src/HOL/Matrix/ComputeNumeral.thy
author wenzelm
Fri Dec 17 17:43:54 2010 +0100 (2010-12-17)
changeset 41229 d797baa3d57c
parent 38273 d31a34569542
child 46560 8e252a608765
permissions -rw-r--r--
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
obua@23664
     1
theory ComputeNumeral
hoelzl@29804
     2
imports ComputeHOL ComputeFloat
obua@23664
     3
begin
obua@23664
     4
obua@23664
     5
(* normalization of bit strings *)
huffman@26075
     6
lemmas bitnorm = normalize_bin_simps
obua@23664
     7
obua@23664
     8
(* neg for bit strings *)
haftmann@25919
     9
lemma neg1: "neg Int.Pls = False" by (simp add: Int.Pls_def)
haftmann@25919
    10
lemma neg2: "neg Int.Min = True" apply (subst Int.Min_def) by auto
huffman@26086
    11
lemma neg3: "neg (Int.Bit0 x) = neg x" apply (simp add: neg_def) apply (subst Bit0_def) by auto
huffman@26086
    12
lemma neg4: "neg (Int.Bit1 x) = neg x" apply (simp add: neg_def) apply (subst Bit1_def) by auto  
obua@23664
    13
lemmas bitneg = neg1 neg2 neg3 neg4
obua@23664
    14
obua@23664
    15
(* iszero for bit strings *)
haftmann@25919
    16
lemma iszero1: "iszero Int.Pls = True" by (simp add: Int.Pls_def iszero_def)
haftmann@25919
    17
lemma iszero2: "iszero Int.Min = False" apply (subst Int.Min_def) apply (subst iszero_def) by simp
huffman@26086
    18
lemma iszero3: "iszero (Int.Bit0 x) = iszero x" apply (subst Int.Bit0_def) apply (subst iszero_def)+ by auto
huffman@26086
    19
lemma iszero4: "iszero (Int.Bit1 x) = False" apply (subst Int.Bit1_def) apply (subst iszero_def)+  apply simp by arith
obua@23664
    20
lemmas bitiszero = iszero1 iszero2 iszero3 iszero4
obua@23664
    21
obua@23664
    22
(* lezero for bit strings *)
wenzelm@38273
    23
definition "lezero x \<longleftrightarrow> x \<le> 0"
haftmann@25919
    24
lemma lezero1: "lezero Int.Pls = True" unfolding Int.Pls_def lezero_def by auto
haftmann@25919
    25
lemma lezero2: "lezero Int.Min = True" unfolding Int.Min_def lezero_def by auto
huffman@26086
    26
lemma lezero3: "lezero (Int.Bit0 x) = lezero x" unfolding Int.Bit0_def lezero_def by auto
huffman@26086
    27
lemma lezero4: "lezero (Int.Bit1 x) = neg x" unfolding Int.Bit1_def lezero_def neg_def by auto
obua@23664
    28
lemmas bitlezero = lezero1 lezero2 lezero3 lezero4
obua@23664
    29
obua@23664
    30
(* equality for bit strings *)
huffman@29037
    31
lemmas biteq = eq_bin_simps
obua@23664
    32
obua@23664
    33
(* x < y for bit strings *)
huffman@29037
    34
lemmas bitless = less_bin_simps
obua@23664
    35
obua@23664
    36
(* x \<le> y for bit strings *)
huffman@29037
    37
lemmas bitle = le_bin_simps
obua@23664
    38
obua@23664
    39
(* succ for bit strings *)
huffman@26075
    40
lemmas bitsucc = succ_bin_simps
obua@23664
    41
obua@23664
    42
(* pred for bit strings *)
huffman@26075
    43
lemmas bitpred = pred_bin_simps
obua@23664
    44
obua@23664
    45
(* unary minus for bit strings *)
huffman@26075
    46
lemmas bituminus = minus_bin_simps
obua@23664
    47
obua@23664
    48
(* addition for bit strings *)
huffman@26086
    49
lemmas bitadd = add_bin_simps
obua@23664
    50
obua@23664
    51
(* multiplication for bit strings *) 
haftmann@25919
    52
lemma mult_Pls_right: "x * Int.Pls = Int.Pls" by (simp add: Pls_def)
haftmann@25919
    53
lemma mult_Min_right: "x * Int.Min = - x" by (subst mult_commute, simp add: mult_Min)
huffman@26086
    54
lemma multb0x: "(Int.Bit0 x) * y = Int.Bit0 (x * y)" by (rule mult_Bit0)
huffman@26086
    55
lemma multxb0: "x * (Int.Bit0 y) = Int.Bit0 (x * y)" unfolding Bit0_def by simp
huffman@26086
    56
lemma multb1: "(Int.Bit1 x) * (Int.Bit1 y) = Int.Bit1 (Int.Bit0 (x * y) + x + y)"
nipkow@29667
    57
  unfolding Bit0_def Bit1_def by (simp add: algebra_simps)
obua@23664
    58
lemmas bitmul = mult_Pls mult_Min mult_Pls_right mult_Min_right multb0x multxb0 multb1
obua@23664
    59
obua@23664
    60
lemmas bitarith = bitnorm bitiszero bitneg bitlezero biteq bitless bitle bitsucc bitpred bituminus bitadd bitmul 
obua@23664
    61
wenzelm@38273
    62
definition "nat_norm_number_of (x::nat) = x"
obua@23664
    63
obua@23664
    64
lemma nat_norm_number_of: "nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)"
obua@23664
    65
  apply (simp add: nat_norm_number_of_def)
obua@23664
    66
  unfolding lezero_def iszero_def neg_def
huffman@28990
    67
  apply (simp add: numeral_simps)
obua@23664
    68
  done
obua@23664
    69
obua@23664
    70
(* Normalization of nat literals *)
haftmann@25919
    71
lemma natnorm0: "(0::nat) = number_of (Int.Pls)" by auto
huffman@26086
    72
lemma natnorm1: "(1 :: nat) = number_of (Int.Bit1 Int.Pls)"  by auto 
obua@23664
    73
lemmas natnorm = natnorm0 natnorm1 nat_norm_number_of
obua@23664
    74
obua@23664
    75
(* Suc *)
haftmann@25919
    76
lemma natsuc: "Suc (number_of x) = (if neg x then 1 else number_of (Int.succ x))" by (auto simp add: number_of_is_id)
obua@23664
    77
obua@23664
    78
(* Addition for nat *)
obua@23664
    79
lemma natadd: "number_of x + ((number_of y)::nat) = (if neg x then (number_of y) else (if neg y then number_of x else (number_of (x + y))))"
huffman@29013
    80
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@29013
    81
  by auto
obua@23664
    82
obua@23664
    83
(* Subtraction for nat *)
obua@23664
    84
lemma natsub: "(number_of x) - ((number_of y)::nat) = 
obua@23664
    85
  (if neg x then 0 else (if neg y then number_of x else (nat_norm_number_of (number_of (x + (- y))))))"
obua@23664
    86
  unfolding nat_norm_number_of
obua@23664
    87
  by (auto simp add: number_of_is_id neg_def lezero_def iszero_def Let_def nat_number_of_def)
obua@23664
    88
obua@23664
    89
(* Multiplication for nat *)
obua@23664
    90
lemma natmul: "(number_of x) * ((number_of y)::nat) = 
obua@23664
    91
  (if neg x then 0 else (if neg y then 0 else number_of (x * y)))"
huffman@29013
    92
  unfolding nat_number_of_def number_of_is_id neg_def
huffman@29013
    93
  by (simp add: nat_mult_distrib)
obua@23664
    94
obua@23664
    95
lemma nateq: "(((number_of x)::nat) = (number_of y)) = ((lezero x \<and> lezero y) \<or> (x = y))"
obua@23664
    96
  by (auto simp add: iszero_def lezero_def neg_def number_of_is_id)
obua@23664
    97
obua@23664
    98
lemma natless: "(((number_of x)::nat) < (number_of y)) = ((x < y) \<and> (\<not> (lezero y)))"
huffman@29013
    99
  by (simp add: lezero_def numeral_simps not_le)
obua@23664
   100
obua@23664
   101
lemma natle: "(((number_of x)::nat) \<le> (number_of y)) = (y < x \<longrightarrow> lezero x)"
obua@23664
   102
  by (auto simp add: number_of_is_id lezero_def nat_number_of_def)
obua@23664
   103
obua@23664
   104
fun natfac :: "nat \<Rightarrow> nat"
wenzelm@38273
   105
  where "natfac n = (if n = 0 then 1 else n * (natfac (n - 1)))"
obua@23664
   106
obua@23664
   107
lemmas compute_natarith = bitarith natnorm natsuc natadd natsub natmul nateq natless natle natfac.simps
obua@23664
   108
haftmann@35028
   109
lemma number_eq: "(((number_of x)::'a::{number_ring, linordered_idom}) = (number_of y)) = (x = y)"
obua@23664
   110
  unfolding number_of_eq
obua@23664
   111
  apply simp
obua@23664
   112
  done
obua@23664
   113
haftmann@35028
   114
lemma number_le: "(((number_of x)::'a::{number_ring, linordered_idom}) \<le>  (number_of y)) = (x \<le> y)"
obua@23664
   115
  unfolding number_of_eq
obua@23664
   116
  apply simp
obua@23664
   117
  done
obua@23664
   118
haftmann@35028
   119
lemma number_less: "(((number_of x)::'a::{number_ring, linordered_idom}) <  (number_of y)) = (x < y)"
obua@23664
   120
  unfolding number_of_eq 
obua@23664
   121
  apply simp
obua@23664
   122
  done
obua@23664
   123
haftmann@35028
   124
lemma number_diff: "((number_of x)::'a::{number_ring, linordered_idom}) - number_of y = number_of (x + (- y))"
obua@23664
   125
  apply (subst diff_number_of_eq)
obua@23664
   126
  apply simp
obua@23664
   127
  done
obua@23664
   128
obua@23664
   129
lemmas number_norm = number_of_Pls[symmetric] numeral_1_eq_1[symmetric]
obua@23664
   130
obua@23664
   131
lemmas compute_numberarith = number_of_minus[symmetric] number_of_add[symmetric] number_diff number_of_mult[symmetric] number_norm number_eq number_le number_less
obua@23664
   132
obua@23664
   133
lemma compute_real_of_nat_number_of: "real ((number_of v)::nat) = (if neg v then 0 else number_of v)"
obua@23664
   134
  by (simp only: real_of_nat_number_of number_of_is_id)
obua@23664
   135
obua@23664
   136
lemma compute_nat_of_int_number_of: "nat ((number_of v)::int) = (number_of v)"
obua@23664
   137
  by simp
obua@23664
   138
obua@23664
   139
lemmas compute_num_conversions = compute_real_of_nat_number_of compute_nat_of_int_number_of real_number_of
obua@23664
   140
obua@23664
   141
lemmas zpowerarith = zpower_number_of_even
obua@23664
   142
  zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
obua@23664
   143
  zpower_Pls zpower_Min
obua@23664
   144
obua@23664
   145
(* div, mod *)
obua@23664
   146
obua@23664
   147
lemma adjust: "adjust b (q, r) = (if 0 \<le> r - b then (2 * q + 1, r - b) else (2 * q, r))"
obua@23664
   148
  by (auto simp only: adjust_def)
obua@23664
   149
obua@23664
   150
lemma negateSnd: "negateSnd (q, r) = (q, -r)" 
haftmann@29657
   151
  by (simp add: negateSnd_def)
obua@23664
   152
haftmann@33343
   153
lemma divmod: "divmod_int a b = (if 0\<le>a then
obua@23664
   154
                  if 0\<le>b then posDivAlg a b
obua@23664
   155
                  else if a=0 then (0, 0)
obua@23664
   156
                       else negateSnd (negDivAlg (-a) (-b))
obua@23664
   157
               else 
obua@23664
   158
                  if 0<b then negDivAlg a b
obua@23664
   159
                  else negateSnd (posDivAlg (-a) (-b)))"
haftmann@33343
   160
  by (auto simp only: divmod_int_def)
obua@23664
   161
haftmann@33343
   162
lemmas compute_div_mod = div_int_def mod_int_def divmod adjust negateSnd posDivAlg.simps negDivAlg.simps
obua@23664
   163
obua@23664
   164
obua@23664
   165
obua@23664
   166
(* collecting all the theorems *)
obua@23664
   167
haftmann@25919
   168
lemma even_Pls: "even (Int.Pls) = True"
obua@23664
   169
  apply (unfold Pls_def even_def)
obua@23664
   170
  by simp
obua@23664
   171
haftmann@25919
   172
lemma even_Min: "even (Int.Min) = False"
obua@23664
   173
  apply (unfold Min_def even_def)
obua@23664
   174
  by simp
obua@23664
   175
huffman@26086
   176
lemma even_B0: "even (Int.Bit0 x) = True"
huffman@26086
   177
  apply (unfold Bit0_def)
obua@23664
   178
  by simp
obua@23664
   179
huffman@26086
   180
lemma even_B1: "even (Int.Bit1 x) = False"
huffman@26086
   181
  apply (unfold Bit1_def)
obua@23664
   182
  by simp
obua@23664
   183
obua@23664
   184
lemma even_number_of: "even ((number_of w)::int) = even w"
obua@23664
   185
  by (simp only: number_of_is_id)
obua@23664
   186
obua@23664
   187
lemmas compute_even = even_Pls even_Min even_B0 even_B1 even_number_of
obua@23664
   188
obua@23664
   189
lemmas compute_numeral = compute_if compute_let compute_pair compute_bool 
obua@23664
   190
                         compute_natarith compute_numberarith max_def min_def compute_num_conversions zpowerarith compute_div_mod compute_even
obua@23664
   191
obua@23664
   192
end