src/HOL/Number_Theory/Primes.thy
author wenzelm
Fri Dec 17 17:43:54 2010 +0100 (2010-12-17)
changeset 41229 d797baa3d57c
parent 40461 e876e95588ce
child 44821 a92f65e174cf
permissions -rw-r--r--
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
haftmann@32479
     1
(*  Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
nipkow@31798
     2
                Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow
huffman@31706
     3
huffman@31706
     4
haftmann@32479
     5
This file deals with properties of primes. Definitions and lemmas are
haftmann@32479
     6
proved uniformly for the natural numbers and integers.
huffman@31706
     7
huffman@31706
     8
This file combines and revises a number of prior developments.
huffman@31706
     9
huffman@31706
    10
The original theories "GCD" and "Primes" were by Christophe Tabacznyj
huffman@31706
    11
and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
huffman@31706
    12
gcd, lcm, and prime for the natural numbers.
huffman@31706
    13
huffman@31706
    14
The original theory "IntPrimes" was by Thomas M. Rasmussen, and
huffman@31706
    15
extended gcd, lcm, primes to the integers. Amine Chaieb provided
huffman@31706
    16
another extension of the notions to the integers, and added a number
huffman@31706
    17
of results to "Primes" and "GCD". IntPrimes also defined and developed
huffman@31706
    18
the congruence relations on the integers. The notion was extended to
webertj@33718
    19
the natural numbers by Chaieb.
huffman@31706
    20
avigad@32036
    21
Jeremy Avigad combined all of these, made everything uniform for the
avigad@32036
    22
natural numbers and the integers, and added a number of new theorems.
avigad@32036
    23
nipkow@31798
    24
Tobias Nipkow cleaned up a lot.
wenzelm@21256
    25
*)
wenzelm@21256
    26
huffman@31706
    27
haftmann@32479
    28
header {* Primes *}
wenzelm@21256
    29
haftmann@32479
    30
theory Primes
haftmann@37294
    31
imports "~~/src/HOL/GCD"
huffman@31706
    32
begin
huffman@31706
    33
huffman@31706
    34
declare One_nat_def [simp del]
huffman@31706
    35
huffman@31706
    36
class prime = one +
huffman@31706
    37
huffman@31706
    38
fixes
huffman@31706
    39
  prime :: "'a \<Rightarrow> bool"
huffman@31706
    40
huffman@31706
    41
instantiation nat :: prime
huffman@31706
    42
huffman@31706
    43
begin
wenzelm@21256
    44
wenzelm@21263
    45
definition
huffman@31706
    46
  prime_nat :: "nat \<Rightarrow> bool"
huffman@31706
    47
where
haftmann@37765
    48
  "prime_nat p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
huffman@31706
    49
huffman@31706
    50
instance proof qed
haftmann@23687
    51
huffman@31706
    52
end
huffman@31706
    53
huffman@31706
    54
instantiation int :: prime
huffman@31706
    55
huffman@31706
    56
begin
huffman@31706
    57
huffman@31706
    58
definition
huffman@31706
    59
  prime_int :: "int \<Rightarrow> bool"
huffman@31706
    60
where
haftmann@37765
    61
  "prime_int p = prime (nat p)"
huffman@31706
    62
huffman@31706
    63
instance proof qed
huffman@31706
    64
huffman@31706
    65
end
huffman@31706
    66
huffman@31706
    67
huffman@31706
    68
subsection {* Set up Transfer *}
huffman@31706
    69
huffman@31706
    70
haftmann@32479
    71
lemma transfer_nat_int_prime:
huffman@31706
    72
  "(x::int) >= 0 \<Longrightarrow> prime (nat x) = prime x"
huffman@31706
    73
  unfolding gcd_int_def lcm_int_def prime_int_def
huffman@31706
    74
  by auto
haftmann@23687
    75
haftmann@35644
    76
declare transfer_morphism_nat_int[transfer add return:
haftmann@32479
    77
    transfer_nat_int_prime]
huffman@31706
    78
haftmann@32479
    79
lemma transfer_int_nat_prime:
huffman@31706
    80
  "prime (int x) = prime x"
huffman@31706
    81
  by (unfold gcd_int_def lcm_int_def prime_int_def, auto)
huffman@31706
    82
haftmann@35644
    83
declare transfer_morphism_int_nat[transfer add return:
haftmann@32479
    84
    transfer_int_nat_prime]
nipkow@31798
    85
wenzelm@21256
    86
haftmann@32479
    87
subsection {* Primes *}
huffman@31706
    88
nipkow@31952
    89
lemma prime_odd_nat: "prime (p::nat) \<Longrightarrow> p > 2 \<Longrightarrow> odd p"
huffman@31706
    90
  unfolding prime_nat_def
paulson@40461
    91
  by (metis gcd_lcm_complete_lattice_nat.bot_least nat_even_iff_2_dvd nat_neq_iff odd_1_nat)
huffman@31706
    92
nipkow@31952
    93
lemma prime_odd_int: "prime (p::int) \<Longrightarrow> p > 2 \<Longrightarrow> odd p"
huffman@31706
    94
  unfolding prime_int_def
nipkow@31952
    95
  apply (frule prime_odd_nat)
huffman@31706
    96
  apply (auto simp add: even_nat_def)
huffman@31706
    97
done
huffman@31706
    98
nipkow@31992
    99
(* FIXME Is there a better way to handle these, rather than making them elim rules? *)
chaieb@22027
   100
nipkow@31952
   101
lemma prime_ge_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 0"
huffman@31706
   102
  by (unfold prime_nat_def, auto)
chaieb@22027
   103
nipkow@31952
   104
lemma prime_gt_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p > 0"
huffman@31706
   105
  by (unfold prime_nat_def, auto)
wenzelm@22367
   106
nipkow@31952
   107
lemma prime_ge_1_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 1"
huffman@31706
   108
  by (unfold prime_nat_def, auto)
chaieb@22027
   109
nipkow@31952
   110
lemma prime_gt_1_nat [elim]: "prime (p::nat) \<Longrightarrow> p > 1"
huffman@31706
   111
  by (unfold prime_nat_def, auto)
wenzelm@22367
   112
nipkow@31952
   113
lemma prime_ge_Suc_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= Suc 0"
huffman@31706
   114
  by (unfold prime_nat_def, auto)
wenzelm@22367
   115
nipkow@31952
   116
lemma prime_gt_Suc_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p > Suc 0"
huffman@31706
   117
  by (unfold prime_nat_def, auto)
huffman@31706
   118
nipkow@31952
   119
lemma prime_ge_2_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 2"
huffman@31706
   120
  by (unfold prime_nat_def, auto)
huffman@31706
   121
nipkow@31952
   122
lemma prime_ge_0_int [elim]: "prime (p::int) \<Longrightarrow> p >= 0"
nipkow@31992
   123
  by (unfold prime_int_def prime_nat_def) auto
wenzelm@22367
   124
nipkow@31952
   125
lemma prime_gt_0_int [elim]: "prime (p::int) \<Longrightarrow> p > 0"
huffman@31706
   126
  by (unfold prime_int_def prime_nat_def, auto)
huffman@31706
   127
nipkow@31952
   128
lemma prime_ge_1_int [elim]: "prime (p::int) \<Longrightarrow> p >= 1"
huffman@31706
   129
  by (unfold prime_int_def prime_nat_def, auto)
chaieb@22027
   130
nipkow@31952
   131
lemma prime_gt_1_int [elim]: "prime (p::int) \<Longrightarrow> p > 1"
huffman@31706
   132
  by (unfold prime_int_def prime_nat_def, auto)
huffman@31706
   133
nipkow@31952
   134
lemma prime_ge_2_int [elim]: "prime (p::int) \<Longrightarrow> p >= 2"
huffman@31706
   135
  by (unfold prime_int_def prime_nat_def, auto)
wenzelm@22367
   136
huffman@31706
   137
huffman@31706
   138
lemma prime_int_altdef: "prime (p::int) = (1 < p \<and> (\<forall>m \<ge> 0. m dvd p \<longrightarrow>
huffman@31706
   139
    m = 1 \<or> m = p))"
huffman@31706
   140
  using prime_nat_def [transferred]
huffman@31706
   141
    apply (case_tac "p >= 0")
nipkow@31952
   142
    by (blast, auto simp add: prime_ge_0_int)
huffman@31706
   143
nipkow@31952
   144
lemma prime_imp_coprime_nat: "prime (p::nat) \<Longrightarrow> \<not> p dvd n \<Longrightarrow> coprime p n"
huffman@31706
   145
  apply (unfold prime_nat_def)
nipkow@31952
   146
  apply (metis gcd_dvd1_nat gcd_dvd2_nat)
huffman@31706
   147
  done
huffman@31706
   148
nipkow@31952
   149
lemma prime_imp_coprime_int: "prime (p::int) \<Longrightarrow> \<not> p dvd n \<Longrightarrow> coprime p n"
huffman@31706
   150
  apply (unfold prime_int_altdef)
nipkow@31952
   151
  apply (metis gcd_dvd1_int gcd_dvd2_int gcd_ge_0_int)
chaieb@27568
   152
  done
chaieb@27568
   153
nipkow@31952
   154
lemma prime_dvd_mult_nat: "prime (p::nat) \<Longrightarrow> p dvd m * n \<Longrightarrow> p dvd m \<or> p dvd n"
nipkow@31952
   155
  by (blast intro: coprime_dvd_mult_nat prime_imp_coprime_nat)
huffman@31706
   156
nipkow@31952
   157
lemma prime_dvd_mult_int: "prime (p::int) \<Longrightarrow> p dvd m * n \<Longrightarrow> p dvd m \<or> p dvd n"
nipkow@31952
   158
  by (blast intro: coprime_dvd_mult_int prime_imp_coprime_int)
huffman@31706
   159
nipkow@31952
   160
lemma prime_dvd_mult_eq_nat [simp]: "prime (p::nat) \<Longrightarrow>
huffman@31706
   161
    p dvd m * n = (p dvd m \<or> p dvd n)"
nipkow@31952
   162
  by (rule iffI, rule prime_dvd_mult_nat, auto)
chaieb@27568
   163
nipkow@31952
   164
lemma prime_dvd_mult_eq_int [simp]: "prime (p::int) \<Longrightarrow>
huffman@31706
   165
    p dvd m * n = (p dvd m \<or> p dvd n)"
nipkow@31952
   166
  by (rule iffI, rule prime_dvd_mult_int, auto)
chaieb@27568
   167
nipkow@31952
   168
lemma not_prime_eq_prod_nat: "(n::nat) > 1 \<Longrightarrow> ~ prime n \<Longrightarrow>
huffman@31706
   169
    EX m k. n = m * k & 1 < m & m < n & 1 < k & k < n"
huffman@31706
   170
  unfolding prime_nat_def dvd_def apply auto
nipkow@31992
   171
  by(metis mult_commute linorder_neq_iff linorder_not_le mult_1 n_less_n_mult_m one_le_mult_iff less_imp_le_nat)
chaieb@27568
   172
nipkow@31952
   173
lemma not_prime_eq_prod_int: "(n::int) > 1 \<Longrightarrow> ~ prime n \<Longrightarrow>
huffman@31706
   174
    EX m k. n = m * k & 1 < m & m < n & 1 < k & k < n"
huffman@31706
   175
  unfolding prime_int_altdef dvd_def
huffman@31706
   176
  apply auto
nipkow@31992
   177
  by(metis div_mult_self1_is_id div_mult_self2_is_id int_div_less_self int_one_le_iff_zero_less zero_less_mult_pos zless_le)
chaieb@27568
   178
nipkow@31952
   179
lemma prime_dvd_power_nat [rule_format]: "prime (p::nat) -->
huffman@31706
   180
    n > 0 --> (p dvd x^n --> p dvd x)"
huffman@31706
   181
  by (induct n rule: nat_induct, auto)
chaieb@27568
   182
nipkow@31952
   183
lemma prime_dvd_power_int [rule_format]: "prime (p::int) -->
huffman@31706
   184
    n > 0 --> (p dvd x^n --> p dvd x)"
huffman@31706
   185
  apply (induct n rule: nat_induct, auto)
nipkow@31952
   186
  apply (frule prime_ge_0_int)
huffman@31706
   187
  apply auto
huffman@31706
   188
done
huffman@31706
   189
nipkow@32007
   190
subsubsection{* Make prime naively executable *}
nipkow@32007
   191
nipkow@32007
   192
lemma zero_not_prime_nat [simp]: "~prime (0::nat)"
nipkow@32007
   193
  by (simp add: prime_nat_def)
nipkow@32007
   194
nipkow@32007
   195
lemma zero_not_prime_int [simp]: "~prime (0::int)"
nipkow@32007
   196
  by (simp add: prime_int_def)
nipkow@32007
   197
nipkow@32007
   198
lemma one_not_prime_nat [simp]: "~prime (1::nat)"
nipkow@32007
   199
  by (simp add: prime_nat_def)
nipkow@32007
   200
nipkow@32007
   201
lemma Suc_0_not_prime_nat [simp]: "~prime (Suc 0)"
nipkow@32007
   202
  by (simp add: prime_nat_def One_nat_def)
nipkow@32007
   203
nipkow@32007
   204
lemma one_not_prime_int [simp]: "~prime (1::int)"
nipkow@32007
   205
  by (simp add: prime_int_def)
nipkow@32007
   206
haftmann@37607
   207
lemma prime_nat_code [code]:
haftmann@37607
   208
 "prime (p::nat) \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in> {1<..<p}. ~ n dvd p)"
haftmann@37607
   209
apply (simp add: Ball_def)
nipkow@32007
   210
apply (metis less_not_refl prime_nat_def dvd_triv_right not_prime_eq_prod_nat)
nipkow@32007
   211
done
nipkow@32007
   212
nipkow@32007
   213
lemma prime_nat_simp:
haftmann@37607
   214
 "prime (p::nat) \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in> set [2..<p]. \<not> n dvd p)"
haftmann@37607
   215
by (auto simp add: prime_nat_code)
nipkow@32007
   216
haftmann@37607
   217
lemmas prime_nat_simp_number_of [simp] = prime_nat_simp [of "number_of m", standard]
nipkow@32007
   218
haftmann@37607
   219
lemma prime_int_code [code]:
haftmann@37607
   220
  "prime (p::int) \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in> {1<..<p}. ~ n dvd p)" (is "?L = ?R")
nipkow@32007
   221
proof
nipkow@32007
   222
  assume "?L" thus "?R"
nipkow@32007
   223
    by (clarsimp simp: prime_gt_1_int) (metis int_one_le_iff_zero_less prime_int_altdef zless_le)
nipkow@32007
   224
next
nipkow@32007
   225
    assume "?R" thus "?L" by (clarsimp simp:Ball_def) (metis dvdI not_prime_eq_prod_int)
nipkow@32007
   226
qed
nipkow@32007
   227
nipkow@32007
   228
lemma prime_int_simp:
haftmann@37607
   229
  "prime (p::int) \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in> set [2..p - 1]. ~ n dvd p)"
haftmann@37607
   230
by (auto simp add: prime_int_code)
nipkow@32007
   231
haftmann@37607
   232
lemmas prime_int_simp_number_of [simp] = prime_int_simp [of "number_of m", standard]
nipkow@32007
   233
nipkow@32007
   234
lemma two_is_prime_nat [simp]: "prime (2::nat)"
nipkow@32007
   235
by simp
nipkow@32007
   236
nipkow@32007
   237
lemma two_is_prime_int [simp]: "prime (2::int)"
nipkow@32007
   238
by simp
nipkow@32007
   239
nipkow@32111
   240
text{* A bit of regression testing: *}
nipkow@32111
   241
nipkow@32111
   242
lemma "prime(97::nat)"
nipkow@32111
   243
by simp
nipkow@32111
   244
nipkow@32111
   245
lemma "prime(97::int)"
nipkow@32111
   246
by simp
nipkow@32111
   247
nipkow@32111
   248
lemma "prime(997::nat)"
nipkow@32111
   249
by eval
nipkow@32111
   250
nipkow@32111
   251
lemma "prime(997::int)"
nipkow@32111
   252
by eval
nipkow@32111
   253
nipkow@32007
   254
nipkow@32007
   255
lemma prime_imp_power_coprime_nat: "prime (p::nat) \<Longrightarrow> ~ p dvd a \<Longrightarrow> coprime a (p^m)"
nipkow@31952
   256
  apply (rule coprime_exp_nat)
nipkow@31952
   257
  apply (subst gcd_commute_nat)
nipkow@31952
   258
  apply (erule (1) prime_imp_coprime_nat)
huffman@31706
   259
done
chaieb@27568
   260
nipkow@32007
   261
lemma prime_imp_power_coprime_int: "prime (p::int) \<Longrightarrow> ~ p dvd a \<Longrightarrow> coprime a (p^m)"
nipkow@31952
   262
  apply (rule coprime_exp_int)
nipkow@31952
   263
  apply (subst gcd_commute_int)
nipkow@31952
   264
  apply (erule (1) prime_imp_coprime_int)
huffman@31706
   265
done
chaieb@27568
   266
nipkow@31952
   267
lemma primes_coprime_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
nipkow@31952
   268
  apply (rule prime_imp_coprime_nat, assumption)
huffman@31706
   269
  apply (unfold prime_nat_def, auto)
huffman@31706
   270
done
chaieb@27568
   271
nipkow@31952
   272
lemma primes_coprime_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
nipkow@31952
   273
  apply (rule prime_imp_coprime_int, assumption)
paulson@40461
   274
  apply (unfold prime_int_altdef)
paulson@40461
   275
  apply (metis int_one_le_iff_zero_less zless_le)
huffman@31706
   276
done
chaieb@27568
   277
nipkow@32007
   278
lemma primes_imp_powers_coprime_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow> p ~= q \<Longrightarrow> coprime (p^m) (q^n)"
nipkow@31952
   279
  by (rule coprime_exp2_nat, rule primes_coprime_nat)
chaieb@27568
   280
nipkow@32007
   281
lemma primes_imp_powers_coprime_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow> p ~= q \<Longrightarrow> coprime (p^m) (q^n)"
nipkow@31952
   282
  by (rule coprime_exp2_int, rule primes_coprime_int)
chaieb@27568
   283
nipkow@31952
   284
lemma prime_factor_nat: "n \<noteq> (1::nat) \<Longrightarrow> \<exists> p. prime p \<and> p dvd n"
huffman@31706
   285
  apply (induct n rule: nat_less_induct)
huffman@31706
   286
  apply (case_tac "n = 0")
nipkow@31952
   287
  using two_is_prime_nat apply blast
paulson@40461
   288
  apply (metis One_nat_def dvd.order_trans dvd_refl less_Suc0 linorder_neqE_nat nat_dvd_not_less 
paulson@40461
   289
               neq0_conv prime_nat_def)
huffman@31706
   290
done
chaieb@23244
   291
huffman@31706
   292
(* An Isar version:
huffman@31706
   293
nipkow@31952
   294
lemma prime_factor_b_nat:
huffman@31706
   295
  fixes n :: nat
huffman@31706
   296
  assumes "n \<noteq> 1"
huffman@31706
   297
  shows "\<exists>p. prime p \<and> p dvd n"
nipkow@23983
   298
huffman@31706
   299
using `n ~= 1`
nipkow@31952
   300
proof (induct n rule: less_induct_nat)
huffman@31706
   301
  fix n :: nat
huffman@31706
   302
  assume "n ~= 1" and
huffman@31706
   303
    ih: "\<forall>m<n. m \<noteq> 1 \<longrightarrow> (\<exists>p. prime p \<and> p dvd m)"
huffman@31706
   304
  thus "\<exists>p. prime p \<and> p dvd n"
huffman@31706
   305
  proof -
huffman@31706
   306
  {
huffman@31706
   307
    assume "n = 0"
nipkow@31952
   308
    moreover note two_is_prime_nat
huffman@31706
   309
    ultimately have ?thesis
nipkow@31952
   310
      by (auto simp del: two_is_prime_nat)
huffman@31706
   311
  }
huffman@31706
   312
  moreover
huffman@31706
   313
  {
huffman@31706
   314
    assume "prime n"
huffman@31706
   315
    hence ?thesis by auto
huffman@31706
   316
  }
huffman@31706
   317
  moreover
huffman@31706
   318
  {
huffman@31706
   319
    assume "n ~= 0" and "~ prime n"
huffman@31706
   320
    with `n ~= 1` have "n > 1" by auto
nipkow@31952
   321
    with `~ prime n` and not_prime_eq_prod_nat obtain m k where
huffman@31706
   322
      "n = m * k" and "1 < m" and "m < n" by blast
huffman@31706
   323
    with ih obtain p where "prime p" and "p dvd m" by blast
huffman@31706
   324
    with `n = m * k` have ?thesis by auto
huffman@31706
   325
  }
huffman@31706
   326
  ultimately show ?thesis by blast
huffman@31706
   327
  qed
nipkow@23983
   328
qed
nipkow@23983
   329
huffman@31706
   330
*)
huffman@31706
   331
huffman@31706
   332
text {* One property of coprimality is easier to prove via prime factors. *}
huffman@31706
   333
nipkow@31952
   334
lemma prime_divprod_pow_nat:
huffman@31706
   335
  assumes p: "prime (p::nat)" and ab: "coprime a b" and pab: "p^n dvd a * b"
huffman@31706
   336
  shows "p^n dvd a \<or> p^n dvd b"
huffman@31706
   337
proof-
huffman@31706
   338
  {assume "n = 0 \<or> a = 1 \<or> b = 1" with pab have ?thesis
huffman@31706
   339
      apply (cases "n=0", simp_all)
huffman@31706
   340
      apply (cases "a=1", simp_all) done}
huffman@31706
   341
  moreover
huffman@31706
   342
  {assume n: "n \<noteq> 0" and a: "a\<noteq>1" and b: "b\<noteq>1"
huffman@31706
   343
    then obtain m where m: "n = Suc m" by (cases n, auto)
huffman@31706
   344
    from n have "p dvd p^n" by (intro dvd_power, auto)
huffman@31706
   345
    also note pab
huffman@31706
   346
    finally have pab': "p dvd a * b".
nipkow@31952
   347
    from prime_dvd_mult_nat[OF p pab']
huffman@31706
   348
    have "p dvd a \<or> p dvd b" .
huffman@31706
   349
    moreover
nipkow@33946
   350
    { assume pa: "p dvd a"
nipkow@31952
   351
      from coprime_common_divisor_nat [OF ab, OF pa] p have "\<not> p dvd b" by auto
huffman@31706
   352
      with p have "coprime b p"
nipkow@31952
   353
        by (subst gcd_commute_nat, intro prime_imp_coprime_nat)
huffman@31706
   354
      hence pnb: "coprime (p^n) b"
nipkow@31952
   355
        by (subst gcd_commute_nat, rule coprime_exp_nat)
nipkow@33946
   356
      from coprime_dvd_mult_nat[OF pnb pab] have ?thesis by blast }
huffman@31706
   357
    moreover
nipkow@33946
   358
    { assume pb: "p dvd b"
huffman@31706
   359
      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
nipkow@31952
   360
      from coprime_common_divisor_nat [OF ab, of p] pb p have "\<not> p dvd a"
huffman@31706
   361
        by auto
huffman@31706
   362
      with p have "coprime a p"
nipkow@31952
   363
        by (subst gcd_commute_nat, intro prime_imp_coprime_nat)
huffman@31706
   364
      hence pna: "coprime (p^n) a"
nipkow@31952
   365
        by (subst gcd_commute_nat, rule coprime_exp_nat)
nipkow@33946
   366
      from coprime_dvd_mult_nat[OF pna pnba] have ?thesis by blast }
huffman@31706
   367
    ultimately have ?thesis by blast}
huffman@31706
   368
  ultimately show ?thesis by blast
nipkow@23983
   369
qed
nipkow@23983
   370
avigad@32036
   371
subsection {* Infinitely many primes *}
avigad@32036
   372
avigad@32036
   373
lemma next_prime_bound: "\<exists>(p::nat). prime p \<and> n < p \<and> p <= fact n + 1"
avigad@32036
   374
proof-
avigad@32036
   375
  have f1: "fact n + 1 \<noteq> 1" using fact_ge_one_nat [of n] by arith 
avigad@32036
   376
  from prime_factor_nat [OF f1]
avigad@32036
   377
      obtain p where "prime p" and "p dvd fact n + 1" by auto
avigad@32036
   378
  hence "p \<le> fact n + 1" 
avigad@32036
   379
    by (intro dvd_imp_le, auto)
avigad@32036
   380
  {assume "p \<le> n"
avigad@32036
   381
    from `prime p` have "p \<ge> 1" 
avigad@32036
   382
      by (cases p, simp_all)
avigad@32036
   383
    with `p <= n` have "p dvd fact n" 
avigad@32036
   384
      by (intro dvd_fact_nat)
avigad@32036
   385
    with `p dvd fact n + 1` have "p dvd fact n + 1 - fact n"
avigad@32036
   386
      by (rule dvd_diff_nat)
avigad@32036
   387
    hence "p dvd 1" by simp
avigad@32036
   388
    hence "p <= 1" by auto
avigad@32036
   389
    moreover from `prime p` have "p > 1" by auto
avigad@32036
   390
    ultimately have False by auto}
avigad@32036
   391
  hence "n < p" by arith
avigad@32036
   392
  with `prime p` and `p <= fact n + 1` show ?thesis by auto
avigad@32036
   393
qed
avigad@32036
   394
avigad@32036
   395
lemma bigger_prime: "\<exists>p. prime p \<and> p > (n::nat)" 
avigad@32036
   396
using next_prime_bound by auto
avigad@32036
   397
avigad@32036
   398
lemma primes_infinite: "\<not> (finite {(p::nat). prime p})"
avigad@32036
   399
proof
avigad@32036
   400
  assume "finite {(p::nat). prime p}"
avigad@32036
   401
  with Max_ge have "(EX b. (ALL x : {(p::nat). prime p}. x <= b))"
avigad@32036
   402
    by auto
avigad@32036
   403
  then obtain b where "ALL (x::nat). prime x \<longrightarrow> x <= b"
avigad@32036
   404
    by auto
avigad@32036
   405
  with bigger_prime [of b] show False by auto
avigad@32036
   406
qed
avigad@32036
   407
avigad@32036
   408
wenzelm@21256
   409
end