteq> A \<union> B"
wenzelm@12897
  1073
  by blast
wenzelm@12897
  1074
wenzelm@12897
  1075
lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C"
wenzelm@12897
  1076
  by blast
wenzelm@12897
  1077
wenzelm@12897
  1078
wenzelm@12897
  1079
text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}
wenzelm@12897
  1080
wenzelm@12897
  1081
lemma Int_lower1: "A \<inter> B \<subseteq> A"
wenzelm@12897
  1082
  by blast
wenzelm@12897
  1083
wenzelm@12897
  1084
lemma Int_lower2: "A \<inter> B \<subseteq> B"
wenzelm@12897
  1085
  by blast
wenzelm@12897
  1086
wenzelm@12897
  1087
lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B"
wenzelm@12897
  1088
  by blast
wenzelm@12897
  1089
wenzelm@12897
  1090
wenzelm@12897
  1091
text {* \medskip Set difference. *}
wenzelm@12897
  1092
wenzelm@12897
  1093
lemma Diff_subset: "A - B \<subseteq> A"
wenzelm@12897
  1094
  by blast
wenzelm@12897
  1095
nipkow@14302
  1096
lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)"
nipkow@14302
  1097
by blast
nipkow@14302
  1098
wenzelm@12897
  1099
wenzelm@12897
  1100
text {* \medskip Monotonicity. *}
wenzelm@12897
  1101
ballarin@15206
  1102
lemma mono_Un: "mono f ==> f A \<union> f B \<subseteq> f (A \<union> B)"
paulson@16773
  1103
  by (auto simp add: mono_def)
ballarin@15206
  1104
ballarin@15206
  1105
lemma mono_Int: "mono f ==> f (A \<inter> B) \<subseteq> f A \<inter> f B"
paulson@16773
  1106
  by (auto simp add: mono_def)
wenzelm@12897
  1107
wenzelm@12897
  1108
subsubsection {* Equalities involving union, intersection, inclusion, etc. *}
wenzelm@12897
  1109
wenzelm@12897
  1110
text {* @{text "{}"}. *}
wenzelm@12897
  1111
wenzelm@12897
  1112
lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
wenzelm@12897
  1113
  -- {* supersedes @{text "Collect_False_empty"} *}
wenzelm@12897
  1114
  by auto
wenzelm@12897
  1115
wenzelm@12897
  1116
lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
wenzelm@12897
  1117
  by blast
wenzelm@12897
  1118
wenzelm@12897
  1119
lemma not_psubset_empty [iff]: "\<not> (A < {})"
wenzelm@12897
  1120
  by (unfold psubset_def) blast
wenzelm@12897
  1121
wenzelm@12897
  1122
lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
nipkow@18423
  1123
by blast
nipkow@18423
  1124
nipkow@18423
  1125
lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
nipkow@18423
  1126
by blast
wenzelm@12897
  1127
wenzelm@12897
  1128
lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
wenzelm@12897
  1129
  by blast
wenzelm@12897
  1130
wenzelm@12897
  1131
lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
wenzelm@12897
  1132
  by blast
wenzelm@12897
  1133
paulson@14812
  1134
lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
paulson@14812
  1135
  by blast
paulson@14812
  1136
wenzelm@12897
  1137
lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
wenzelm@12897
  1138
  by blast
wenzelm@12897
  1139
wenzelm@12897
  1140
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
wenzelm@12897
  1141
  by blast
wenzelm@12897
  1142
wenzelm@12897
  1143
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
wenzelm@12897
  1144
  by blast
wenzelm@12897
  1145
wenzelm@12897
  1146
lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
wenzelm@12897
  1147
  by blast
wenzelm@12897
  1148
wenzelm@12897
  1149
lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
wenzelm@12897
  1150
  by blast
wenzelm@12897
  1151
wenzelm@12897
  1152
wenzelm@12897
  1153
text {* \medskip @{text insert}. *}
wenzelm@12897
  1154
wenzelm@12897
  1155
lemma insert_is_Un: "insert a A = {a} Un A"
wenzelm@12897
  1156
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
wenzelm@12897
  1157
  by blast
wenzelm@12897
  1158
wenzelm@12897
  1159
lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
wenzelm@12897
  1160
  by blast
wenzelm@12897
  1161
paulson@17715
  1162
lemmas empty_not_insert = insert_not_empty [symmetric, standard]
paulson@17715
  1163
declare empty_not_insert [simp]
wenzelm@12897
  1164
wenzelm@12897
  1165
lemma insert_absorb: "a \<in> A ==> insert a A = A"
wenzelm@12897
  1166
  -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
wenzelm@12897
  1167
  -- {* with \emph{quadratic} running time *}
wenzelm@12897
  1168
  by blast
wenzelm@12897
  1169
wenzelm@12897
  1170
lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A"
wenzelm@12897
  1171
  by blast
wenzelm@12897
  1172
wenzelm@12897
  1173
lemma insert_commute: "insert x (insert y A) = insert y (insert x A)"
wenzelm@12897
  1174
  by blast
wenzelm@12897
  1175
wenzelm@12897
  1176
lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)"
wenzelm@12897
  1177
  by blast
wenzelm@12897
  1178
wenzelm@12897
  1179
lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B"
wenzelm@12897
  1180
  -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
paulson@14208
  1181
  apply (rule_tac x = "A - {a}" in exI, blast)
wenzelm@12897
  1182
  done
wenzelm@12897
  1183
wenzelm@12897
  1184
lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
wenzelm@12897
  1185
  by auto
wenzelm@12897
  1186
wenzelm@12897
  1187
lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
wenzelm@12897
  1188
  by blast
wenzelm@12897
  1189
nipkow@14302
  1190
lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)"
mehta@14742
  1191
  by blast
nipkow@14302
  1192
nipkow@13103
  1193
lemma insert_disjoint[simp]:
nipkow@13103
  1194
 "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
mehta@14742
  1195
 "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
paulson@16773
  1196
  by auto
nipkow@13103
  1197
nipkow@13103
  1198
lemma disjoint_insert[simp]:
nipkow@13103
  1199
 "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
mehta@14742
  1200
 "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
paulson@16773
  1201
  by auto
mehta@14742
  1202
wenzelm@12897
  1203
text {* \medskip @{text image}. *}
wenzelm@12897
  1204
wenzelm@12897
  1205
lemma image_empty [simp]: "f`{} = {}"
wenzelm@12897
  1206
  by blast
wenzelm@12897
  1207
wenzelm@12897
  1208
lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)"
wenzelm@12897
  1209
  by blast
wenzelm@12897
  1210
wenzelm@12897
  1211
lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}"
paulson@16773
  1212
  by auto
wenzelm@12897
  1213
wenzelm@12897
  1214
lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"
wenzelm@12897
  1215
  by blast
wenzelm@12897
  1216
wenzelm@12897
  1217
lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A"
wenzelm@12897
  1218
  by blast
wenzelm@12897
  1219
wenzelm@12897
  1220
lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
wenzelm@12897
  1221
  by blast
wenzelm@12897
  1222
paulson@16773
  1223
wenzelm@12897
  1224
lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
paulson@16773
  1225
  -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS,
paulson@16773
  1226
      with its implicit quantifier and conjunction.  Also image enjoys better
paulson@16773
  1227
      equational properties than does the RHS. *}
wenzelm@12897
  1228
  by blast
wenzelm@12897
  1229
wenzelm@12897
  1230
lemma if_image_distrib [simp]:
wenzelm@12897
  1231
  "(\<lambda>x. if P x then f x else g x) ` S
wenzelm@12897
  1232
    = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
wenzelm@12897
  1233
  by (auto simp add: image_def)
wenzelm@12897
  1234
wenzelm@12897
  1235
lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N"
wenzelm@12897
  1236
  by (simp add: image_def)
wenzelm@12897
  1237
wenzelm@12897
  1238
wenzelm@12897
  1239
text {* \medskip @{text range}. *}
wenzelm@12897
  1240
wenzelm@12897
  1241
lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f"
wenzelm@12897
  1242
  by auto
wenzelm@12897
  1243
wenzelm@12897
  1244
lemma range_composition [simp]: "range (\<lambda>x. f (g x)) = f`range g"
paulson@14208
  1245
by (subst image_image, simp)
wenzelm@12897
  1246
wenzelm@12897
  1247
wenzelm@12897
  1248
text {* \medskip @{text Int} *}
wenzelm@12897
  1249
wenzelm@12897
  1250
lemma Int_absorb [simp]: "A \<inter> A = A"
wenzelm@12897
  1251
  by blast
wenzelm@12897
  1252
wenzelm@12897
  1253
lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B"
wenzelm@12897
  1254
  by blast
wenzelm@12897
  1255
wenzelm@12897
  1256
lemma Int_commute: "A \<inter> B = B \<inter> A"
wenzelm@12897
  1257
  by blast
wenzelm@12897
  1258
wenzelm@12897
  1259
lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)"
wenzelm@12897
  1260
  by blast
wenzelm@12897
  1261
wenzelm@12897
  1262
lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)"
wenzelm@12897
  1263
  by blast
wenzelm@12897
  1264
wenzelm@12897
  1265
lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute
wenzelm@12897
  1266
  -- {* Intersection is an AC-operator *}
wenzelm@12897
  1267
wenzelm@12897
  1268
lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B"
wenzelm@12897
  1269
  by blast
wenzelm@12897
  1270
wenzelm@12897
  1271
lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A"
wenzelm@12897
  1272
  by blast
wenzelm@12897
  1273
wenzelm@12897
  1274
lemma Int_empty_left [simp]: "{} \<inter> B = {}"
wenzelm@12897
  1275
  by blast
wenzelm@12897
  1276
wenzelm@12897
  1277
lemma Int_empty_right [simp]: "A \<inter> {} = {}"
wenzelm@12897
  1278
  by blast
wenzelm@12897
  1279
wenzelm@12897
  1280
lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
wenzelm@12897
  1281
  by blast
wenzelm@12897
  1282
wenzelm@12897
  1283
lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
wenzelm@12897
  1284
  by blast
wenzelm@12897
  1285
wenzelm@12897
  1286
lemma Int_UNIV_left [simp]: "UNIV \<inter> B = B"
wenzelm@12897
  1287
  by blast
wenzelm@12897
  1288
wenzelm@12897
  1289
lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A"
wenzelm@12897
  1290
  by blast
wenzelm@12897
  1291
wenzelm@12897
  1292
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
wenzelm@12897
  1293
  by blast
wenzelm@12897
  1294
wenzelm@12897
  1295
lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)"
wenzelm@12897
  1296
  by blast
wenzelm@12897
  1297
wenzelm@12897
  1298
lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)"
wenzelm@12897
  1299
  by blast
wenzelm@12897
  1300
wenzelm@12897
  1301
lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)"
wenzelm@12897
  1302
  by blast
wenzelm@12897
  1303
paulson@15102
  1304
lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)"
wenzelm@12897
  1305
  by blast
wenzelm@12897
  1306
wenzelm@12897
  1307
lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
wenzelm@12897
  1308
  by blast
wenzelm@12897
  1309
wenzelm@12897
  1310
wenzelm@12897
  1311
text {* \medskip @{text Un}. *}
wenzelm@12897
  1312
wenzelm@12897
  1313
lemma Un_absorb [simp]: "A \<union> A = A"
wenzelm@12897
  1314
  by blast
wenzelm@12897
  1315
wenzelm@12897
  1316
lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B"
wenzelm@12897
  1317
  by blast
wenzelm@12897
  1318
wenzelm@12897
  1319
lemma Un_commute: "A \<union> B = B \<union> A"
wenzelm@12897
  1320
  by blast
wenzelm@12897
  1321
wenzelm@12897
  1322
lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)"
wenzelm@12897
  1323
  by blast
wenzelm@12897
  1324
wenzelm@12897
  1325
lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)"
wenzelm@12897
  1326
  by blast
wenzelm@12897
  1327
wenzelm@12897
  1328
lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
wenzelm@12897
  1329
  -- {* Union is an AC-operator *}
wenzelm@12897
  1330
wenzelm@12897
  1331
lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B"
wenzelm@12897
  1332
  by blast
wenzelm@12897
  1333
wenzelm@12897
  1334
lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A"
wenzelm@12897
  1335
  by blast
wenzelm@12897
  1336
wenzelm@12897
  1337
lemma Un_empty_left [simp]: "{} \<union> B = B"
wenzelm@12897
  1338
  by blast
wenzelm@12897
  1339
wenzelm@12897
  1340
lemma Un_empty_right [simp]: "A \<union> {} = A"
wenzelm@12897
  1341
  by blast
wenzelm@12897
  1342
wenzelm@12897
  1343
lemma Un_UNIV_left [simp]: "UNIV \<union> B = UNIV"
wenzelm@12897
  1344
  by blast
wenzelm@12897
  1345
wenzelm@12897
  1346
lemma Un_UNIV_right [simp]: "A \<union> UNIV = UNIV"
wenzelm@12897
  1347
  by blast
wenzelm@12897
  1348
wenzelm@12897
  1349
lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
wenzelm@12897
  1350
  by blast
wenzelm@12897
  1351
wenzelm@12897
  1352
lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)"
wenzelm@12897
  1353
  by blast
wenzelm@12897
  1354
wenzelm@12897
  1355
lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)"
wenzelm@12897
  1356
  by blast
wenzelm@12897
  1357
wenzelm@12897
  1358
lemma Int_insert_left:
wenzelm@12897
  1359
    "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)"
wenzelm@12897
  1360
  by auto
wenzelm@12897
  1361
wenzelm@12897
  1362
lemma Int_insert_right:
wenzelm@12897
  1363
    "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)"
wenzelm@12897
  1364
  by auto
wenzelm@12897
  1365
wenzelm@12897
  1366
lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)"
wenzelm@12897
  1367
  by blast
wenzelm@12897
  1368
wenzelm@12897
  1369
lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)"
wenzelm@12897
  1370
  by blast
wenzelm@12897
  1371
wenzelm@12897
  1372
lemma Un_Int_crazy:
wenzelm@12897
  1373
    "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)"
wenzelm@12897
  1374
  by blast
wenzelm@12897
  1375
wenzelm@12897
  1376
lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)"
wenzelm@12897
  1377
  by blast
wenzelm@12897
  1378
wenzelm@12897
  1379
lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
wenzelm@12897
  1380
  by blast
paulson@15102
  1381
paulson@15102
  1382
lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)"
wenzelm@12897
  1383
  by blast
wenzelm@12897
  1384
wenzelm@12897
  1385
lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A"
wenzelm@12897
  1386
  by blast
wenzelm@12897
  1387
wenzelm@12897
  1388
wenzelm@12897
  1389
text {* \medskip Set complement *}
wenzelm@12897
  1390
wenzelm@12897
  1391
lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
wenzelm@12897
  1392
  by blast
wenzelm@12897
  1393
wenzelm@12897
  1394
lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
wenzelm@12897
  1395
  by blast
wenzelm@12897
  1396
paulson@13818
  1397
lemma Compl_partition: "A \<union> -A = UNIV"
paulson@13818
  1398
  by blast
paulson@13818
  1399
paulson@13818
  1400
lemma Compl_partition2: "-A \<union> A = UNIV"
wenzelm@12897
  1401
  by blast
wenzelm@12897
  1402
wenzelm@12897
  1403
lemma double_complement [simp]: "- (-A) = (A::'a set)"
wenzelm@12897
  1404
  by blast
wenzelm@12897
  1405
wenzelm@12897
  1406
lemma Compl_Un [simp]: "-(A \<union> B) = (-A) \<inter> (-B)"
wenzelm@12897
  1407
  by blast
wenzelm@12897
  1408
wenzelm@12897
  1409
lemma Compl_Int [simp]: "-(A \<inter> B) = (-A) \<union> (-B)"
wenzelm@12897
  1410
  by blast
wenzelm@12897
  1411
wenzelm@12897
  1412
lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
wenzelm@12897
  1413
  by blast
wenzelm@12897
  1414
wenzelm@12897
  1415
lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
wenzelm@12897
  1416
  by blast
wenzelm@12897
  1417
wenzelm@12897
  1418
lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
wenzelm@12897
  1419
  by blast
wenzelm@12897
  1420
wenzelm@12897
  1421
lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)"
wenzelm@12897
  1422
  -- {* Halmos, Naive Set Theory, page 16. *}
wenzelm@12897
  1423
  by blast
wenzelm@12897
  1424
wenzelm@12897
  1425
lemma Compl_UNIV_eq [simp]: "-UNIV = {}"
wenzelm@12897
  1426
  by blast
wenzelm@12897
  1427
wenzelm@12897
  1428
lemma Compl_empty_eq [simp]: "-{} = UNIV"
wenzelm@12897
  1429
  by blast
wenzelm@12897
  1430
wenzelm@12897
  1431
lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)"
wenzelm@12897
  1432
  by blast
wenzelm@12897
  1433
wenzelm@12897
  1434
lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))"
wenzelm@12897
  1435
  by blast
wenzelm@12897
  1436
wenzelm@12897
  1437
wenzelm@12897
  1438
text {* \medskip @{text Union}. *}
wenzelm@12897
  1439
wenzelm@12897
  1440
lemma Union_empty [simp]: "Union({}) = {}"
wenzelm@12897
  1441
  by blast
wenzelm@12897
  1442
wenzelm@12897
  1443
lemma Union_UNIV [simp]: "Union UNIV = UNIV"
wenzelm@12897
  1444
  by blast
wenzelm@12897
  1445
wenzelm@12897
  1446
lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B"
wenzelm@12897
  1447
  by blast
wenzelm@12897
  1448
wenzelm@12897
  1449
lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B"
wenzelm@12897
  1450
  by blast
wenzelm@12897
  1451
wenzelm@12897
  1452
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
wenzelm@12897
  1453
  by blast
wenzelm@12897
  1454
wenzelm@12897
  1455
lemma Union_empty_conv [iff]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
nipkow@13653
  1456
  by blast
nipkow@13653
  1457
nipkow@13653
  1458
lemma empty_Union_conv [iff]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
nipkow@13653
  1459
  by blast
wenzelm@12897
  1460
wenzelm@12897
  1461
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
wenzelm@12897
  1462
  by blast
wenzelm@12897
  1463
wenzelm@12897
  1464
wenzelm@12897
  1465
text {* \medskip @{text Inter}. *}
wenzelm@12897
  1466
wenzelm@12897
  1467
lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
wenzelm@12897
  1468
  by blast
wenzelm@12897
  1469
wenzelm@12897
  1470
lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
wenzelm@12897
  1471
  by blast
wenzelm@12897
  1472
wenzelm@12897
  1473
lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
wenzelm@12897
  1474
  by blast
wenzelm@12897
  1475
wenzelm@12897
  1476
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
wenzelm@12897
  1477
  by blast
wenzelm@12897
  1478
wenzelm@12897
  1479
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
wenzelm@12897
  1480
  by blast
wenzelm@12897
  1481
nipkow@13653
  1482
lemma Inter_UNIV_conv [iff]:
nipkow@13653
  1483
  "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)"
nipkow@13653
  1484
  "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)"
paulson@14208
  1485
  by blast+
nipkow@13653
  1486
wenzelm@12897
  1487
wenzelm@12897
  1488
text {*
wenzelm@12897
  1489
  \medskip @{text UN} and @{text INT}.
wenzelm@12897
  1490
wenzelm@12897
  1491
  Basic identities: *}
wenzelm@12897
  1492
wenzelm@12897
  1493
lemma UN_empty [simp]: "(\<Union>x\<in>{}. B x) = {}"
wenzelm@12897
  1494
  by blast
wenzelm@12897
  1495
wenzelm@12897
  1496
lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
wenzelm@12897
  1497
  by blast
wenzelm@12897
  1498
wenzelm@12897
  1499
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
wenzelm@12897
  1500
  by blast
wenzelm@12897
  1501
wenzelm@12897
  1502
lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
paulson@15102
  1503
  by auto
wenzelm@12897
  1504
wenzelm@12897
  1505
lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
wenzelm@12897
  1506
  by blast
wenzelm@12897
  1507
wenzelm@12897
  1508
lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
wenzelm@12897
  1509
  by blast
wenzelm@12897
  1510
wenzelm@12897
  1511
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
wenzelm@12897
  1512
  by blast
wenzelm@12897
  1513
wenzelm@12897
  1514
lemma UN_Un: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
wenzelm@12897
  1515
  by blast
wenzelm@12897
  1516
wenzelm@12897
  1517
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
wenzelm@12897
  1518
  by blast
wenzelm@12897
  1519
wenzelm@12897
  1520
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
wenzelm@12897
  1521
  by blast
wenzelm@12897
  1522
wenzelm@12897
  1523
lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)"
wenzelm@12897
  1524
  by blast
wenzelm@12897
  1525
wenzelm@12897
  1526
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
wenzelm@12897
  1527
  by blast
wenzelm@12897
  1528
wenzelm@12897
  1529
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
wenzelm@12897
  1530
  by blast
wenzelm@12897
  1531
wenzelm@12897
  1532
lemma INT_insert_distrib:
wenzelm@12897
  1533
    "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
wenzelm@12897
  1534
  by blast
wenzelm@12897
  1535
wenzelm@12897
  1536
lemma Union_image_eq [simp]: "\<Union>(B`A) = (\<Union>x\<in>A. B x)"
wenzelm@12897
  1537
  by blast
wenzelm@12897
  1538
wenzelm@12897
  1539
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
wenzelm@12897
  1540
  by blast
wenzelm@12897
  1541
wenzelm@12897
  1542
lemma Inter_image_eq [simp]: "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
wenzelm@12897
  1543
  by blast
wenzelm@12897
  1544
wenzelm@12897
  1545
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
wenzelm@12897
  1546
  by auto
wenzelm@12897
  1547
wenzelm@12897
  1548
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
wenzelm@12897
  1549
  by auto
wenzelm@12897
  1550
wenzelm@12897
  1551
lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
wenzelm@12897
  1552
  by blast
wenzelm@12897
  1553
wenzelm@12897
  1554
lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
wenzelm@12897
  1555
  -- {* Look: it has an \emph{existential} quantifier *}
wenzelm@12897
  1556
  by blast
wenzelm@12897
  1557
nipkow@13653
  1558
lemma UNION_empty_conv[iff]:
nipkow@13653
  1559
  "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
nipkow@13653
  1560
  "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
nipkow@13653
  1561
by blast+
nipkow@13653
  1562
nipkow@13653
  1563
lemma INTER_UNIV_conv[iff]:
nipkow@13653
  1564
 "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
nipkow@13653
  1565
 "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
nipkow@13653
  1566
by blast+
wenzelm@12897
  1567
wenzelm@12897
  1568
wenzelm@12897
  1569
text {* \medskip Distributive laws: *}
wenzelm@12897
  1570
wenzelm@12897
  1571
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
wenzelm@12897
  1572
  by blast
wenzelm@12897
  1573
wenzelm@12897
  1574
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
wenzelm@12897
  1575
  by blast
wenzelm@12897
  1576
wenzelm@12897
  1577
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)"
wenzelm@12897
  1578
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
wenzelm@12897
  1579
  -- {* Union of a family of unions *}
wenzelm@12897
  1580
  by blast
wenzelm@12897
  1581
wenzelm@12897
  1582
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
wenzelm@12897
  1583
  -- {* Equivalent version *}
wenzelm@12897
  1584
  by blast
wenzelm@12897
  1585
wenzelm@12897
  1586
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
wenzelm@12897
  1587
  by blast
wenzelm@12897
  1588
wenzelm@12897
  1589
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)"
wenzelm@12897
  1590
  by blast
wenzelm@12897
  1591
wenzelm@12897
  1592
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
wenzelm@12897
  1593
  -- {* Equivalent version *}
wenzelm@12897
  1594
  by blast
wenzelm@12897
  1595
wenzelm@12897
  1596
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
wenzelm@12897
  1597
  -- {* Halmos, Naive Set Theory, page 35. *}
wenzelm@12897
  1598
  by blast
wenzelm@12897
  1599
wenzelm@12897
  1600
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
wenzelm@12897
  1601
  by blast
wenzelm@12897
  1602
wenzelm@12897
  1603
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
wenzelm@12897
  1604
  by blast
wenzelm@12897
  1605
wenzelm@12897
  1606
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
wenzelm@12897
  1607
  by blast
wenzelm@12897
  1608
wenzelm@12897
  1609
wenzelm@12897
  1610
text {* \medskip Bounded quantifiers.
wenzelm@12897
  1611
wenzelm@12897
  1612
  The following are not added to the default simpset because
wenzelm@12897
  1613
  (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}
wenzelm@12897
  1614
wenzelm@12897
  1615
lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))"
wenzelm@12897
  1616
  by blast
wenzelm@12897
  1617
wenzelm@12897
  1618
lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))"
wenzelm@12897
  1619
  by blast
wenzelm@12897
  1620
wenzelm@12897
  1621
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
wenzelm@12897
  1622
  by blast
wenzelm@12897
  1623
wenzelm@12897
  1624
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
wenzelm@12897
  1625
  by blast
wenzelm@12897
  1626
wenzelm@12897
  1627
wenzelm@12897
  1628
text {* \medskip Set difference. *}
wenzelm@12897
  1629
wenzelm@12897
  1630
lemma Diff_eq: "A - B = A \<inter> (-B)"
wenzelm@12897
  1631
  by blast
wenzelm@12897
  1632
wenzelm@12897
  1633
lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
wenzelm@12897
  1634
  by blast
wenzelm@12897
  1635
wenzelm@12897
  1636
lemma Diff_cancel [simp]: "A - A = {}"
wenzelm@12897
  1637
  by blast
wenzelm@12897
  1638
nipkow@14302
  1639
lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)"
nipkow@14302
  1640
by blast
nipkow@14302
  1641
wenzelm@12897
  1642
lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
wenzelm@12897
  1643
  by (blast elim: equalityE)
wenzelm@12897
  1644
wenzelm@12897
  1645
lemma empty_Diff [simp]: "{} - A = {}"
wenzelm@12897
  1646
  by blast
wenzelm@12897
  1647
wenzelm@12897
  1648
lemma Diff_empty [simp]: "A - {} = A"
wenzelm@12897
  1649
  by blast
wenzelm@12897
  1650
wenzelm@12897
  1651
lemma Diff_UNIV [simp]: "A - UNIV = {}"
wenzelm@12897
  1652
  by blast
wenzelm@12897
  1653
wenzelm@12897
  1654
lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B"
wenzelm@12897
  1655
  by blast
wenzelm@12897
  1656
wenzelm@12897
  1657
lemma Diff_insert: "A - insert a B = A - B - {a}"
wenzelm@12897
  1658
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
wenzelm@12897
  1659
  by blast
wenzelm@12897
  1660
wenzelm@12897
  1661
lemma Diff_insert2: "A - insert a B = A - {a} - B"
wenzelm@12897
  1662
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
wenzelm@12897
  1663
  by blast
wenzelm@12897
  1664
wenzelm@12897
  1665
lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))"
wenzelm@12897
  1666
  by auto
wenzelm@12897
  1667
wenzelm@12897
  1668
lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B"
wenzelm@12897
  1669
  by blast
wenzelm@12897
  1670
nipkow@14302
  1671
lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
nipkow@14302
  1672
by blast
nipkow@14302
  1673
wenzelm@12897
  1674
lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
wenzelm@12897
  1675
  by blast
wenzelm@12897
  1676
wenzelm@12897
  1677
lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
wenzelm@12897
  1678
  by auto
wenzelm@12897
  1679
wenzelm@12897
  1680
lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
wenzelm@12897
  1681
  by blast
wenzelm@12897
  1682
wenzelm@12897
  1683
lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B"
wenzelm@12897
  1684
  by blast
wenzelm@12897
  1685
wenzelm@12897
  1686
lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A"
wenzelm@12897
  1687
  by blast
wenzelm@12897
  1688
wenzelm@12897
  1689
lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B"
wenzelm@12897
  1690
  by blast
wenzelm@12897
  1691
wenzelm@12897
  1692
lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A"
wenzelm@12897
  1693
  by blast
wenzelm@12897
  1694
wenzelm@12897
  1695
lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)"
wenzelm@12897
  1696
  by blast
wenzelm@12897
  1697
wenzelm@12897
  1698
lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)"
wenzelm@12897
  1699
  by blast
wenzelm@12897
  1700
wenzelm@12897
  1701
lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)"
wenzelm@12897
  1702
  by blast
wenzelm@12897
  1703
wenzelm@12897
  1704
lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)"
wenzelm@12897
  1705
  by blast
wenzelm@12897
  1706
wenzelm@12897
  1707
lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)"
wenzelm@12897
  1708
  by blast
wenzelm@12897
  1709
wenzelm@12897
  1710
lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)"
wenzelm@12897
  1711
  by blast
wenzelm@12897
  1712
wenzelm@12897
  1713
lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B"
wenzelm@12897
  1714
  by auto
wenzelm@12897
  1715
wenzelm@12897
  1716
lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B"
wenzelm@12897
  1717
  by blast
wenzelm@12897
  1718
wenzelm@12897
  1719
wenzelm@12897
  1720
text {* \medskip Quantification over type @{typ bool}. *}
wenzelm@12897
  1721
wenzelm@12897
  1722
lemma all_bool_eq: "(\<forall>b::bool. P b) = (P True & P False)"
wenzelm@12897
  1723
  apply auto
paulson@14208
  1724
  apply (tactic {* case_tac "b" 1 *}, auto)
wenzelm@12897
  1725
  done
wenzelm@12897
  1726
wenzelm@12897
  1727
lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x"
wenzelm@12897
  1728
  by (rule conjI [THEN all_bool_eq [THEN iffD2], THEN spec])
wenzelm@12897
  1729
wenzelm@12897
  1730
lemma ex_bool_eq: "(\<exists>b::bool. P b) = (P True | P False)"
wenzelm@12897
  1731
  apply auto
paulson@14208
  1732
  apply (tactic {* case_tac "b" 1 *}, auto)
wenzelm@12897
  1733
  done
wenzelm@12897
  1734
wenzelm@12897
  1735
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
wenzelm@12897
  1736
  by (auto simp add: split_if_mem2)
wenzelm@12897
  1737
wenzelm@12897
  1738
lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)"
wenzelm@12897
  1739
  apply auto
paulson@14208
  1740
  apply (tactic {* case_tac "b" 1 *}, auto)
wenzelm@12897
  1741
  done
wenzelm@12897
  1742
wenzelm@12897
  1743
lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)"
wenzelm@12897
  1744
  apply auto
paulson@14208
  1745
  apply (tactic {* case_tac "b" 1 *}, auto)
wenzelm@12897
  1746
  done
wenzelm@12897
  1747
wenzelm@12897
  1748
wenzelm@12897
  1749
text {* \medskip @{text Pow} *}
wenzelm@12897
  1750
wenzelm@12897
  1751
lemma Pow_empty [simp]: "Pow {} = {{}}"
wenzelm@12897
  1752
  by (auto simp add: Pow_def)
wenzelm@12897
  1753
wenzelm@12897
  1754
lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
wenzelm@12897
  1755
  by (blast intro: image_eqI [where ?x = "u - {a}", standard])
wenzelm@12897
  1756
wenzelm@12897
  1757
lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
wenzelm@12897
  1758
  by (blast intro: exI [where ?x = "- u", standard])
wenzelm@12897
  1759
wenzelm@12897
  1760
lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
wenzelm@12897
  1761
  by blast
wenzelm@12897
  1762
wenzelm@12897
  1763
lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)"
wenzelm@12897
  1764
  by blast
wenzelm@12897
  1765
wenzelm@12897
  1766
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
wenzelm@12897
  1767
  by blast
wenzelm@12897
  1768
wenzelm@12897
  1769
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
wenzelm@12897
  1770
  by blast
wenzelm@12897
  1771
wenzelm@12897
  1772
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
wenzelm@12897
  1773
  by blast
wenzelm@12897
  1774
wenzelm@12897
  1775
lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B"
wenzelm@12897
  1776
  by blast
wenzelm@12897
  1777
wenzelm@12897
  1778
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
wenzelm@12897
  1779
  by blast
wenzelm@12897
  1780
wenzelm@12897
  1781
wenzelm@12897
  1782
text {* \medskip Miscellany. *}
wenzelm@12897
  1783
wenzelm@12897
  1784
lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)"
wenzelm@12897
  1785
  by blast
wenzelm@12897
  1786
wenzelm@12897
  1787
lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)"
wenzelm@12897
  1788
  by blast
wenzelm@12897
  1789
wenzelm@12897
  1790
lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))"
wenzelm@12897
  1791
  by (unfold psubset_def) blast
wenzelm@12897
  1792
wenzelm@12897
  1793
lemma all_not_in_conv [iff]: "(\<forall>x. x \<notin> A) = (A = {})"
wenzelm@12897
  1794
  by blast
wenzelm@12897
  1795
paulson@13831
  1796
lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
paulson@13831
  1797
  by blast
paulson@13831
  1798
wenzelm@12897
  1799
lemma distinct_lemma: "f x \<noteq> f y ==> x \<noteq> y"
nipkow@17589
  1800
  by iprover
wenzelm@12897
  1801
wenzelm@12897
  1802
paulson@13860
  1803
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
paulson@13860
  1804
           and Intersections. *}
wenzelm@12897
  1805
wenzelm@12897
  1806
lemma UN_simps [simp]:
wenzelm@12897
  1807
  "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
wenzelm@12897
  1808
  "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
wenzelm@12897
  1809
  "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
wenzelm@12897
  1810
  "!!A B C. (UN x:C. A x Int B)  = ((UN x:C. A x) Int B)"
wenzelm@12897
  1811
  "!!A B C. (UN x:C. A Int B x)  = (A Int (UN x:C. B x))"
wenzelm@12897
  1812
  "!!A B C. (UN x:C. A x - B)    = ((UN x:C. A x) - B)"
wenzelm@12897
  1813
  "!!A B C. (UN x:C. A - B x)    = (A - (INT x:C. B x))"
wenzelm@12897
  1814
  "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)"
wenzelm@12897
  1815
  "!!A B C. (UN z: UNION A B. C z) = (UN  x:A. UN z: B(x). C z)"
wenzelm@12897
  1816
  "!!A B f. (UN x:f`A. B x)     = (UN a:A. B (f a))"
wenzelm@12897
  1817
  by auto
wenzelm@12897
  1818
wenzelm@12897
  1819
lemma INT_simps [simp]:
wenzelm@12897
  1820
  "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
wenzelm@12897
  1821
  "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
wenzelm@12897
  1822
  "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
wenzelm@12897
  1823
  "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
wenzelm@12897
  1824
  "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)"
wenzelm@12897
  1825
  "!!A B C. (INT x:C. A x Un B)  = ((INT x:C. A x) Un B)"
wenzelm@12897
  1826
  "!!A B C. (INT x:C. A Un B x)  = (A Un (INT x:C. B x))"
wenzelm@12897
  1827
  "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)"
wenzelm@12897
  1828
  "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)"
wenzelm@12897
  1829
  "!!A B f. (INT x:f`A. B x)    = (INT a:A. B (f a))"
wenzelm@12897
  1830
  by auto
wenzelm@12897
  1831
wenzelm@12897
  1832
lemma ball_simps [simp]:
wenzelm@12897
  1833
  "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)"
wenzelm@12897
  1834
  "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))"
wenzelm@12897
  1835
  "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))"
wenzelm@12897
  1836
  "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)"
wenzelm@12897
  1837
  "!!P. (ALL x:{}. P x) = True"
wenzelm@12897
  1838
  "!!P. (ALL x:UNIV. P x) = (ALL x. P x)"
wenzelm@12897
  1839
  "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))"
wenzelm@12897
  1840
  "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)"
wenzelm@12897
  1841
  "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)"
wenzelm@12897
  1842
  "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)"
wenzelm@12897
  1843
  "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))"
wenzelm@12897
  1844
  "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)"
wenzelm@12897
  1845
  by auto
wenzelm@12897
  1846
wenzelm@12897
  1847
lemma bex_simps [simp]:
wenzelm@12897
  1848
  "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)"
wenzelm@12897
  1849
  "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))"
wenzelm@12897
  1850
  "!!P. (EX x:{}. P x) = False"
wenzelm@12897
  1851
  "!!P. (EX x:UNIV. P x) = (EX x. P x)"
wenzelm@12897
  1852
  "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))"
wenzelm@12897
  1853
  "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)"
wenzelm@12897
  1854
  "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)"
wenzelm@12897
  1855
  "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)"
wenzelm@12897
  1856
  "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))"
wenzelm@12897
  1857
  "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)"
wenzelm@12897
  1858
  by auto
wenzelm@12897
  1859
wenzelm@12897
  1860
lemma ball_conj_distrib:
wenzelm@12897
  1861
  "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))"
wenzelm@12897
  1862
  by blast
wenzelm@12897
  1863
wenzelm@12897
  1864
lemma bex_disj_distrib:
wenzelm@12897
  1865
  "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))"
wenzelm@12897
  1866
  by blast
wenzelm@12897
  1867
wenzelm@12897
  1868
paulson@13860
  1869
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
paulson@13860
  1870
paulson@13860
  1871
lemma UN_extend_simps:
paulson@13860
  1872
  "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
paulson@13860
  1873
  "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
paulson@13860
  1874
  "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
paulson@13860
  1875
  "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)"
paulson@13860
  1876
  "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)"
paulson@13860
  1877
  "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)"
paulson@13860
  1878
  "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)"
paulson@13860
  1879
  "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)"
paulson@13860
  1880
  "!!A B C. (UN  x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)"
paulson@13860
  1881
  "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)"
paulson@13860
  1882
  by auto
paulson@13860
  1883
paulson@13860
  1884
lemma INT_extend_simps:
paulson@13860
  1885
  "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
paulson@13860
  1886
  "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
paulson@13860
  1887
  "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
paulson@13860
  1888
  "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
paulson@13860
  1889
  "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))"
paulson@13860
  1890
  "!!A B C. ((INT x:C. A x) Un B)  = (INT x:C. A x Un B)"
paulson@13860
  1891
  "!!A B C. A Un (INT x:C. B x)  = (INT x:C. A Un B x)"
paulson@13860
  1892
  "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)"
paulson@13860
  1893
  "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)"
paulson@13860
  1894
  "!!A B f. (INT a:A. B (f a))    = (INT x:f`A. B x)"
paulson@13860
  1895
  by auto
paulson@13860
  1896
paulson@13860
  1897
wenzelm@12897
  1898
subsubsection {* Monotonicity of various operations *}
wenzelm@12897
  1899
wenzelm@12897
  1900
lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B"
wenzelm@12897
  1901
  by blast
wenzelm@12897
  1902
wenzelm@12897
  1903
lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B"
wenzelm@12897
  1904
  by blast
wenzelm@12897
  1905
wenzelm@12897
  1906
lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B"
wenzelm@12897
  1907
  by blast
wenzelm@12897
  1908
wenzelm@12897
  1909
lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B"
wenzelm@12897
  1910
  by blast
wenzelm@12897
  1911
wenzelm@12897
  1912
lemma UN_mono:
wenzelm@12897
  1913
  "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
wenzelm@12897
  1914
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
wenzelm@12897
  1915
  by (blast dest: subsetD)
wenzelm@12897
  1916
wenzelm@12897
  1917
lemma INT_anti_mono:
wenzelm@12897
  1918
  "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
wenzelm@12897
  1919
    (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
wenzelm@12897
  1920
  -- {* The last inclusion is POSITIVE! *}
wenzelm@12897
  1921
  by (blast dest: subsetD)
wenzelm@12897
  1922
wenzelm@12897
  1923
lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D"
wenzelm@12897
  1924
  by blast
wenzelm@12897
  1925
wenzelm@12897
  1926
lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D"
wenzelm@12897
  1927
  by blast
wenzelm@12897
  1928
wenzelm@12897
  1929
lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D"
wenzelm@12897
  1930
  by blast
wenzelm@12897
  1931
wenzelm@12897
  1932
lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D"
wenzelm@12897
  1933
  by blast
wenzelm@12897
  1934
wenzelm@12897
  1935
lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A"
wenzelm@12897
  1936
  by blast
wenzelm@12897
  1937
wenzelm@12897
  1938
text {* \medskip Monotonicity of implications. *}
wenzelm@12897
  1939
wenzelm@12897
  1940
lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B"
wenzelm@12897
  1941
  apply (rule impI)
paulson@14208
  1942
  apply (erule subsetD, assumption)
wenzelm@12897
  1943
  done
wenzelm@12897
  1944
wenzelm@12897
  1945
lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)"
nipkow@17589
  1946
  by iprover
wenzelm@12897
  1947
wenzelm@12897
  1948
lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)"
nipkow@17589
  1949
  by iprover
wenzelm@12897
  1950
wenzelm@12897
  1951
lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)"
nipkow@17589
  1952
  by iprover
wenzelm@12897
  1953
wenzelm@12897
  1954
lemma imp_refl: "P --> P" ..
wenzelm@12897
  1955
wenzelm@12897
  1956
lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)"
nipkow@17589
  1957
  by iprover
wenzelm@12897
  1958
wenzelm@12897
  1959
lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)"
nipkow@17589
  1960
  by iprover
wenzelm@12897
  1961
wenzelm@12897
  1962
lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q"
wenzelm@12897
  1963
  by blast
wenzelm@12897
  1964
wenzelm@12897
  1965
lemma Int_Collect_mono:
wenzelm@12897
  1966
    "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q"
wenzelm@12897
  1967
  by blast
wenzelm@12897
  1968
wenzelm@12897
  1969
lemmas basic_monos =
wenzelm@12897
  1970
  subset_refl imp_refl disj_mono conj_mono
wenzelm@12897
  1971
  ex_mono Collect_mono in_mono
wenzelm@12897
  1972
wenzelm@12897
  1973
lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c"
nipkow@17589
  1974
  by iprover
wenzelm@12897
  1975
wenzelm@12897
  1976
lemma eq_to_mono2: "a = b ==> c = d ==> ~ b --> ~ d ==> ~ a --> ~ c"
nipkow@17589
  1977
  by iprover
wenzelm@11979
  1978
wenzelm@11982
  1979
lemma Least_mono:
wenzelm@11982
  1980
  "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y
wenzelm@11982
  1981
    ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"
wenzelm@11982
  1982
    -- {* Courtesy of Stephan Merz *}
wenzelm@11982
  1983
  apply clarify
nipkow@15950
  1984
  apply (erule_tac P = "%x. x : S" in LeastI2_order, fast)
nipkow@15950
  1985
  apply (rule LeastI2_order)
wenzelm@11982
  1986
  apply (auto elim: monoD intro!: order_antisym)
wenzelm@11982
  1987
  done
wenzelm@11982
  1988
wenzelm@12020
  1989
wenzelm@12257
  1990
subsection {* Inverse image of a function *}
wenzelm@12257
  1991
wenzelm@12257
  1992
constdefs
wenzelm@12257
  1993
  vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
wenzelm@12257
  1994
  "f -` B == {x. f x : B}"
wenzelm@12257
  1995
wenzelm@12257
  1996
wenzelm@12257
  1997
subsubsection {* Basic rules *}
wenzelm@12257
  1998
wenzelm@12257
  1999
lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)"
wenzelm@12257
  2000
  by (unfold vimage_def) blast
wenzelm@12257
  2001
wenzelm@12257
  2002
lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
wenzelm@12257
  2003
  by simp
wenzelm@12257
  2004
wenzelm@12257
  2005
lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B"
wenzelm@12257
  2006
  by (unfold vimage_def) blast
wenzelm@12257
  2007
wenzelm@12257
  2008
lemma vimageI2: "f a : A ==> a : f -` A"
wenzelm@12257
  2009
  by (unfold vimage_def) fast
wenzelm@12257
  2010
wenzelm@12257
  2011
lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P"
wenzelm@12257
  2012
  by (unfold vimage_def) blast
wenzelm@12257
  2013
wenzelm@12257
  2014
lemma vimageD: "a : f -` A ==> f a : A"
wenzelm@12257
  2015
  by (unfold vimage_def) fast
wenzelm@12257
  2016
wenzelm@12257
  2017
wenzelm@12257
  2018
subsubsection {* Equations *}
wenzelm@12257
  2019
wenzelm@12257
  2020
lemma vimage_empty [simp]: "f -` {} = {}"
wenzelm@12257
  2021
  by blast
wenzelm@12257
  2022
wenzelm@12257
  2023
lemma vimage_Compl: "f -` (-A) = -(f -` A)"
wenzelm@12257
  2024
  by blast
wenzelm@12257
  2025
wenzelm@12257
  2026
lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)"
wenzelm@12257
  2027
  by blast
wenzelm@12257
  2028
wenzelm@12257
  2029
lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)"
wenzelm@12257
  2030
  by fast
wenzelm@12257
  2031
wenzelm@12257
  2032
lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)"
wenzelm@12257
  2033
  by blast
wenzelm@12257
  2034
wenzelm@12257
  2035
lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)"
wenzelm@12257
  2036
  by blast
wenzelm@12257
  2037
wenzelm@12257
  2038
lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)"
wenzelm@12257
  2039
  by blast
wenzelm@12257
  2040
wenzelm@12257
  2041
lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
wenzelm@12257
  2042
  by blast
wenzelm@12257
  2043
wenzelm@12257
  2044
lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q"
wenzelm@12257
  2045
  by blast
wenzelm@12257
  2046
wenzelm@12257
  2047
lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
wenzelm@12257
  2048
  -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
wenzelm@12257
  2049
  by blast
wenzelm@12257
  2050
wenzelm@12257
  2051
lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)"
wenzelm@12257
  2052
  by blast
wenzelm@12257
  2053
wenzelm@12257
  2054
lemma vimage_UNIV [simp]: "f -` UNIV = UNIV"
wenzelm@12257
  2055
  by blast
wenzelm@12257
  2056
wenzelm@12257
  2057
lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
wenzelm@12257
  2058
  -- {* NOT suitable for rewriting *}
wenzelm@12257
  2059
  by blast
wenzelm@12257
  2060
wenzelm@12897
  2061
lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B"
wenzelm@12257
  2062
  -- {* monotonicity *}
wenzelm@12257
  2063
  by blast
wenzelm@12257
  2064
wenzelm@12257
  2065
paulson@14479
  2066
subsection {* Getting the Contents of a Singleton Set *}
paulson@14479
  2067
paulson@14479
  2068
constdefs
paulson@14479
  2069
  contents :: "'a set => 'a"
paulson@14479
  2070
   "contents X == THE x. X = {x}"
paulson@14479
  2071
paulson@14479
  2072
lemma contents_eq [simp]: "contents {x} = x"
paulson@14479
  2073
by (simp add: contents_def)
paulson@14479
  2074
paulson@14479
  2075
wenzelm@12023
  2076
subsection {* Transitivity rules for calculational reasoning *}
wenzelm@12020
  2077
wenzelm@12897
  2078
lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B"
wenzelm@12020
  2079
  by (rule subsetD)
wenzelm@12020
  2080
wenzelm@12897
  2081
lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B"
wenzelm@12020
  2082
  by (rule subsetD)
wenzelm@12020
  2083
wenzelm@12020
  2084
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"
wenzelm@12020
  2085
  by (rule subst)
wenzelm@12020
  2086
wenzelm@12020
  2087
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"
wenzelm@12020
  2088
  by (rule ssubst)
wenzelm@12020
  2089
wenzelm@12020
  2090
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"
wenzelm@12020
  2091
  by (rule subst)
wenzelm@12020
  2092
wenzelm@12020
  2093
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"
wenzelm@12020
  2094
  by (rule ssubst)
wenzelm@12020
  2095
wenzelm@12020
  2096
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
wenzelm@12020
  2097
  (!!x y. x < y ==> f x < f y) ==> f a < c"
wenzelm@12020
  2098
proof -
wenzelm@12020
  2099
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2100
  assume "a < b" hence "f a < f b" by (rule r)
wenzelm@12020
  2101
  also assume "f b < c"
wenzelm@12020
  2102
  finally (order_less_trans) show ?thesis .
wenzelm@12020
  2103
qed
wenzelm@12020
  2104
wenzelm@12020
  2105
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
wenzelm@12020
  2106
  (!!x y. x < y ==> f x < f y) ==> a < f c"
wenzelm@12020
  2107
proof -
wenzelm@12020
  2108
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2109
  assume "a < f b"
wenzelm@12020
  2110
  also assume "b < c" hence "f b < f c" by (rule r)
wenzelm@12020
  2111
  finally (order_less_trans) show ?thesis .
wenzelm@12020
  2112
qed
wenzelm@12020
  2113
wenzelm@12020
  2114
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
wenzelm@12020
  2115
  (!!x y. x <= y ==> f x <= f y) ==> f a < c"
wenzelm@12020
  2116
proof -
wenzelm@12020
  2117
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2118
  assume "a <= b" hence "f a <= f b" by (rule r)
wenzelm@12020
  2119
  also assume "f b < c"
wenzelm@12020
  2120
  finally (order_le_less_trans) show ?thesis .
wenzelm@12020
  2121
qed
wenzelm@12020
  2122
wenzelm@12020
  2123
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
wenzelm@12020
  2124
  (!!x y. x < y ==> f x < f y) ==> a < f c"
wenzelm@12020
  2125
proof -
wenzelm@12020
  2126
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2127
  assume "a <= f b"
wenzelm@12020
  2128
  also assume "b < c" hence "f b < f c" by (rule r)
wenzelm@12020
  2129
  finally (order_le_less_trans) show ?thesis .
wenzelm@12020
  2130
qed
wenzelm@12020
  2131
wenzelm@12020
  2132
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
wenzelm@12020
  2133
  (!!x y. x < y ==> f x < f y) ==> f a < c"
wenzelm@12020
  2134
proof -
wenzelm@12020
  2135
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2136
  assume "a < b" hence "f a < f b" by (rule r)
wenzelm@12020
  2137
  also assume "f b <= c"
wenzelm@12020
  2138
  finally (order_less_le_trans) show ?thesis .
wenzelm@12020
  2139
qed
wenzelm@12020
  2140
wenzelm@12020
  2141
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
wenzelm@12020
  2142
  (!!x y. x <= y ==> f x <= f y) ==> a < f c"
wenzelm@12020
  2143
proof -
wenzelm@12020
  2144
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2145
  assume "a < f b"
wenzelm@12020
  2146
  also assume "b <= c" hence "f b <= f c" by (rule r)
wenzelm@12020
  2147
  finally (order_less_le_trans) show ?thesis .
wenzelm@12020
  2148
qed
wenzelm@12020
  2149
wenzelm@12020
  2150
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
wenzelm@12020
  2151
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
wenzelm@12020
  2152
proof -
wenzelm@12020
  2153
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2154
  assume "a <= f b"
wenzelm@12020
  2155
  also assume "b <= c" hence "f b <= f c" by (rule r)
wenzelm@12020
  2156
  finally (order_trans) show ?thesis .
wenzelm@12020
  2157
qed
wenzelm@12020
  2158
wenzelm@12020
  2159
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
wenzelm@12020
  2160
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
wenzelm@12020
  2161
proof -
wenzelm@12020
  2162
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2163
  assume "a <= b" hence "f a <= f b" by (rule r)
wenzelm@12020
  2164
  also assume "f b <= c"
wenzelm@12020
  2165
  finally (order_trans) show ?thesis .
wenzelm@12020
  2166
qed
wenzelm@12020
  2167
wenzelm@12020
  2168
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
wenzelm@12020
  2169
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
wenzelm@12020
  2170
proof -
wenzelm@12020
  2171
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2172
  assume "a <= b" hence "f a <= f b" by (rule r)
wenzelm@12020
  2173
  also assume "f b = c"
wenzelm@12020
  2174
  finally (ord_le_eq_trans) show ?thesis .
wenzelm@12020
  2175
qed
wenzelm@12020
  2176
wenzelm@12020
  2177
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
wenzelm@12020
  2178
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
wenzelm@12020
  2179
proof -
wenzelm@12020
  2180
  assume r: "!!x y. x <= y ==> f x <= f y"
wenzelm@12020
  2181
  assume "a = f b"
wenzelm@12020
  2182
  also assume "b <= c" hence "f b <= f c" by (rule r)
wenzelm@12020
  2183
  finally (ord_eq_le_trans) show ?thesis .
wenzelm@12020
  2184
qed
wenzelm@12020
  2185
wenzelm@12020
  2186
lemma ord_less_eq_subst: "a < b ==> f b = c ==>
wenzelm@12020
  2187
  (!!x y. x < y ==> f x < f y) ==> f a < c"
wenzelm@12020
  2188
proof -
wenzelm@12020
  2189
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2190
  assume "a < b" hence "f a < f b" by (rule r)
wenzelm@12020
  2191
  also assume "f b = c"
wenzelm@12020
  2192
  finally (ord_less_eq_trans) show ?thesis .
wenzelm@12020
  2193
qed
wenzelm@12020
  2194
wenzelm@12020
  2195
lemma ord_eq_less_subst: "a = f b ==> b < c ==>
wenzelm@12020
  2196
  (!!x y. x < y ==> f x < f y) ==> a < f c"
wenzelm@12020
  2197
proof -
wenzelm@12020
  2198
  assume r: "!!x y. x < y ==> f x < f y"
wenzelm@12020
  2199
  assume "a = f b"
wenzelm@12020
  2200
  also assume "b < c" hence "f b < f c" by (rule r)
wenzelm@12020
  2201
  finally (ord_eq_less_trans) show ?thesis .
wenzelm@12020
  2202
qed
wenzelm@12020
  2203
wenzelm@12020
  2204
text {*
wenzelm@12020
  2205
  Note that this list of rules is in reverse order of priorities.
wenzelm@12020
  2206
*}
wenzelm@12020
  2207
wenzelm@12020
  2208
lemmas basic_trans_rules [trans] =
wenzelm@12020
  2209
  order_less_subst2
wenzelm@12020
  2210
  order_less_subst1
wenzelm@12020
  2211
  order_le_less_subst2
wenzelm@12020
  2212
  order_le_less_subst1
wenzelm@12020
  2213
  order_less_le_subst2
wenzelm@12020
  2214
  order_less_le_subst1
wenzelm@12020
  2215
  order_subst2
wenzelm@12020
  2216
  order_subst1
wenzelm@12020
  2217
  ord_le_eq_subst
wenzelm@12020
  2218
  ord_eq_le_subst
wenzelm@12020
  2219
  ord_less_eq_subst
wenzelm@12020
  2220
  ord_eq_less_subst
wenzelm@12020
  2221
  forw_subst
wenzelm@12020
  2222
  back_subst
wenzelm@12020
  2223
  rev_mp
wenzelm@12020
  2224
  mp
wenzelm@12020
  2225
  set_rev_mp
wenzelm@12020
  2226
  set_mp
wenzelm@12020
  2227
  order_neq_le_trans
wenzelm@12020
  2228
  order_le_neq_trans
wenzelm@12020
  2229
  order_less_trans
wenzelm@12020
  2230
  order_less_asym'
wenzelm@12020
  2231
  order_le_less_trans
wenzelm@12020
  2232
  order_less_le_trans
wenzelm@12020
  2233
  order_trans
wenzelm@12020
  2234
  order_antisym
wenzelm@12020
  2235
  ord_le_eq_trans
wenzelm@12020
  2236
  ord_eq_le_trans
wenzelm@12020
  2237
  ord_less_eq_trans
wenzelm@12020
  2238
  ord_eq_less_trans
wenzelm@12020
  2239
  trans
wenzelm@12020
  2240
wenzelm@11979
  2241
end