src/HOL/Partial_Function.thy
author wenzelm
Fri Dec 17 17:43:54 2010 +0100 (2010-12-17)
changeset 41229 d797baa3d57c
parent 40288 520199d8b66e
child 42949 618adb3584e5
permissions -rw-r--r--
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
krauss@40107
     1
(* Title:    HOL/Partial_Function.thy
krauss@40107
     2
   Author:   Alexander Krauss, TU Muenchen
krauss@40107
     3
*)
krauss@40107
     4
krauss@40107
     5
header {* Partial Function Definitions *}
krauss@40107
     6
krauss@40107
     7
theory Partial_Function
krauss@40107
     8
imports Complete_Partial_Order Option
krauss@40107
     9
uses 
krauss@40107
    10
  "Tools/Function/function_lib.ML" 
krauss@40107
    11
  "Tools/Function/partial_function.ML" 
krauss@40107
    12
begin
krauss@40107
    13
krauss@40107
    14
setup Partial_Function.setup
krauss@40107
    15
krauss@40107
    16
subsection {* Axiomatic setup *}
krauss@40107
    17
krauss@40107
    18
text {* This techical locale constains the requirements for function
krauss@40107
    19
  definitions with ccpo fixed points.  *}
krauss@40107
    20
krauss@40107
    21
definition "fun_ord ord f g \<longleftrightarrow> (\<forall>x. ord (f x) (g x))"
krauss@40107
    22
definition "fun_lub L A = (\<lambda>x. L {y. \<exists>f\<in>A. y = f x})"
krauss@40107
    23
definition "img_ord f ord = (\<lambda>x y. ord (f x) (f y))"
krauss@40107
    24
definition "img_lub f g Lub = (\<lambda>A. g (Lub (f ` A)))"
krauss@40107
    25
krauss@40107
    26
lemma call_mono[partial_function_mono]: "monotone (fun_ord ord) ord (\<lambda>f. f t)"
krauss@40107
    27
by (rule monotoneI) (auto simp: fun_ord_def)
krauss@40107
    28
krauss@40288
    29
lemma let_mono[partial_function_mono]:
krauss@40288
    30
  "(\<And>x. monotone orda ordb (\<lambda>f. b f x))
krauss@40288
    31
  \<Longrightarrow> monotone orda ordb (\<lambda>f. Let t (b f))"
krauss@40288
    32
by (simp add: Let_def)
krauss@40288
    33
krauss@40107
    34
lemma if_mono[partial_function_mono]: "monotone orda ordb F 
krauss@40107
    35
\<Longrightarrow> monotone orda ordb G
krauss@40107
    36
\<Longrightarrow> monotone orda ordb (\<lambda>f. if c then F f else G f)"
krauss@40107
    37
unfolding monotone_def by simp
krauss@40107
    38
krauss@40107
    39
definition "mk_less R = (\<lambda>x y. R x y \<and> \<not> R y x)"
krauss@40107
    40
krauss@40107
    41
locale partial_function_definitions = 
krauss@40107
    42
  fixes leq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
krauss@40107
    43
  fixes lub :: "'a set \<Rightarrow> 'a"
krauss@40107
    44
  assumes leq_refl: "leq x x"
krauss@40107
    45
  assumes leq_trans: "leq x y \<Longrightarrow> leq y z \<Longrightarrow> leq x z"
krauss@40107
    46
  assumes leq_antisym: "leq x y \<Longrightarrow> leq y x \<Longrightarrow> x = y"
krauss@40107
    47
  assumes lub_upper: "chain leq A \<Longrightarrow> x \<in> A \<Longrightarrow> leq x (lub A)"
krauss@40107
    48
  assumes lub_least: "chain leq A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> leq x z) \<Longrightarrow> leq (lub A) z"
krauss@40107
    49
krauss@40107
    50
lemma partial_function_lift:
krauss@40107
    51
  assumes "partial_function_definitions ord lb"
krauss@40107
    52
  shows "partial_function_definitions (fun_ord ord) (fun_lub lb)" (is "partial_function_definitions ?ordf ?lubf")
krauss@40107
    53
proof -
krauss@40107
    54
  interpret partial_function_definitions ord lb by fact
krauss@40107
    55
krauss@40107
    56
  { fix A a assume A: "chain ?ordf A"
krauss@40107
    57
    have "chain ord {y. \<exists>f\<in>A. y = f a}" (is "chain ord ?C")
krauss@40107
    58
    proof (rule chainI)
krauss@40107
    59
      fix x y assume "x \<in> ?C" "y \<in> ?C"
krauss@40107
    60
      then obtain f g where fg: "f \<in> A" "g \<in> A" 
krauss@40107
    61
        and [simp]: "x = f a" "y = g a" by blast
krauss@40107
    62
      from chainD[OF A fg]
krauss@40107
    63
      show "ord x y \<or> ord y x" unfolding fun_ord_def by auto
krauss@40107
    64
    qed }
krauss@40107
    65
  note chain_fun = this
krauss@40107
    66
krauss@40107
    67
  show ?thesis
krauss@40107
    68
  proof
krauss@40107
    69
    fix x show "?ordf x x"
krauss@40107
    70
      unfolding fun_ord_def by (auto simp: leq_refl)
krauss@40107
    71
  next
krauss@40107
    72
    fix x y z assume "?ordf x y" "?ordf y z"
krauss@40107
    73
    thus "?ordf x z" unfolding fun_ord_def 
krauss@40107
    74
      by (force dest: leq_trans)
krauss@40107
    75
  next
krauss@40107
    76
    fix x y assume "?ordf x y" "?ordf y x"
krauss@40107
    77
    thus "x = y" unfolding fun_ord_def
krauss@40107
    78
      by (force intro!: ext dest: leq_antisym)
krauss@40107
    79
  next
krauss@40107
    80
    fix A f assume f: "f \<in> A" and A: "chain ?ordf A"
krauss@40107
    81
    thus "?ordf f (?lubf A)"
krauss@40107
    82
      unfolding fun_lub_def fun_ord_def
krauss@40107
    83
      by (blast intro: lub_upper chain_fun[OF A] f)
krauss@40107
    84
  next
krauss@40107
    85
    fix A :: "('b \<Rightarrow> 'a) set" and g :: "'b \<Rightarrow> 'a"
krauss@40107
    86
    assume A: "chain ?ordf A" and g: "\<And>f. f \<in> A \<Longrightarrow> ?ordf f g"
krauss@40107
    87
    show "?ordf (?lubf A) g" unfolding fun_lub_def fun_ord_def
krauss@40107
    88
      by (blast intro: lub_least chain_fun[OF A] dest: g[unfolded fun_ord_def])
krauss@40107
    89
   qed
krauss@40107
    90
qed
krauss@40107
    91
krauss@40107
    92
lemma ccpo: assumes "partial_function_definitions ord lb"
krauss@40107
    93
  shows "class.ccpo ord (mk_less ord) lb"
krauss@40107
    94
using assms unfolding partial_function_definitions_def mk_less_def
krauss@40107
    95
by unfold_locales blast+
krauss@40107
    96
krauss@40107
    97
lemma partial_function_image:
krauss@40107
    98
  assumes "partial_function_definitions ord Lub"
krauss@40107
    99
  assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"
krauss@40107
   100
  assumes inv: "\<And>x. f (g x) = x"
krauss@40107
   101
  shows "partial_function_definitions (img_ord f ord) (img_lub f g Lub)"
krauss@40107
   102
proof -
krauss@40107
   103
  let ?iord = "img_ord f ord"
krauss@40107
   104
  let ?ilub = "img_lub f g Lub"
krauss@40107
   105
krauss@40107
   106
  interpret partial_function_definitions ord Lub by fact
krauss@40107
   107
  show ?thesis
krauss@40107
   108
  proof
krauss@40107
   109
    fix A x assume "chain ?iord A" "x \<in> A"
krauss@40107
   110
    then have "chain ord (f ` A)" "f x \<in> f ` A"
krauss@40107
   111
      by (auto simp: img_ord_def intro: chainI dest: chainD)
krauss@40107
   112
    thus "?iord x (?ilub A)"
krauss@40107
   113
      unfolding inv img_lub_def img_ord_def by (rule lub_upper)
krauss@40107
   114
  next
krauss@40107
   115
    fix A x assume "chain ?iord A"
krauss@40107
   116
      and 1: "\<And>z. z \<in> A \<Longrightarrow> ?iord z x"
krauss@40107
   117
    then have "chain ord (f ` A)"
krauss@40107
   118
      by (auto simp: img_ord_def intro: chainI dest: chainD)
krauss@40107
   119
    thus "?iord (?ilub A) x"
krauss@40107
   120
      unfolding inv img_lub_def img_ord_def
krauss@40107
   121
      by (rule lub_least) (auto dest: 1[unfolded img_ord_def])
krauss@40107
   122
  qed (auto simp: img_ord_def intro: leq_refl dest: leq_trans leq_antisym inj)
krauss@40107
   123
qed
krauss@40107
   124
krauss@40107
   125
context partial_function_definitions
krauss@40107
   126
begin
krauss@40107
   127
krauss@40107
   128
abbreviation "le_fun \<equiv> fun_ord leq"
krauss@40107
   129
abbreviation "lub_fun \<equiv> fun_lub lub"
krauss@40107
   130
abbreviation "fixp_fun == ccpo.fixp le_fun lub_fun"
krauss@40107
   131
abbreviation "mono_body \<equiv> monotone le_fun leq"
krauss@40107
   132
krauss@40107
   133
text {* Interpret manually, to avoid flooding everything with facts about
krauss@40107
   134
  orders *}
krauss@40107
   135
krauss@40107
   136
lemma ccpo: "class.ccpo le_fun (mk_less le_fun) lub_fun"
krauss@40107
   137
apply (rule ccpo)
krauss@40107
   138
apply (rule partial_function_lift)
krauss@40107
   139
apply (rule partial_function_definitions_axioms)
krauss@40107
   140
done
krauss@40107
   141
krauss@40107
   142
text {* The crucial fixed-point theorem *}
krauss@40107
   143
krauss@40107
   144
lemma mono_body_fixp: 
krauss@40107
   145
  "(\<And>x. mono_body (\<lambda>f. F f x)) \<Longrightarrow> fixp_fun F = F (fixp_fun F)"
krauss@40107
   146
by (rule ccpo.fixp_unfold[OF ccpo]) (auto simp: monotone_def fun_ord_def)
krauss@40107
   147
krauss@40107
   148
text {* Version with curry/uncurry combinators, to be used by package *}
krauss@40107
   149
krauss@40107
   150
lemma fixp_rule_uc:
krauss@40107
   151
  fixes F :: "'c \<Rightarrow> 'c" and
krauss@40107
   152
    U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and
krauss@40107
   153
    C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c"
krauss@40107
   154
  assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)"
krauss@40107
   155
  assumes eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))"
krauss@40107
   156
  assumes inverse: "\<And>f. C (U f) = f"
krauss@40107
   157
  shows "f = F f"
krauss@40107
   158
proof -
krauss@40107
   159
  have "f = C (fixp_fun (\<lambda>f. U (F (C f))))" by (simp add: eq)
krauss@40107
   160
  also have "... = C (U (F (C (fixp_fun (\<lambda>f. U (F (C f)))))))"
krauss@40107
   161
    by (subst mono_body_fixp[of "%f. U (F (C f))", OF mono]) (rule refl)
krauss@40107
   162
  also have "... = F (C (fixp_fun (\<lambda>f. U (F (C f)))))" by (rule inverse)
krauss@40107
   163
  also have "... = F f" by (simp add: eq)
krauss@40107
   164
  finally show "f = F f" .
krauss@40107
   165
qed
krauss@40107
   166
krauss@40107
   167
text {* Rules for @{term mono_body}: *}
krauss@40107
   168
krauss@40107
   169
lemma const_mono[partial_function_mono]: "monotone ord leq (\<lambda>f. c)"
krauss@40107
   170
by (rule monotoneI) (rule leq_refl)
krauss@40107
   171
krauss@40107
   172
declaration {* Partial_Function.init @{term fixp_fun}
krauss@40107
   173
  @{term mono_body} @{thm fixp_rule_uc} *}
krauss@40107
   174
krauss@40107
   175
end
krauss@40107
   176
krauss@40107
   177
krauss@40107
   178
subsection {* Flat interpretation: tailrec and option *}
krauss@40107
   179
krauss@40107
   180
definition 
krauss@40107
   181
  "flat_ord b x y \<longleftrightarrow> x = b \<or> x = y"
krauss@40107
   182
krauss@40107
   183
definition 
krauss@40107
   184
  "flat_lub b A = (if A \<subseteq> {b} then b else (THE x. x \<in> A - {b}))"
krauss@40107
   185
krauss@40107
   186
lemma flat_interpretation:
krauss@40107
   187
  "partial_function_definitions (flat_ord b) (flat_lub b)"
krauss@40107
   188
proof
krauss@40107
   189
  fix A x assume 1: "chain (flat_ord b) A" "x \<in> A"
krauss@40107
   190
  show "flat_ord b x (flat_lub b A)"
krauss@40107
   191
  proof cases
krauss@40107
   192
    assume "x = b"
krauss@40107
   193
    thus ?thesis by (simp add: flat_ord_def)
krauss@40107
   194
  next
krauss@40107
   195
    assume "x \<noteq> b"
krauss@40107
   196
    with 1 have "A - {b} = {x}"
krauss@40107
   197
      by (auto elim: chainE simp: flat_ord_def)
krauss@40107
   198
    then have "flat_lub b A = x"
krauss@40107
   199
      by (auto simp: flat_lub_def)
krauss@40107
   200
    thus ?thesis by (auto simp: flat_ord_def)
krauss@40107
   201
  qed
krauss@40107
   202
next
krauss@40107
   203
  fix A z assume A: "chain (flat_ord b) A"
krauss@40107
   204
    and z: "\<And>x. x \<in> A \<Longrightarrow> flat_ord b x z"
krauss@40107
   205
  show "flat_ord b (flat_lub b A) z"
krauss@40107
   206
  proof cases
krauss@40107
   207
    assume "A \<subseteq> {b}"
krauss@40107
   208
    thus ?thesis
krauss@40107
   209
      by (auto simp: flat_lub_def flat_ord_def)
krauss@40107
   210
  next
krauss@40107
   211
    assume nb: "\<not> A \<subseteq> {b}"
krauss@40107
   212
    then obtain y where y: "y \<in> A" "y \<noteq> b" by auto
krauss@40107
   213
    with A have "A - {b} = {y}"
krauss@40107
   214
      by (auto elim: chainE simp: flat_ord_def)
krauss@40107
   215
    with nb have "flat_lub b A = y"
krauss@40107
   216
      by (auto simp: flat_lub_def)
krauss@40107
   217
    with z y show ?thesis by auto    
krauss@40107
   218
  qed
krauss@40107
   219
qed (auto simp: flat_ord_def)
krauss@40107
   220
krauss@40107
   221
interpretation tailrec!:
krauss@40107
   222
  partial_function_definitions "flat_ord undefined" "flat_lub undefined"
krauss@40107
   223
by (rule flat_interpretation)
krauss@40107
   224
krauss@40107
   225
interpretation option!:
krauss@40107
   226
  partial_function_definitions "flat_ord None" "flat_lub None"
krauss@40107
   227
by (rule flat_interpretation)
krauss@40107
   228
krauss@40107
   229
abbreviation "option_ord \<equiv> flat_ord None"
krauss@40107
   230
abbreviation "mono_option \<equiv> monotone (fun_ord option_ord) option_ord"
krauss@40107
   231
krauss@40107
   232
lemma bind_mono[partial_function_mono]:
krauss@40107
   233
assumes mf: "mono_option B" and mg: "\<And>y. mono_option (\<lambda>f. C y f)"
krauss@40107
   234
shows "mono_option (\<lambda>f. Option.bind (B f) (\<lambda>y. C y f))"
krauss@40107
   235
proof (rule monotoneI)
krauss@40107
   236
  fix f g :: "'a \<Rightarrow> 'b option" assume fg: "fun_ord option_ord f g"
krauss@40107
   237
  with mf
krauss@40107
   238
  have "option_ord (B f) (B g)" by (rule monotoneD[of _ _ _ f g])
krauss@40107
   239
  then have "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y. C y f))"
krauss@40107
   240
    unfolding flat_ord_def by auto    
krauss@40107
   241
  also from mg
krauss@40107
   242
  have "\<And>y'. option_ord (C y' f) (C y' g)"
krauss@40107
   243
    by (rule monotoneD) (rule fg)
krauss@40107
   244
  then have "option_ord (Option.bind (B g) (\<lambda>y'. C y' f)) (Option.bind (B g) (\<lambda>y'. C y' g))"
krauss@40107
   245
    unfolding flat_ord_def by (cases "B g") auto
krauss@40107
   246
  finally (option.leq_trans)
krauss@40107
   247
  show "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y'. C y' g))" .
krauss@40107
   248
qed
krauss@40107
   249
krauss@40252
   250
hide_const (open) chain
krauss@40107
   251
krauss@40107
   252
end
krauss@40107
   253