src/HOL/NthRoot.thy
author wenzelm
Fri Dec 17 17:43:54 2010 +0100 (2010-12-17)
changeset 41229 d797baa3d57c
parent 35216 7641e8d831d2
child 44289 d81d09cdab9c
permissions -rw-r--r--
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
paulson@12196
     1
(*  Title       : NthRoot.thy
paulson@12196
     2
    Author      : Jacques D. Fleuriot
paulson@12196
     3
    Copyright   : 1998  University of Cambridge
paulson@14477
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
paulson@12196
     5
*)
paulson@12196
     6
huffman@22956
     7
header {* Nth Roots of Real Numbers *}
paulson@14324
     8
nipkow@15131
     9
theory NthRoot
haftmann@28952
    10
imports Parity Deriv
nipkow@15131
    11
begin
paulson@14324
    12
huffman@22956
    13
subsection {* Existence of Nth Root *}
huffman@20687
    14
huffman@23009
    15
text {* Existence follows from the Intermediate Value Theorem *}
paulson@14324
    16
huffman@23009
    17
lemma realpow_pos_nth:
huffman@23009
    18
  assumes n: "0 < n"
huffman@23009
    19
  assumes a: "0 < a"
huffman@23009
    20
  shows "\<exists>r>0. r ^ n = (a::real)"
huffman@23009
    21
proof -
huffman@23009
    22
  have "\<exists>r\<ge>0. r \<le> (max 1 a) \<and> r ^ n = a"
huffman@23009
    23
  proof (rule IVT)
huffman@23009
    24
    show "0 ^ n \<le> a" using n a by (simp add: power_0_left)
huffman@23009
    25
    show "0 \<le> max 1 a" by simp
huffman@23009
    26
    from n have n1: "1 \<le> n" by simp
huffman@23009
    27
    have "a \<le> max 1 a ^ 1" by simp
huffman@23009
    28
    also have "max 1 a ^ 1 \<le> max 1 a ^ n"
huffman@23009
    29
      using n1 by (rule power_increasing, simp)
huffman@23009
    30
    finally show "a \<le> max 1 a ^ n" .
huffman@23009
    31
    show "\<forall>r. 0 \<le> r \<and> r \<le> max 1 a \<longrightarrow> isCont (\<lambda>x. x ^ n) r"
huffman@23069
    32
      by (simp add: isCont_power)
huffman@23009
    33
  qed
huffman@23009
    34
  then obtain r where r: "0 \<le> r \<and> r ^ n = a" by fast
huffman@23009
    35
  with n a have "r \<noteq> 0" by (auto simp add: power_0_left)
huffman@23009
    36
  with r have "0 < r \<and> r ^ n = a" by simp
huffman@23009
    37
  thus ?thesis ..
huffman@23009
    38
qed
paulson@14325
    39
huffman@23047
    40
(* Used by Integration/RealRandVar.thy in AFP *)
huffman@23047
    41
lemma realpow_pos_nth2: "(0::real) < a \<Longrightarrow> \<exists>r>0. r ^ Suc n = a"
huffman@23047
    42
by (blast intro: realpow_pos_nth)
huffman@23047
    43
huffman@23009
    44
text {* Uniqueness of nth positive root *}
paulson@14324
    45
paulson@14324
    46
lemma realpow_pos_nth_unique:
huffman@23009
    47
  "\<lbrakk>0 < n; 0 < a\<rbrakk> \<Longrightarrow> \<exists>!r. 0 < r \<and> r ^ n = (a::real)"
paulson@14324
    48
apply (auto intro!: realpow_pos_nth)
huffman@23009
    49
apply (rule_tac n=n in power_eq_imp_eq_base, simp_all)
paulson@14324
    50
done
paulson@14324
    51
huffman@20687
    52
subsection {* Nth Root *}
huffman@20687
    53
huffman@22956
    54
text {* We define roots of negative reals such that
huffman@22956
    55
  @{term "root n (- x) = - root n x"}. This allows
huffman@22956
    56
  us to omit side conditions from many theorems. *}
huffman@20687
    57
huffman@22956
    58
definition
huffman@22956
    59
  root :: "[nat, real] \<Rightarrow> real" where
huffman@22956
    60
  "root n x = (if 0 < x then (THE u. 0 < u \<and> u ^ n = x) else
huffman@22956
    61
               if x < 0 then - (THE u. 0 < u \<and> u ^ n = - x) else 0)"
huffman@20687
    62
huffman@22956
    63
lemma real_root_zero [simp]: "root n 0 = 0"
huffman@22956
    64
unfolding root_def by simp
huffman@22956
    65
huffman@22956
    66
lemma real_root_minus: "0 < n \<Longrightarrow> root n (- x) = - root n x"
huffman@22956
    67
unfolding root_def by simp
huffman@22956
    68
huffman@22956
    69
lemma real_root_gt_zero: "\<lbrakk>0 < n; 0 < x\<rbrakk> \<Longrightarrow> 0 < root n x"
huffman@20687
    70
apply (simp add: root_def)
huffman@22956
    71
apply (drule (1) realpow_pos_nth_unique)
huffman@20687
    72
apply (erule theI' [THEN conjunct1])
huffman@20687
    73
done
huffman@20687
    74
huffman@22956
    75
lemma real_root_pow_pos: (* TODO: rename *)
huffman@22956
    76
  "\<lbrakk>0 < n; 0 < x\<rbrakk> \<Longrightarrow> root n x ^ n = x"
huffman@22956
    77
apply (simp add: root_def)
huffman@22956
    78
apply (drule (1) realpow_pos_nth_unique)
huffman@22956
    79
apply (erule theI' [THEN conjunct2])
huffman@22956
    80
done
huffman@20687
    81
huffman@22956
    82
lemma real_root_pow_pos2 [simp]: (* TODO: rename *)
huffman@22956
    83
  "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n x ^ n = x"
huffman@22956
    84
by (auto simp add: order_le_less real_root_pow_pos)
huffman@22956
    85
huffman@23046
    86
lemma odd_real_root_pow: "odd n \<Longrightarrow> root n x ^ n = x"
huffman@23046
    87
apply (rule_tac x=0 and y=x in linorder_le_cases)
huffman@23046
    88
apply (erule (1) real_root_pow_pos2 [OF odd_pos])
huffman@23046
    89
apply (subgoal_tac "root n (- x) ^ n = - x")
huffman@23046
    90
apply (simp add: real_root_minus odd_pos)
huffman@23046
    91
apply (simp add: odd_pos)
huffman@23046
    92
done
huffman@23046
    93
huffman@22956
    94
lemma real_root_ge_zero: "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> 0 \<le> root n x"
huffman@20687
    95
by (auto simp add: order_le_less real_root_gt_zero)
huffman@20687
    96
huffman@22956
    97
lemma real_root_power_cancel: "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n (x ^ n) = x"
huffman@22956
    98
apply (subgoal_tac "0 \<le> x ^ n")
huffman@22956
    99
apply (subgoal_tac "0 \<le> root n (x ^ n)")
huffman@22956
   100
apply (subgoal_tac "root n (x ^ n) ^ n = x ^ n")
huffman@22956
   101
apply (erule (3) power_eq_imp_eq_base)
huffman@22956
   102
apply (erule (1) real_root_pow_pos2)
huffman@22956
   103
apply (erule (1) real_root_ge_zero)
huffman@22956
   104
apply (erule zero_le_power)
huffman@20687
   105
done
huffman@20687
   106
huffman@23046
   107
lemma odd_real_root_power_cancel: "odd n \<Longrightarrow> root n (x ^ n) = x"
huffman@23046
   108
apply (rule_tac x=0 and y=x in linorder_le_cases)
huffman@23046
   109
apply (erule (1) real_root_power_cancel [OF odd_pos])
huffman@23046
   110
apply (subgoal_tac "root n ((- x) ^ n) = - x")
huffman@23046
   111
apply (simp add: real_root_minus odd_pos)
huffman@23046
   112
apply (erule real_root_power_cancel [OF odd_pos], simp)
huffman@23046
   113
done
huffman@23046
   114
huffman@22956
   115
lemma real_root_pos_unique:
huffman@22956
   116
  "\<lbrakk>0 < n; 0 \<le> y; y ^ n = x\<rbrakk> \<Longrightarrow> root n x = y"
huffman@22956
   117
by (erule subst, rule real_root_power_cancel)
huffman@22956
   118
huffman@23046
   119
lemma odd_real_root_unique:
huffman@23046
   120
  "\<lbrakk>odd n; y ^ n = x\<rbrakk> \<Longrightarrow> root n x = y"
huffman@23046
   121
by (erule subst, rule odd_real_root_power_cancel)
huffman@23046
   122
huffman@22956
   123
lemma real_root_one [simp]: "0 < n \<Longrightarrow> root n 1 = 1"
huffman@22956
   124
by (simp add: real_root_pos_unique)
huffman@22956
   125
huffman@22956
   126
text {* Root function is strictly monotonic, hence injective *}
huffman@22956
   127
huffman@22956
   128
lemma real_root_less_mono_lemma:
huffman@22956
   129
  "\<lbrakk>0 < n; 0 \<le> x; x < y\<rbrakk> \<Longrightarrow> root n x < root n y"
huffman@22856
   130
apply (subgoal_tac "0 \<le> y")
huffman@22956
   131
apply (subgoal_tac "root n x ^ n < root n y ^ n")
huffman@22956
   132
apply (erule power_less_imp_less_base)
huffman@22956
   133
apply (erule (1) real_root_ge_zero)
huffman@22956
   134
apply simp
huffman@22956
   135
apply simp
huffman@22721
   136
done
huffman@22721
   137
huffman@22956
   138
lemma real_root_less_mono: "\<lbrakk>0 < n; x < y\<rbrakk> \<Longrightarrow> root n x < root n y"
huffman@22956
   139
apply (cases "0 \<le> x")
huffman@22956
   140
apply (erule (2) real_root_less_mono_lemma)
huffman@22956
   141
apply (cases "0 \<le> y")
huffman@22956
   142
apply (rule_tac y=0 in order_less_le_trans)
huffman@22956
   143
apply (subgoal_tac "0 < root n (- x)")
huffman@22956
   144
apply (simp add: real_root_minus)
huffman@22956
   145
apply (simp add: real_root_gt_zero)
huffman@22956
   146
apply (simp add: real_root_ge_zero)
huffman@22956
   147
apply (subgoal_tac "root n (- y) < root n (- x)")
huffman@22956
   148
apply (simp add: real_root_minus)
huffman@22956
   149
apply (simp add: real_root_less_mono_lemma)
huffman@22721
   150
done
huffman@22721
   151
huffman@22956
   152
lemma real_root_le_mono: "\<lbrakk>0 < n; x \<le> y\<rbrakk> \<Longrightarrow> root n x \<le> root n y"
huffman@22956
   153
by (auto simp add: order_le_less real_root_less_mono)
huffman@22956
   154
huffman@22721
   155
lemma real_root_less_iff [simp]:
huffman@22956
   156
  "0 < n \<Longrightarrow> (root n x < root n y) = (x < y)"
huffman@22956
   157
apply (cases "x < y")
huffman@22956
   158
apply (simp add: real_root_less_mono)
huffman@22956
   159
apply (simp add: linorder_not_less real_root_le_mono)
huffman@22721
   160
done
huffman@22721
   161
huffman@22721
   162
lemma real_root_le_iff [simp]:
huffman@22956
   163
  "0 < n \<Longrightarrow> (root n x \<le> root n y) = (x \<le> y)"
huffman@22956
   164
apply (cases "x \<le> y")
huffman@22956
   165
apply (simp add: real_root_le_mono)
huffman@22956
   166
apply (simp add: linorder_not_le real_root_less_mono)
huffman@22721
   167
done
huffman@22721
   168
huffman@22721
   169
lemma real_root_eq_iff [simp]:
huffman@22956
   170
  "0 < n \<Longrightarrow> (root n x = root n y) = (x = y)"
huffman@22956
   171
by (simp add: order_eq_iff)
huffman@22956
   172
huffman@22956
   173
lemmas real_root_gt_0_iff [simp] = real_root_less_iff [where x=0, simplified]
huffman@22956
   174
lemmas real_root_lt_0_iff [simp] = real_root_less_iff [where y=0, simplified]
huffman@22956
   175
lemmas real_root_ge_0_iff [simp] = real_root_le_iff [where x=0, simplified]
huffman@22956
   176
lemmas real_root_le_0_iff [simp] = real_root_le_iff [where y=0, simplified]
huffman@22956
   177
lemmas real_root_eq_0_iff [simp] = real_root_eq_iff [where y=0, simplified]
huffman@22721
   178
huffman@23257
   179
lemma real_root_gt_1_iff [simp]: "0 < n \<Longrightarrow> (1 < root n y) = (1 < y)"
huffman@23257
   180
by (insert real_root_less_iff [where x=1], simp)
huffman@23257
   181
huffman@23257
   182
lemma real_root_lt_1_iff [simp]: "0 < n \<Longrightarrow> (root n x < 1) = (x < 1)"
huffman@23257
   183
by (insert real_root_less_iff [where y=1], simp)
huffman@23257
   184
huffman@23257
   185
lemma real_root_ge_1_iff [simp]: "0 < n \<Longrightarrow> (1 \<le> root n y) = (1 \<le> y)"
huffman@23257
   186
by (insert real_root_le_iff [where x=1], simp)
huffman@23257
   187
huffman@23257
   188
lemma real_root_le_1_iff [simp]: "0 < n \<Longrightarrow> (root n x \<le> 1) = (x \<le> 1)"
huffman@23257
   189
by (insert real_root_le_iff [where y=1], simp)
huffman@23257
   190
huffman@23257
   191
lemma real_root_eq_1_iff [simp]: "0 < n \<Longrightarrow> (root n x = 1) = (x = 1)"
huffman@23257
   192
by (insert real_root_eq_iff [where y=1], simp)
huffman@23257
   193
huffman@23257
   194
text {* Roots of roots *}
huffman@23257
   195
huffman@23257
   196
lemma real_root_Suc_0 [simp]: "root (Suc 0) x = x"
huffman@23257
   197
by (simp add: odd_real_root_unique)
huffman@23257
   198
huffman@23257
   199
lemma real_root_pos_mult_exp:
huffman@23257
   200
  "\<lbrakk>0 < m; 0 < n; 0 < x\<rbrakk> \<Longrightarrow> root (m * n) x = root m (root n x)"
huffman@23257
   201
by (rule real_root_pos_unique, simp_all add: power_mult)
huffman@23257
   202
huffman@23257
   203
lemma real_root_mult_exp:
huffman@23257
   204
  "\<lbrakk>0 < m; 0 < n\<rbrakk> \<Longrightarrow> root (m * n) x = root m (root n x)"
huffman@23257
   205
apply (rule linorder_cases [where x=x and y=0])
huffman@23257
   206
apply (subgoal_tac "root (m * n) (- x) = root m (root n (- x))")
huffman@23257
   207
apply (simp add: real_root_minus)
huffman@23257
   208
apply (simp_all add: real_root_pos_mult_exp)
huffman@23257
   209
done
huffman@23257
   210
huffman@23257
   211
lemma real_root_commute:
huffman@23257
   212
  "\<lbrakk>0 < m; 0 < n\<rbrakk> \<Longrightarrow> root m (root n x) = root n (root m x)"
huffman@23257
   213
by (simp add: real_root_mult_exp [symmetric] mult_commute)
huffman@23257
   214
huffman@23257
   215
text {* Monotonicity in first argument *}
huffman@23257
   216
huffman@23257
   217
lemma real_root_strict_decreasing:
huffman@23257
   218
  "\<lbrakk>0 < n; n < N; 1 < x\<rbrakk> \<Longrightarrow> root N x < root n x"
huffman@23257
   219
apply (subgoal_tac "root n (root N x) ^ n < root N (root n x) ^ N", simp)
huffman@23257
   220
apply (simp add: real_root_commute power_strict_increasing
huffman@23257
   221
            del: real_root_pow_pos2)
huffman@23257
   222
done
huffman@23257
   223
huffman@23257
   224
lemma real_root_strict_increasing:
huffman@23257
   225
  "\<lbrakk>0 < n; n < N; 0 < x; x < 1\<rbrakk> \<Longrightarrow> root n x < root N x"
huffman@23257
   226
apply (subgoal_tac "root N (root n x) ^ N < root n (root N x) ^ n", simp)
huffman@23257
   227
apply (simp add: real_root_commute power_strict_decreasing
huffman@23257
   228
            del: real_root_pow_pos2)
huffman@23257
   229
done
huffman@23257
   230
huffman@23257
   231
lemma real_root_decreasing:
huffman@23257
   232
  "\<lbrakk>0 < n; n < N; 1 \<le> x\<rbrakk> \<Longrightarrow> root N x \<le> root n x"
huffman@23257
   233
by (auto simp add: order_le_less real_root_strict_decreasing)
huffman@23257
   234
huffman@23257
   235
lemma real_root_increasing:
huffman@23257
   236
  "\<lbrakk>0 < n; n < N; 0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> root n x \<le> root N x"
huffman@23257
   237
by (auto simp add: order_le_less real_root_strict_increasing)
huffman@23257
   238
huffman@22956
   239
text {* Roots of multiplication and division *}
huffman@22956
   240
huffman@22956
   241
lemma real_root_mult_lemma:
huffman@22956
   242
  "\<lbrakk>0 < n; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> root n (x * y) = root n x * root n y"
huffman@22956
   243
by (simp add: real_root_pos_unique mult_nonneg_nonneg power_mult_distrib)
huffman@22956
   244
huffman@22956
   245
lemma real_root_inverse_lemma:
huffman@22956
   246
  "\<lbrakk>0 < n; 0 \<le> x\<rbrakk> \<Longrightarrow> root n (inverse x) = inverse (root n x)"
huffman@22956
   247
by (simp add: real_root_pos_unique power_inverse [symmetric])
huffman@22721
   248
huffman@22721
   249
lemma real_root_mult:
huffman@22956
   250
  assumes n: "0 < n"
huffman@22956
   251
  shows "root n (x * y) = root n x * root n y"
huffman@22956
   252
proof (rule linorder_le_cases, rule_tac [!] linorder_le_cases)
huffman@22956
   253
  assume "0 \<le> x" and "0 \<le> y"
huffman@22956
   254
  thus ?thesis by (rule real_root_mult_lemma [OF n])
huffman@22956
   255
next
huffman@22956
   256
  assume "0 \<le> x" and "y \<le> 0"
huffman@22956
   257
  hence "0 \<le> x" and "0 \<le> - y" by simp_all
huffman@22956
   258
  hence "root n (x * - y) = root n x * root n (- y)"
huffman@22956
   259
    by (rule real_root_mult_lemma [OF n])
huffman@22956
   260
  thus ?thesis by (simp add: real_root_minus [OF n])
huffman@22956
   261
next
huffman@22956
   262
  assume "x \<le> 0" and "0 \<le> y"
huffman@22956
   263
  hence "0 \<le> - x" and "0 \<le> y" by simp_all
huffman@22956
   264
  hence "root n (- x * y) = root n (- x) * root n y"
huffman@22956
   265
    by (rule real_root_mult_lemma [OF n])
huffman@22956
   266
  thus ?thesis by (simp add: real_root_minus [OF n])
huffman@22956
   267
next
huffman@22956
   268
  assume "x \<le> 0" and "y \<le> 0"
huffman@22956
   269
  hence "0 \<le> - x" and "0 \<le> - y" by simp_all
huffman@22956
   270
  hence "root n (- x * - y) = root n (- x) * root n (- y)"
huffman@22956
   271
    by (rule real_root_mult_lemma [OF n])
huffman@22956
   272
  thus ?thesis by (simp add: real_root_minus [OF n])
huffman@22956
   273
qed
huffman@22721
   274
huffman@22721
   275
lemma real_root_inverse:
huffman@22956
   276
  assumes n: "0 < n"
huffman@22956
   277
  shows "root n (inverse x) = inverse (root n x)"
huffman@22956
   278
proof (rule linorder_le_cases)
huffman@22956
   279
  assume "0 \<le> x"
huffman@22956
   280
  thus ?thesis by (rule real_root_inverse_lemma [OF n])
huffman@22956
   281
next
huffman@22956
   282
  assume "x \<le> 0"
huffman@22956
   283
  hence "0 \<le> - x" by simp
huffman@22956
   284
  hence "root n (inverse (- x)) = inverse (root n (- x))"
huffman@22956
   285
    by (rule real_root_inverse_lemma [OF n])
huffman@22956
   286
  thus ?thesis by (simp add: real_root_minus [OF n])
huffman@22956
   287
qed
huffman@22721
   288
huffman@22956
   289
lemma real_root_divide:
huffman@22956
   290
  "0 < n \<Longrightarrow> root n (x / y) = root n x / root n y"
huffman@22956
   291
by (simp add: divide_inverse real_root_mult real_root_inverse)
huffman@22956
   292
huffman@22956
   293
lemma real_root_power:
huffman@22956
   294
  "0 < n \<Longrightarrow> root n (x ^ k) = root n x ^ k"
huffman@22956
   295
by (induct k, simp_all add: real_root_mult)
huffman@22721
   296
huffman@23042
   297
lemma real_root_abs: "0 < n \<Longrightarrow> root n \<bar>x\<bar> = \<bar>root n x\<bar>"
huffman@23042
   298
by (simp add: abs_if real_root_minus)
huffman@23042
   299
huffman@23042
   300
text {* Continuity and derivatives *}
huffman@23042
   301
huffman@23042
   302
lemma isCont_root_pos:
huffman@23042
   303
  assumes n: "0 < n"
huffman@23042
   304
  assumes x: "0 < x"
huffman@23042
   305
  shows "isCont (root n) x"
huffman@23042
   306
proof -
huffman@23042
   307
  have "isCont (root n) (root n x ^ n)"
huffman@23042
   308
  proof (rule isCont_inverse_function [where f="\<lambda>a. a ^ n"])
huffman@23042
   309
    show "0 < root n x" using n x by simp
huffman@23042
   310
    show "\<forall>z. \<bar>z - root n x\<bar> \<le> root n x \<longrightarrow> root n (z ^ n) = z"
huffman@23042
   311
      by (simp add: abs_le_iff real_root_power_cancel n)
huffman@23042
   312
    show "\<forall>z. \<bar>z - root n x\<bar> \<le> root n x \<longrightarrow> isCont (\<lambda>a. a ^ n) z"
huffman@23069
   313
      by (simp add: isCont_power)
huffman@23042
   314
  qed
huffman@23042
   315
  thus ?thesis using n x by simp
huffman@23042
   316
qed
huffman@23042
   317
huffman@23042
   318
lemma isCont_root_neg:
huffman@23042
   319
  "\<lbrakk>0 < n; x < 0\<rbrakk> \<Longrightarrow> isCont (root n) x"
huffman@23042
   320
apply (subgoal_tac "isCont (\<lambda>x. - root n (- x)) x")
huffman@23042
   321
apply (simp add: real_root_minus)
huffman@23069
   322
apply (rule isCont_o2 [OF isCont_minus [OF isCont_ident]])
huffman@23042
   323
apply (simp add: isCont_minus isCont_root_pos)
huffman@23042
   324
done
huffman@23042
   325
huffman@23042
   326
lemma isCont_root_zero:
huffman@23042
   327
  "0 < n \<Longrightarrow> isCont (root n) 0"
huffman@23042
   328
unfolding isCont_def
huffman@23042
   329
apply (rule LIM_I)
huffman@23042
   330
apply (rule_tac x="r ^ n" in exI, safe)
nipkow@25875
   331
apply (simp)
huffman@23042
   332
apply (simp add: real_root_abs [symmetric])
huffman@23042
   333
apply (rule_tac n="n" in power_less_imp_less_base, simp_all)
huffman@23042
   334
done
huffman@23042
   335
huffman@23042
   336
lemma isCont_real_root: "0 < n \<Longrightarrow> isCont (root n) x"
huffman@23042
   337
apply (rule_tac x=x and y=0 in linorder_cases)
huffman@23042
   338
apply (simp_all add: isCont_root_pos isCont_root_neg isCont_root_zero)
huffman@23042
   339
done
huffman@23042
   340
huffman@23042
   341
lemma DERIV_real_root:
huffman@23042
   342
  assumes n: "0 < n"
huffman@23042
   343
  assumes x: "0 < x"
huffman@23042
   344
  shows "DERIV (root n) x :> inverse (real n * root n x ^ (n - Suc 0))"
huffman@23042
   345
proof (rule DERIV_inverse_function)
huffman@23044
   346
  show "0 < x" using x .
huffman@23044
   347
  show "x < x + 1" by simp
huffman@23044
   348
  show "\<forall>y. 0 < y \<and> y < x + 1 \<longrightarrow> root n y ^ n = y"
huffman@23042
   349
    using n by simp
huffman@23042
   350
  show "DERIV (\<lambda>x. x ^ n) (root n x) :> real n * root n x ^ (n - Suc 0)"
huffman@23042
   351
    by (rule DERIV_pow)
huffman@23042
   352
  show "real n * root n x ^ (n - Suc 0) \<noteq> 0"
huffman@23042
   353
    using n x by simp
huffman@23042
   354
  show "isCont (root n) x"
huffman@23441
   355
    using n by (rule isCont_real_root)
huffman@23042
   356
qed
huffman@23042
   357
huffman@23046
   358
lemma DERIV_odd_real_root:
huffman@23046
   359
  assumes n: "odd n"
huffman@23046
   360
  assumes x: "x \<noteq> 0"
huffman@23046
   361
  shows "DERIV (root n) x :> inverse (real n * root n x ^ (n - Suc 0))"
huffman@23046
   362
proof (rule DERIV_inverse_function)
huffman@23046
   363
  show "x - 1 < x" by simp
huffman@23046
   364
  show "x < x + 1" by simp
huffman@23046
   365
  show "\<forall>y. x - 1 < y \<and> y < x + 1 \<longrightarrow> root n y ^ n = y"
huffman@23046
   366
    using n by (simp add: odd_real_root_pow)
huffman@23046
   367
  show "DERIV (\<lambda>x. x ^ n) (root n x) :> real n * root n x ^ (n - Suc 0)"
huffman@23046
   368
    by (rule DERIV_pow)
huffman@23046
   369
  show "real n * root n x ^ (n - Suc 0) \<noteq> 0"
huffman@23046
   370
    using odd_pos [OF n] x by simp
huffman@23046
   371
  show "isCont (root n) x"
huffman@23046
   372
    using odd_pos [OF n] by (rule isCont_real_root)
huffman@23046
   373
qed
huffman@23046
   374
hoelzl@31880
   375
lemma DERIV_even_real_root:
hoelzl@31880
   376
  assumes n: "0 < n" and "even n"
hoelzl@31880
   377
  assumes x: "x < 0"
hoelzl@31880
   378
  shows "DERIV (root n) x :> inverse (- real n * root n x ^ (n - Suc 0))"
hoelzl@31880
   379
proof (rule DERIV_inverse_function)
hoelzl@31880
   380
  show "x - 1 < x" by simp
hoelzl@31880
   381
  show "x < 0" using x .
hoelzl@31880
   382
next
hoelzl@31880
   383
  show "\<forall>y. x - 1 < y \<and> y < 0 \<longrightarrow> - (root n y ^ n) = y"
hoelzl@31880
   384
  proof (rule allI, rule impI, erule conjE)
hoelzl@31880
   385
    fix y assume "x - 1 < y" and "y < 0"
hoelzl@31880
   386
    hence "root n (-y) ^ n = -y" using `0 < n` by simp
hoelzl@31880
   387
    with real_root_minus[OF `0 < n`] and `even n`
hoelzl@31880
   388
    show "- (root n y ^ n) = y" by simp
hoelzl@31880
   389
  qed
hoelzl@31880
   390
next
hoelzl@31880
   391
  show "DERIV (\<lambda>x. - (x ^ n)) (root n x) :> - real n * root n x ^ (n - Suc 0)"
hoelzl@31880
   392
    by  (auto intro!: DERIV_intros)
hoelzl@31880
   393
  show "- real n * root n x ^ (n - Suc 0) \<noteq> 0"
hoelzl@31880
   394
    using n x by simp
hoelzl@31880
   395
  show "isCont (root n) x"
hoelzl@31880
   396
    using n by (rule isCont_real_root)
hoelzl@31880
   397
qed
hoelzl@31880
   398
hoelzl@31880
   399
lemma DERIV_real_root_generic:
hoelzl@31880
   400
  assumes "0 < n" and "x \<noteq> 0"
hoelzl@31880
   401
  and even: "\<lbrakk> even n ; 0 < x \<rbrakk> \<Longrightarrow> D = inverse (real n * root n x ^ (n - Suc 0))"
hoelzl@31880
   402
  and even: "\<lbrakk> even n ; x < 0 \<rbrakk> \<Longrightarrow> D = - inverse (real n * root n x ^ (n - Suc 0))"
hoelzl@31880
   403
  and odd: "odd n \<Longrightarrow> D = inverse (real n * root n x ^ (n - Suc 0))"
hoelzl@31880
   404
  shows "DERIV (root n) x :> D"
hoelzl@31880
   405
using assms by (cases "even n", cases "0 < x",
hoelzl@31880
   406
  auto intro: DERIV_real_root[THEN DERIV_cong]
hoelzl@31880
   407
              DERIV_odd_real_root[THEN DERIV_cong]
hoelzl@31880
   408
              DERIV_even_real_root[THEN DERIV_cong])
hoelzl@31880
   409
huffman@22956
   410
subsection {* Square Root *}
huffman@20687
   411
huffman@22956
   412
definition
huffman@22956
   413
  sqrt :: "real \<Rightarrow> real" where
huffman@22956
   414
  "sqrt = root 2"
huffman@20687
   415
huffman@22956
   416
lemma pos2: "0 < (2::nat)" by simp
huffman@22956
   417
huffman@22956
   418
lemma real_sqrt_unique: "\<lbrakk>y\<twosuperior> = x; 0 \<le> y\<rbrakk> \<Longrightarrow> sqrt x = y"
huffman@22956
   419
unfolding sqrt_def by (rule real_root_pos_unique [OF pos2])
huffman@20687
   420
huffman@22956
   421
lemma real_sqrt_abs [simp]: "sqrt (x\<twosuperior>) = \<bar>x\<bar>"
huffman@22956
   422
apply (rule real_sqrt_unique)
huffman@22956
   423
apply (rule power2_abs)
huffman@22956
   424
apply (rule abs_ge_zero)
huffman@22956
   425
done
huffman@20687
   426
huffman@22956
   427
lemma real_sqrt_pow2 [simp]: "0 \<le> x \<Longrightarrow> (sqrt x)\<twosuperior> = x"
huffman@22956
   428
unfolding sqrt_def by (rule real_root_pow_pos2 [OF pos2])
huffman@22856
   429
huffman@22956
   430
lemma real_sqrt_pow2_iff [simp]: "((sqrt x)\<twosuperior> = x) = (0 \<le> x)"
huffman@22856
   431
apply (rule iffI)
huffman@22856
   432
apply (erule subst)
huffman@22856
   433
apply (rule zero_le_power2)
huffman@22856
   434
apply (erule real_sqrt_pow2)
huffman@20687
   435
done
huffman@20687
   436
huffman@22956
   437
lemma real_sqrt_zero [simp]: "sqrt 0 = 0"
huffman@22956
   438
unfolding sqrt_def by (rule real_root_zero)
huffman@22956
   439
huffman@22956
   440
lemma real_sqrt_one [simp]: "sqrt 1 = 1"
huffman@22956
   441
unfolding sqrt_def by (rule real_root_one [OF pos2])
huffman@22956
   442
huffman@22956
   443
lemma real_sqrt_minus: "sqrt (- x) = - sqrt x"
huffman@22956
   444
unfolding sqrt_def by (rule real_root_minus [OF pos2])
huffman@22956
   445
huffman@22956
   446
lemma real_sqrt_mult: "sqrt (x * y) = sqrt x * sqrt y"
huffman@22956
   447
unfolding sqrt_def by (rule real_root_mult [OF pos2])
huffman@22956
   448
huffman@22956
   449
lemma real_sqrt_inverse: "sqrt (inverse x) = inverse (sqrt x)"
huffman@22956
   450
unfolding sqrt_def by (rule real_root_inverse [OF pos2])
huffman@22956
   451
huffman@22956
   452
lemma real_sqrt_divide: "sqrt (x / y) = sqrt x / sqrt y"
huffman@22956
   453
unfolding sqrt_def by (rule real_root_divide [OF pos2])
huffman@22956
   454
huffman@22956
   455
lemma real_sqrt_power: "sqrt (x ^ k) = sqrt x ^ k"
huffman@22956
   456
unfolding sqrt_def by (rule real_root_power [OF pos2])
huffman@22956
   457
huffman@22956
   458
lemma real_sqrt_gt_zero: "0 < x \<Longrightarrow> 0 < sqrt x"
huffman@22956
   459
unfolding sqrt_def by (rule real_root_gt_zero [OF pos2])
huffman@22956
   460
huffman@22956
   461
lemma real_sqrt_ge_zero: "0 \<le> x \<Longrightarrow> 0 \<le> sqrt x"
huffman@22956
   462
unfolding sqrt_def by (rule real_root_ge_zero [OF pos2])
huffman@20687
   463
huffman@22956
   464
lemma real_sqrt_less_mono: "x < y \<Longrightarrow> sqrt x < sqrt y"
huffman@22956
   465
unfolding sqrt_def by (rule real_root_less_mono [OF pos2])
huffman@22956
   466
huffman@22956
   467
lemma real_sqrt_le_mono: "x \<le> y \<Longrightarrow> sqrt x \<le> sqrt y"
huffman@22956
   468
unfolding sqrt_def by (rule real_root_le_mono [OF pos2])
huffman@22956
   469
huffman@22956
   470
lemma real_sqrt_less_iff [simp]: "(sqrt x < sqrt y) = (x < y)"
huffman@22956
   471
unfolding sqrt_def by (rule real_root_less_iff [OF pos2])
huffman@22956
   472
huffman@22956
   473
lemma real_sqrt_le_iff [simp]: "(sqrt x \<le> sqrt y) = (x \<le> y)"
huffman@22956
   474
unfolding sqrt_def by (rule real_root_le_iff [OF pos2])
huffman@22956
   475
huffman@22956
   476
lemma real_sqrt_eq_iff [simp]: "(sqrt x = sqrt y) = (x = y)"
huffman@22956
   477
unfolding sqrt_def by (rule real_root_eq_iff [OF pos2])
huffman@22956
   478
huffman@22956
   479
lemmas real_sqrt_gt_0_iff [simp] = real_sqrt_less_iff [where x=0, simplified]
huffman@22956
   480
lemmas real_sqrt_lt_0_iff [simp] = real_sqrt_less_iff [where y=0, simplified]
huffman@22956
   481
lemmas real_sqrt_ge_0_iff [simp] = real_sqrt_le_iff [where x=0, simplified]
huffman@22956
   482
lemmas real_sqrt_le_0_iff [simp] = real_sqrt_le_iff [where y=0, simplified]
huffman@22956
   483
lemmas real_sqrt_eq_0_iff [simp] = real_sqrt_eq_iff [where y=0, simplified]
huffman@22956
   484
huffman@22956
   485
lemmas real_sqrt_gt_1_iff [simp] = real_sqrt_less_iff [where x=1, simplified]
huffman@22956
   486
lemmas real_sqrt_lt_1_iff [simp] = real_sqrt_less_iff [where y=1, simplified]
huffman@22956
   487
lemmas real_sqrt_ge_1_iff [simp] = real_sqrt_le_iff [where x=1, simplified]
huffman@22956
   488
lemmas real_sqrt_le_1_iff [simp] = real_sqrt_le_iff [where y=1, simplified]
huffman@22956
   489
lemmas real_sqrt_eq_1_iff [simp] = real_sqrt_eq_iff [where y=1, simplified]
huffman@20687
   490
huffman@23042
   491
lemma isCont_real_sqrt: "isCont sqrt x"
huffman@23042
   492
unfolding sqrt_def by (rule isCont_real_root [OF pos2])
huffman@23042
   493
hoelzl@31880
   494
lemma DERIV_real_sqrt_generic:
hoelzl@31880
   495
  assumes "x \<noteq> 0"
hoelzl@31880
   496
  assumes "x > 0 \<Longrightarrow> D = inverse (sqrt x) / 2"
hoelzl@31880
   497
  assumes "x < 0 \<Longrightarrow> D = - inverse (sqrt x) / 2"
hoelzl@31880
   498
  shows "DERIV sqrt x :> D"
hoelzl@31880
   499
  using assms unfolding sqrt_def
hoelzl@31880
   500
  by (auto intro!: DERIV_real_root_generic)
hoelzl@31880
   501
huffman@23042
   502
lemma DERIV_real_sqrt:
huffman@23042
   503
  "0 < x \<Longrightarrow> DERIV sqrt x :> inverse (sqrt x) / 2"
hoelzl@31880
   504
  using DERIV_real_sqrt_generic by simp
hoelzl@31880
   505
hoelzl@31880
   506
declare
hoelzl@31880
   507
  DERIV_real_sqrt_generic[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
hoelzl@31880
   508
  DERIV_real_root_generic[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
huffman@23042
   509
huffman@20687
   510
lemma not_real_square_gt_zero [simp]: "(~ (0::real) < x*x) = (x = 0)"
huffman@20687
   511
apply auto
huffman@20687
   512
apply (cut_tac x = x and y = 0 in linorder_less_linear)
huffman@20687
   513
apply (simp add: zero_less_mult_iff)
huffman@20687
   514
done
huffman@20687
   515
huffman@20687
   516
lemma real_sqrt_abs2 [simp]: "sqrt(x*x) = \<bar>x\<bar>"
huffman@22856
   517
apply (subst power2_eq_square [symmetric])
huffman@20687
   518
apply (rule real_sqrt_abs)
huffman@20687
   519
done
huffman@20687
   520
huffman@20687
   521
lemma real_sqrt_pow2_gt_zero: "0 < x ==> 0 < (sqrt x)\<twosuperior>"
huffman@22956
   522
by simp (* TODO: delete *)
huffman@20687
   523
huffman@20687
   524
lemma real_sqrt_not_eq_zero: "0 < x ==> sqrt x \<noteq> 0"
huffman@22956
   525
by simp (* TODO: delete *)
huffman@20687
   526
huffman@20687
   527
lemma real_inv_sqrt_pow2: "0 < x ==> inverse (sqrt(x)) ^ 2 = inverse x"
huffman@22856
   528
by (simp add: power_inverse [symmetric])
huffman@20687
   529
huffman@20687
   530
lemma real_sqrt_eq_zero_cancel: "[| 0 \<le> x; sqrt(x) = 0|] ==> x = 0"
huffman@22956
   531
by simp
huffman@20687
   532
huffman@20687
   533
lemma real_sqrt_ge_one: "1 \<le> x ==> 1 \<le> sqrt x"
huffman@22956
   534
by simp
huffman@20687
   535
huffman@23049
   536
lemma real_sqrt_two_gt_zero [simp]: "0 < sqrt 2"
huffman@23049
   537
by simp
huffman@23049
   538
huffman@23049
   539
lemma real_sqrt_two_ge_zero [simp]: "0 \<le> sqrt 2"
huffman@23049
   540
by simp
huffman@23049
   541
huffman@23049
   542
lemma real_sqrt_two_gt_one [simp]: "1 < sqrt 2"
huffman@23049
   543
by simp
huffman@23049
   544
huffman@22443
   545
lemma sqrt_divide_self_eq:
huffman@22443
   546
  assumes nneg: "0 \<le> x"
huffman@22443
   547
  shows "sqrt x / x = inverse (sqrt x)"
huffman@22443
   548
proof cases
huffman@22443
   549
  assume "x=0" thus ?thesis by simp
huffman@22443
   550
next
huffman@22443
   551
  assume nz: "x\<noteq>0" 
huffman@22443
   552
  hence pos: "0<x" using nneg by arith
huffman@22443
   553
  show ?thesis
huffman@22443
   554
  proof (rule right_inverse_eq [THEN iffD1, THEN sym]) 
huffman@22443
   555
    show "sqrt x / x \<noteq> 0" by (simp add: divide_inverse nneg nz) 
huffman@22443
   556
    show "inverse (sqrt x) / (sqrt x / x) = 1"
huffman@22443
   557
      by (simp add: divide_inverse mult_assoc [symmetric] 
huffman@22443
   558
                  power2_eq_square [symmetric] real_inv_sqrt_pow2 pos nz) 
huffman@22443
   559
  qed
huffman@22443
   560
qed
huffman@22443
   561
huffman@22721
   562
lemma real_divide_square_eq [simp]: "(((r::real) * a) / (r * r)) = a / r"
huffman@22721
   563
apply (simp add: divide_inverse)
huffman@22721
   564
apply (case_tac "r=0")
huffman@22721
   565
apply (auto simp add: mult_ac)
huffman@22721
   566
done
huffman@22721
   567
huffman@23049
   568
lemma lemma_real_divide_sqrt_less: "0 < u ==> u / sqrt 2 < u"
huffman@35216
   569
by (simp add: divide_less_eq)
huffman@23049
   570
huffman@23049
   571
lemma four_x_squared: 
huffman@23049
   572
  fixes x::real
huffman@23049
   573
  shows "4 * x\<twosuperior> = (2 * x)\<twosuperior>"
huffman@23049
   574
by (simp add: power2_eq_square)
huffman@23049
   575
huffman@22856
   576
subsection {* Square Root of Sum of Squares *}
huffman@22856
   577
huffman@22856
   578
lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \<le> sqrt(x*x + y*y)"
huffman@22968
   579
by (rule real_sqrt_ge_zero [OF sum_squares_ge_zero])
huffman@22856
   580
huffman@22856
   581
lemma real_sqrt_sum_squares_ge_zero [simp]: "0 \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
huffman@22961
   582
by simp
huffman@22856
   583
huffman@23049
   584
declare real_sqrt_sum_squares_ge_zero [THEN abs_of_nonneg, simp]
huffman@23049
   585
huffman@22856
   586
lemma real_sqrt_sum_squares_mult_ge_zero [simp]:
huffman@22856
   587
     "0 \<le> sqrt ((x\<twosuperior> + y\<twosuperior>)*(xa\<twosuperior> + ya\<twosuperior>))"
huffman@22856
   588
by (auto intro!: real_sqrt_ge_zero simp add: zero_le_mult_iff)
huffman@22856
   589
huffman@22856
   590
lemma real_sqrt_sum_squares_mult_squared_eq [simp]:
huffman@22856
   591
     "sqrt ((x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)) ^ 2 = (x\<twosuperior> + y\<twosuperior>) * (xa\<twosuperior> + ya\<twosuperior>)"
huffman@22956
   592
by (auto simp add: zero_le_mult_iff)
huffman@22856
   593
huffman@23049
   594
lemma real_sqrt_sum_squares_eq_cancel: "sqrt (x\<twosuperior> + y\<twosuperior>) = x \<Longrightarrow> y = 0"
huffman@23049
   595
by (drule_tac f = "%x. x\<twosuperior>" in arg_cong, simp)
huffman@23049
   596
huffman@23049
   597
lemma real_sqrt_sum_squares_eq_cancel2: "sqrt (x\<twosuperior> + y\<twosuperior>) = y \<Longrightarrow> x = 0"
huffman@23049
   598
by (drule_tac f = "%x. x\<twosuperior>" in arg_cong, simp)
huffman@23049
   599
huffman@23049
   600
lemma real_sqrt_sum_squares_ge1 [simp]: "x \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
huffman@22856
   601
by (rule power2_le_imp_le, simp_all)
huffman@22856
   602
huffman@23049
   603
lemma real_sqrt_sum_squares_ge2 [simp]: "y \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
huffman@23049
   604
by (rule power2_le_imp_le, simp_all)
huffman@23049
   605
huffman@23049
   606
lemma real_sqrt_ge_abs1 [simp]: "\<bar>x\<bar> \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
huffman@22856
   607
by (rule power2_le_imp_le, simp_all)
huffman@22856
   608
huffman@23049
   609
lemma real_sqrt_ge_abs2 [simp]: "\<bar>y\<bar> \<le> sqrt (x\<twosuperior> + y\<twosuperior>)"
huffman@23049
   610
by (rule power2_le_imp_le, simp_all)
huffman@23049
   611
huffman@23049
   612
lemma le_real_sqrt_sumsq [simp]: "x \<le> sqrt (x * x + y * y)"
huffman@23049
   613
by (simp add: power2_eq_square [symmetric])
huffman@23049
   614
huffman@22858
   615
lemma real_sqrt_sum_squares_triangle_ineq:
huffman@22858
   616
  "sqrt ((a + c)\<twosuperior> + (b + d)\<twosuperior>) \<le> sqrt (a\<twosuperior> + b\<twosuperior>) + sqrt (c\<twosuperior> + d\<twosuperior>)"
huffman@22858
   617
apply (rule power2_le_imp_le, simp)
huffman@22858
   618
apply (simp add: power2_sum)
huffman@22858
   619
apply (simp only: mult_assoc right_distrib [symmetric])
huffman@22858
   620
apply (rule mult_left_mono)
huffman@22858
   621
apply (rule power2_le_imp_le)
huffman@22858
   622
apply (simp add: power2_sum power_mult_distrib)
nipkow@23477
   623
apply (simp add: ring_distribs)
huffman@22858
   624
apply (subgoal_tac "0 \<le> b\<twosuperior> * c\<twosuperior> + a\<twosuperior> * d\<twosuperior> - 2 * (a * c) * (b * d)", simp)
huffman@22858
   625
apply (rule_tac b="(a * d - b * c)\<twosuperior>" in ord_le_eq_trans)
huffman@22858
   626
apply (rule zero_le_power2)
huffman@22858
   627
apply (simp add: power2_diff power_mult_distrib)
huffman@22858
   628
apply (simp add: mult_nonneg_nonneg)
huffman@22858
   629
apply simp
huffman@22858
   630
apply (simp add: add_increasing)
huffman@22858
   631
done
huffman@22858
   632
huffman@23122
   633
lemma real_sqrt_sum_squares_less:
huffman@23122
   634
  "\<lbrakk>\<bar>x\<bar> < u / sqrt 2; \<bar>y\<bar> < u / sqrt 2\<rbrakk> \<Longrightarrow> sqrt (x\<twosuperior> + y\<twosuperior>) < u"
huffman@23122
   635
apply (rule power2_less_imp_less, simp)
huffman@23122
   636
apply (drule power_strict_mono [OF _ abs_ge_zero pos2])
huffman@23122
   637
apply (drule power_strict_mono [OF _ abs_ge_zero pos2])
huffman@23122
   638
apply (simp add: power_divide)
huffman@23122
   639
apply (drule order_le_less_trans [OF abs_ge_zero])
huffman@23122
   640
apply (simp add: zero_less_divide_iff)
huffman@23122
   641
done
huffman@23122
   642
huffman@23049
   643
text{*Needed for the infinitely close relation over the nonstandard
huffman@23049
   644
    complex numbers*}
huffman@23049
   645
lemma lemma_sqrt_hcomplex_capprox:
huffman@23049
   646
     "[| 0 < u; x < u/2; y < u/2; 0 \<le> x; 0 \<le> y |] ==> sqrt (x\<twosuperior> + y\<twosuperior>) < u"
huffman@23049
   647
apply (rule_tac y = "u/sqrt 2" in order_le_less_trans)
huffman@23049
   648
apply (erule_tac [2] lemma_real_divide_sqrt_less)
huffman@23049
   649
apply (rule power2_le_imp_le)
huffman@23049
   650
apply (auto simp add: real_0_le_divide_iff power_divide)
huffman@23049
   651
apply (rule_tac t = "u\<twosuperior>" in real_sum_of_halves [THEN subst])
huffman@23049
   652
apply (rule add_mono)
huffman@30273
   653
apply (auto simp add: four_x_squared intro: power_mono)
huffman@23049
   654
done
huffman@23049
   655
huffman@22956
   656
text "Legacy theorem names:"
huffman@22956
   657
lemmas real_root_pos2 = real_root_power_cancel
huffman@22956
   658
lemmas real_root_pos_pos = real_root_gt_zero [THEN order_less_imp_le]
huffman@22956
   659
lemmas real_root_pos_pos_le = real_root_ge_zero
huffman@22956
   660
lemmas real_sqrt_mult_distrib = real_sqrt_mult
huffman@22956
   661
lemmas real_sqrt_mult_distrib2 = real_sqrt_mult
huffman@22956
   662
lemmas real_sqrt_eq_zero_cancel_iff = real_sqrt_eq_0_iff
huffman@22956
   663
huffman@22956
   664
(* needed for CauchysMeanTheorem.het_base from AFP *)
huffman@22956
   665
lemma real_root_pos: "0 < x \<Longrightarrow> root (Suc n) (x ^ (Suc n)) = x"
huffman@22956
   666
by (rule real_root_power_cancel [OF zero_less_Suc order_less_imp_le])
huffman@22956
   667
paulson@14324
   668
end