src/HOL/Tools/Meson/meson.ML
author blanchet
Thu May 12 15:29:19 2011 +0200 (2011-05-12)
changeset 42760 d83802e7348e
parent 42750 c8b1d9ee3758
child 42793 88bee9f6eec7
permissions -rw-r--r--
another concession to backward compatibility
blanchet@39941
     1
(*  Title:      HOL/Tools/Meson/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
blanchet@39941
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@9840
     4
wenzelm@9869
     5
The MESON resolution proof procedure for HOL.
wenzelm@29267
     6
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     7
*)
paulson@9840
     8
wenzelm@24300
     9
signature MESON =
paulson@15579
    10
sig
blanchet@39979
    11
  val trace : bool Config.T
blanchet@42739
    12
  val unfold_set_consts : bool Config.T
blanchet@39979
    13
  val max_clauses : int Config.T
wenzelm@24300
    14
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
wenzelm@24300
    15
  val size_of_subgoals: thm -> int
blanchet@39269
    16
  val has_too_many_clauses: Proof.context -> term -> bool
paulson@24937
    17
  val make_cnf: thm list -> thm -> Proof.context -> thm list * Proof.context
wenzelm@24300
    18
  val finish_cnf: thm list -> thm list
blanchet@42739
    19
  val unfold_set_const_simps : Proof.context -> thm list
blanchet@42750
    20
  val presimplify: Proof.context -> thm -> thm
wenzelm@32262
    21
  val make_nnf: Proof.context -> thm -> thm
blanchet@39950
    22
  val choice_theorems : theory -> thm list
blanchet@39950
    23
  val skolemize_with_choice_theorems : Proof.context -> thm list -> thm -> thm
blanchet@39904
    24
  val skolemize : Proof.context -> thm -> thm
blanchet@42747
    25
  val extensionalize_conv : Proof.context -> conv
blanchet@42747
    26
  val extensionalize_theorem : Proof.context -> thm -> thm
wenzelm@24300
    27
  val is_fol_term: theory -> term -> bool
blanchet@35869
    28
  val make_clauses_unsorted: thm list -> thm list
wenzelm@24300
    29
  val make_clauses: thm list -> thm list
wenzelm@24300
    30
  val make_horns: thm list -> thm list
wenzelm@24300
    31
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    32
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    33
  val gocls: thm list -> thm list
blanchet@39900
    34
  val skolemize_prems_tac : Proof.context -> thm list -> int -> tactic
blanchet@39037
    35
  val MESON:
blanchet@39269
    36
    tactic -> (thm list -> thm list) -> (thm list -> tactic) -> Proof.context
blanchet@39269
    37
    -> int -> tactic
wenzelm@32262
    38
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32262
    39
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32262
    40
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    41
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    42
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32262
    43
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    44
  val make_meta_clause: thm -> thm
wenzelm@24300
    45
  val make_meta_clauses: thm list -> thm list
wenzelm@32262
    46
  val meson_tac: Proof.context -> thm list -> int -> tactic
paulson@15579
    47
end
paulson@9840
    48
blanchet@39901
    49
structure Meson : MESON =
paulson@15579
    50
struct
paulson@9840
    51
wenzelm@42616
    52
val trace = Attrib.setup_config_bool @{binding meson_trace} (K false)
blanchet@39979
    53
blanchet@39979
    54
fun trace_msg ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ()
wenzelm@32955
    55
blanchet@42739
    56
val unfold_set_consts =
blanchet@42739
    57
  Attrib.setup_config_bool @{binding meson_unfold_set_consts} (K false)
blanchet@42739
    58
blanchet@42739
    59
val max_clauses = Attrib.setup_config_int @{binding meson_max_clauses} (K 60)
paulson@26562
    60
wenzelm@38802
    61
(*No known example (on 1-5-2007) needs even thirty*)
wenzelm@38802
    62
val iter_deepen_limit = 50;
wenzelm@38802
    63
haftmann@31454
    64
val disj_forward = @{thm disj_forward};
haftmann@31454
    65
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    66
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    67
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    68
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    69
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    70
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    71
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    72
val conj_forward = @{thm conj_forward};
haftmann@31454
    73
val all_forward = @{thm all_forward};
haftmann@31454
    74
val ex_forward = @{thm ex_forward};
haftmann@31454
    75
blanchet@39953
    76
val not_conjD = @{thm not_conjD};
blanchet@39953
    77
val not_disjD = @{thm not_disjD};
blanchet@39953
    78
val not_notD = @{thm not_notD};
blanchet@39953
    79
val not_allD = @{thm not_allD};
blanchet@39953
    80
val not_exD = @{thm not_exD};
blanchet@39953
    81
val imp_to_disjD = @{thm imp_to_disjD};
blanchet@39953
    82
val not_impD = @{thm not_impD};
blanchet@39953
    83
val iff_to_disjD = @{thm iff_to_disjD};
blanchet@39953
    84
val not_iffD = @{thm not_iffD};
blanchet@39953
    85
val conj_exD1 = @{thm conj_exD1};
blanchet@39953
    86
val conj_exD2 = @{thm conj_exD2};
blanchet@39953
    87
val disj_exD = @{thm disj_exD};
blanchet@39953
    88
val disj_exD1 = @{thm disj_exD1};
blanchet@39953
    89
val disj_exD2 = @{thm disj_exD2};
blanchet@39953
    90
val disj_assoc = @{thm disj_assoc};
blanchet@39953
    91
val disj_comm = @{thm disj_comm};
blanchet@39953
    92
val disj_FalseD1 = @{thm disj_FalseD1};
blanchet@39953
    93
val disj_FalseD2 = @{thm disj_FalseD2};
paulson@9840
    94
paulson@9840
    95
paulson@15579
    96
(**** Operators for forward proof ****)
paulson@15579
    97
paulson@20417
    98
paulson@20417
    99
(** First-order Resolution **)
paulson@20417
   100
paulson@20417
   101
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
   102
paulson@20417
   103
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
   104
fun first_order_resolve thA thB =
wenzelm@32262
   105
  (case
wenzelm@32262
   106
    try (fn () =>
wenzelm@32262
   107
      let val thy = theory_of_thm thA
wenzelm@32262
   108
          val tmA = concl_of thA
wenzelm@32262
   109
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37398
   110
          val tenv =
blanchet@37410
   111
            Pattern.first_order_match thy (tmB, tmA)
blanchet@37410
   112
                                          (Vartab.empty, Vartab.empty) |> snd
wenzelm@32262
   113
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32262
   114
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32262
   115
    SOME th => th
blanchet@37398
   116
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   117
blanchet@40262
   118
(* Hack to make it less likely that we lose our precious bound variable names in
blanchet@40262
   119
   "rename_bound_vars_RS" below, because of a clash. *)
blanchet@40262
   120
val protect_prefix = "Meson_xyzzy"
blanchet@40262
   121
blanchet@40262
   122
fun protect_bound_var_names (t $ u) =
blanchet@40262
   123
    protect_bound_var_names t $ protect_bound_var_names u
blanchet@40262
   124
  | protect_bound_var_names (Abs (s, T, t')) =
blanchet@40262
   125
    Abs (protect_prefix ^ s, T, protect_bound_var_names t')
blanchet@40262
   126
  | protect_bound_var_names t = t
blanchet@39930
   127
blanchet@40262
   128
fun fix_bound_var_names old_t new_t =
blanchet@40262
   129
  let
blanchet@40262
   130
    fun quant_of @{const_name All} = SOME true
blanchet@40262
   131
      | quant_of @{const_name Ball} = SOME true
blanchet@40262
   132
      | quant_of @{const_name Ex} = SOME false
blanchet@40262
   133
      | quant_of @{const_name Bex} = SOME false
blanchet@40262
   134
      | quant_of _ = NONE
blanchet@40262
   135
    val flip_quant = Option.map not
blanchet@40262
   136
    fun some_eq (SOME x) (SOME y) = x = y
blanchet@40262
   137
      | some_eq _ _ = false
blanchet@40262
   138
    fun add_names quant (Const (quant_s, _) $ Abs (s, _, t')) =
blanchet@40262
   139
        add_names quant t' #> some_eq quant (quant_of quant_s) ? cons s
blanchet@40262
   140
      | add_names quant (@{const Not} $ t) = add_names (flip_quant quant) t
blanchet@40262
   141
      | add_names quant (@{const implies} $ t1 $ t2) =
blanchet@40262
   142
        add_names (flip_quant quant) t1 #> add_names quant t2
blanchet@40262
   143
      | add_names quant (t1 $ t2) = fold (add_names quant) [t1, t2]
blanchet@40262
   144
      | add_names _ _ = I
blanchet@40262
   145
    fun lost_names quant =
blanchet@40262
   146
      subtract (op =) (add_names quant new_t []) (add_names quant old_t [])
blanchet@40262
   147
    fun aux ((t1 as Const (quant_s, _)) $ (Abs (s, T, t'))) =
blanchet@40262
   148
      t1 $ Abs (s |> String.isPrefix protect_prefix s
blanchet@40262
   149
                   ? perhaps (try (fn _ => hd (lost_names (quant_of quant_s)))),
blanchet@40262
   150
                T, aux t')
blanchet@40262
   151
      | aux (t1 $ t2) = aux t1 $ aux t2
blanchet@40262
   152
      | aux t = t
blanchet@40262
   153
  in aux new_t end
blanchet@39930
   154
blanchet@40262
   155
(* Forward proof while preserving bound variables names *)
blanchet@40262
   156
fun rename_bound_vars_RS th rl =
blanchet@39904
   157
  let
blanchet@39904
   158
    val t = concl_of th
blanchet@39930
   159
    val r = concl_of rl
blanchet@40262
   160
    val th' = th RS Thm.rename_boundvars r (protect_bound_var_names r) rl
blanchet@39904
   161
    val t' = concl_of th'
blanchet@40262
   162
  in Thm.rename_boundvars t' (fix_bound_var_names t t') th' end
paulson@24937
   163
paulson@24937
   164
(*raises exception if no rules apply*)
wenzelm@24300
   165
fun tryres (th, rls) =
paulson@18141
   166
  let fun tryall [] = raise THM("tryres", 0, th::rls)
blanchet@40262
   167
        | tryall (rl::rls) =
blanchet@40262
   168
          (rename_bound_vars_RS th rl handle THM _ => tryall rls)
paulson@18141
   169
  in  tryall rls  end;
wenzelm@24300
   170
paulson@21050
   171
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   172
  e.g. from conj_forward, should have the form
paulson@21050
   173
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   174
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32262
   175
fun forward_res ctxt nf st =
paulson@21050
   176
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   177
        | forward_tacf prems =
wenzelm@32091
   178
            error (cat_lines
wenzelm@32091
   179
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32262
   180
                Display.string_of_thm ctxt st ::
wenzelm@32262
   181
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   182
  in
wenzelm@37781
   183
    case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
paulson@21050
   184
    of SOME(th,_) => th
paulson@21050
   185
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   186
  end;
paulson@15579
   187
paulson@20134
   188
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   189
fun has_conns bs =
blanchet@39328
   190
  let fun has (Const _) = false
haftmann@38557
   191
        | has (Const(@{const_name Trueprop},_) $ p) = has p
haftmann@38557
   192
        | has (Const(@{const_name Not},_) $ p) = has p
haftmann@38795
   193
        | has (Const(@{const_name HOL.disj},_) $ p $ q) = member (op =) bs @{const_name HOL.disj} orelse has p orelse has q
haftmann@38795
   194
        | has (Const(@{const_name HOL.conj},_) $ p $ q) = member (op =) bs @{const_name HOL.conj} orelse has p orelse has q
haftmann@38557
   195
        | has (Const(@{const_name All},_) $ Abs(_,_,p)) = member (op =) bs @{const_name All} orelse has p
haftmann@38557
   196
        | has (Const(@{const_name Ex},_) $ Abs(_,_,p)) = member (op =) bs @{const_name Ex} orelse has p
wenzelm@24300
   197
        | has _ = false
paulson@15579
   198
  in  has  end;
wenzelm@24300
   199
paulson@9840
   200
paulson@15579
   201
(**** Clause handling ****)
paulson@9840
   202
haftmann@38557
   203
fun literals (Const(@{const_name Trueprop},_) $ P) = literals P
haftmann@38795
   204
  | literals (Const(@{const_name HOL.disj},_) $ P $ Q) = literals P @ literals Q
haftmann@38557
   205
  | literals (Const(@{const_name Not},_) $ P) = [(false,P)]
paulson@15579
   206
  | literals P = [(true,P)];
paulson@9840
   207
paulson@15579
   208
(*number of literals in a term*)
paulson@15579
   209
val nliterals = length o literals;
paulson@9840
   210
paulson@18389
   211
paulson@18389
   212
(*** Tautology Checking ***)
paulson@18389
   213
haftmann@38795
   214
fun signed_lits_aux (Const (@{const_name HOL.disj}, _) $ P $ Q) (poslits, neglits) =
paulson@18389
   215
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
haftmann@38557
   216
  | signed_lits_aux (Const(@{const_name Not},_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   217
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   218
paulson@18389
   219
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   220
paulson@18389
   221
(*Literals like X=X are tautologous*)
haftmann@38864
   222
fun taut_poslit (Const(@{const_name HOL.eq},_) $ t $ u) = t aconv u
haftmann@38557
   223
  | taut_poslit (Const(@{const_name True},_)) = true
paulson@18389
   224
  | taut_poslit _ = false;
paulson@18389
   225
paulson@18389
   226
fun is_taut th =
paulson@18389
   227
  let val (poslits,neglits) = signed_lits th
paulson@18389
   228
  in  exists taut_poslit poslits
paulson@18389
   229
      orelse
wenzelm@20073
   230
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   231
  end
wenzelm@24300
   232
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   233
paulson@18389
   234
paulson@18389
   235
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   236
paulson@18389
   237
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   238
  injectivity equivalences*)
wenzelm@24300
   239
blanchet@39953
   240
val not_refl_disj_D = @{thm not_refl_disj_D};
paulson@18389
   241
paulson@20119
   242
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   243
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   244
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   245
  | eliminable _ = false;
paulson@20119
   246
paulson@18389
   247
fun refl_clause_aux 0 th = th
paulson@18389
   248
  | refl_clause_aux n th =
paulson@18389
   249
       case HOLogic.dest_Trueprop (concl_of th) of
haftmann@38795
   250
          (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _) =>
paulson@18389
   251
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
haftmann@38864
   252
        | (Const (@{const_name HOL.disj}, _) $ (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ t $ u)) $ _) =>
wenzelm@24300
   253
            if eliminable(t,u)
wenzelm@24300
   254
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   255
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
haftmann@38795
   256
        | (Const (@{const_name HOL.disj}, _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   257
        | _ => (*not a disjunction*) th;
paulson@18389
   258
haftmann@38795
   259
fun notequal_lits_count (Const (@{const_name HOL.disj}, _) $ P $ Q) =
paulson@18389
   260
      notequal_lits_count P + notequal_lits_count Q
haftmann@38864
   261
  | notequal_lits_count (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ _ $ _)) = 1
paulson@18389
   262
  | notequal_lits_count _ = 0;
paulson@18389
   263
paulson@18389
   264
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   265
fun refl_clause th =
paulson@18389
   266
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   267
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   268
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   269
paulson@18389
   270
paulson@24937
   271
(*** Removal of duplicate literals ***)
paulson@24937
   272
paulson@24937
   273
(*Forward proof, passing extra assumptions as theorems to the tactic*)
blanchet@39328
   274
fun forward_res2 nf hyps st =
paulson@24937
   275
  case Seq.pull
paulson@24937
   276
        (REPEAT
wenzelm@37781
   277
         (Misc_Legacy.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   278
         st)
paulson@24937
   279
  of SOME(th,_) => th
paulson@24937
   280
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   281
paulson@24937
   282
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   283
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32262
   284
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   285
    handle THM _ => tryres(th,rls)
blanchet@39328
   286
    handle THM _ => tryres(forward_res2 (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   287
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   288
    handle THM _ => th;
paulson@24937
   289
paulson@24937
   290
(*Remove duplicate literals, if there are any*)
wenzelm@32262
   291
fun nodups ctxt th =
paulson@24937
   292
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32262
   293
    then nodups_aux ctxt [] th
paulson@24937
   294
    else th;
paulson@24937
   295
paulson@24937
   296
paulson@18389
   297
(*** The basic CNF transformation ***)
paulson@18389
   298
blanchet@39328
   299
fun estimated_num_clauses bound t =
paulson@26562
   300
 let
blanchet@39269
   301
  fun sum x y = if x < bound andalso y < bound then x+y else bound
blanchet@39269
   302
  fun prod x y = if x < bound andalso y < bound then x*y else bound
paulson@26562
   303
  
paulson@26562
   304
  (*Estimate the number of clauses in order to detect infeasible theorems*)
haftmann@38557
   305
  fun signed_nclauses b (Const(@{const_name Trueprop},_) $ t) = signed_nclauses b t
haftmann@38557
   306
    | signed_nclauses b (Const(@{const_name Not},_) $ t) = signed_nclauses (not b) t
haftmann@38795
   307
    | signed_nclauses b (Const(@{const_name HOL.conj},_) $ t $ u) =
wenzelm@32960
   308
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   309
             else prod (signed_nclauses b t) (signed_nclauses b u)
haftmann@38795
   310
    | signed_nclauses b (Const(@{const_name HOL.disj},_) $ t $ u) =
wenzelm@32960
   311
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   312
             else sum (signed_nclauses b t) (signed_nclauses b u)
haftmann@38786
   313
    | signed_nclauses b (Const(@{const_name HOL.implies},_) $ t $ u) =
wenzelm@32960
   314
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32960
   315
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
haftmann@38864
   316
    | signed_nclauses b (Const(@{const_name HOL.eq}, Type ("fun", [T, _])) $ t $ u) =
wenzelm@32960
   317
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32960
   318
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32960
   319
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32960
   320
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32960
   321
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32960
   322
        else 1
haftmann@38557
   323
    | signed_nclauses b (Const(@{const_name Ex}, _) $ Abs (_,_,t)) = signed_nclauses b t
haftmann@38557
   324
    | signed_nclauses b (Const(@{const_name All},_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   325
    | signed_nclauses _ _ = 1; (* literal *)
blanchet@39269
   326
 in signed_nclauses true t end
blanchet@39269
   327
blanchet@39269
   328
fun has_too_many_clauses ctxt t =
blanchet@39269
   329
  let val max_cl = Config.get ctxt max_clauses in
blanchet@39328
   330
    estimated_num_clauses (max_cl + 1) t > max_cl
blanchet@39269
   331
  end
paulson@19894
   332
paulson@15579
   333
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   334
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   335
local  
paulson@24937
   336
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   337
  val spec_varT = #T (Thm.rep_cterm spec_var);
haftmann@38557
   338
  fun name_of (Const (@{const_name All}, _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   339
in  
paulson@24937
   340
  fun freeze_spec th ctxt =
paulson@24937
   341
    let
wenzelm@42361
   342
      val cert = Thm.cterm_of (Proof_Context.theory_of ctxt);
paulson@24937
   343
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   344
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   345
    in (th RS spec', ctxt') end
paulson@24937
   346
end;
paulson@9840
   347
paulson@15998
   348
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   349
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   350
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   351
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   352
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   353
blanchet@39037
   354
(* Any need to extend this list with "HOL.type_class", "HOL.eq_class",
blanchet@39037
   355
   and "Pure.term"? *)
haftmann@38557
   356
val has_meta_conn = exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   357
blanchet@37410
   358
fun apply_skolem_theorem (th, rls) =
blanchet@37398
   359
  let
blanchet@37410
   360
    fun tryall [] = raise THM ("apply_skolem_theorem", 0, th::rls)
blanchet@37398
   361
      | tryall (rl :: rls) =
blanchet@37398
   362
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37398
   363
  in tryall rls end
paulson@22515
   364
blanchet@37410
   365
(* Conjunctive normal form, adding clauses from th in front of ths (for foldr).
blanchet@37410
   366
   Strips universal quantifiers and breaks up conjunctions.
blanchet@37410
   367
   Eliminates existential quantifiers using Skolemization theorems. *)
blanchet@39886
   368
fun cnf old_skolem_ths ctxt (th, ths) =
wenzelm@33222
   369
  let val ctxtr = Unsynchronized.ref ctxt   (* FIXME ??? *)
paulson@24937
   370
      fun cnf_aux (th,ths) =
wenzelm@24300
   371
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
haftmann@38795
   372
        else if not (has_conns [@{const_name All}, @{const_name Ex}, @{const_name HOL.conj}] (prop_of th))
wenzelm@32262
   373
        then nodups ctxt th :: ths (*no work to do, terminate*)
wenzelm@24300
   374
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
haftmann@38795
   375
            Const (@{const_name HOL.conj}, _) => (*conjunction*)
wenzelm@24300
   376
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
haftmann@38557
   377
          | Const (@{const_name All}, _) => (*universal quantifier*)
paulson@24937
   378
                let val (th',ctxt') = freeze_spec th (!ctxtr)
paulson@24937
   379
                in  ctxtr := ctxt'; cnf_aux (th', ths) end
haftmann@38557
   380
          | Const (@{const_name Ex}, _) =>
wenzelm@24300
   381
              (*existential quantifier: Insert Skolem functions*)
blanchet@39886
   382
              cnf_aux (apply_skolem_theorem (th, old_skolem_ths), ths)
haftmann@38795
   383
          | Const (@{const_name HOL.disj}, _) =>
wenzelm@24300
   384
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   385
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   386
              let val tac =
wenzelm@37781
   387
                  Misc_Legacy.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@37781
   388
                   (fn st' => st' |> Misc_Legacy.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   389
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
wenzelm@32262
   390
          | _ => nodups ctxt th :: ths  (*no work to do*)
paulson@19154
   391
      and cnf_nil th = cnf_aux (th,[])
blanchet@39269
   392
      val cls =
blanchet@39269
   393
            if has_too_many_clauses ctxt (concl_of th)
blanchet@39979
   394
            then (trace_msg ctxt (fn () => "cnf is ignoring: " ^ Display.string_of_thm ctxt th); ths)
wenzelm@32960
   395
            else cnf_aux (th,ths)
paulson@24937
   396
  in  (cls, !ctxtr)  end;
paulson@22515
   397
blanchet@39886
   398
fun make_cnf old_skolem_ths th ctxt = cnf old_skolem_ths ctxt (th, [])
paulson@20417
   399
paulson@20417
   400
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   401
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   402
paulson@9840
   403
paulson@15579
   404
(**** Generation of contrapositives ****)
paulson@9840
   405
haftmann@38557
   406
fun is_left (Const (@{const_name Trueprop}, _) $
haftmann@38795
   407
               (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _)) = true
paulson@21102
   408
  | is_left _ = false;
wenzelm@24300
   409
paulson@15579
   410
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   411
fun assoc_right th =
paulson@21102
   412
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   413
  else th;
paulson@9840
   414
paulson@15579
   415
(*Must check for negative literal first!*)
paulson@15579
   416
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   417
paulson@15579
   418
(*For ordinary resolution. *)
paulson@15579
   419
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   420
paulson@15579
   421
(*Create a goal or support clause, conclusing False*)
paulson@15579
   422
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   423
    make_goal (tryres(th, clause_rules))
paulson@15579
   424
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   425
paulson@15579
   426
(*Sort clauses by number of literals*)
paulson@15579
   427
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   428
paulson@18389
   429
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   430
blanchet@38099
   431
fun has_bool @{typ bool} = true
blanchet@38099
   432
  | has_bool (Type (_, Ts)) = exists has_bool Ts
blanchet@38099
   433
  | has_bool _ = false
blanchet@38099
   434
blanchet@38099
   435
fun has_fun (Type (@{type_name fun}, _)) = true
blanchet@38099
   436
  | has_fun (Type (_, Ts)) = exists has_fun Ts
blanchet@38099
   437
  | has_fun _ = false
wenzelm@24300
   438
wenzelm@24300
   439
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   440
  since this code expects to be called on a clause form.*)
wenzelm@19875
   441
val is_conn = member (op =)
haftmann@38795
   442
    [@{const_name Trueprop}, @{const_name HOL.conj}, @{const_name HOL.disj},
haftmann@38786
   443
     @{const_name HOL.implies}, @{const_name Not},
haftmann@38557
   444
     @{const_name All}, @{const_name Ex}, @{const_name Ball}, @{const_name Bex}];
paulson@15613
   445
wenzelm@24300
   446
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   447
  of any argument contains bool.*)
wenzelm@24300
   448
val has_bool_arg_const =
paulson@15613
   449
    exists_Const
blanchet@38099
   450
      (fn (c,T) => not(is_conn c) andalso exists has_bool (binder_types T));
paulson@22381
   451
wenzelm@24300
   452
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@38622
   453
  one, 1, at a function type in theory Function_Algebras.*)
wenzelm@24300
   454
fun higher_inst_const thy (c,T) =
paulson@22381
   455
  case binder_types T of
paulson@22381
   456
      [] => false (*not a function type, OK*)
paulson@22381
   457
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   458
paulson@24742
   459
(*Returns false if any Vars in the theorem mention type bool.
paulson@21102
   460
  Also rejects functions whose arguments are Booleans or other functions.*)
paulson@22381
   461
fun is_fol_term thy t =
haftmann@38557
   462
    Term.is_first_order ["all", @{const_name All}, @{const_name Ex}] t andalso
blanchet@38099
   463
    not (exists_subterm (fn Var (_, T) => has_bool T orelse has_fun T
blanchet@38099
   464
                           | _ => false) t orelse
blanchet@38099
   465
         has_bool_arg_const t orelse
wenzelm@24300
   466
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   467
         has_meta_conn t);
paulson@19204
   468
paulson@21102
   469
fun rigid t = not (is_Var (head_of t));
paulson@21102
   470
haftmann@38795
   471
fun ok4horn (Const (@{const_name Trueprop},_) $ (Const (@{const_name HOL.disj}, _) $ t $ _)) = rigid t
haftmann@38557
   472
  | ok4horn (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   473
  | ok4horn _ = false;
paulson@21102
   474
paulson@15579
   475
(*Create a meta-level Horn clause*)
wenzelm@24300
   476
fun make_horn crules th =
wenzelm@24300
   477
  if ok4horn (concl_of th)
paulson@21102
   478
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   479
  else th;
paulson@9840
   480
paulson@16563
   481
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   482
  is a HOL disjunction.*)
wenzelm@33339
   483
fun add_contras crules th hcs =
blanchet@39328
   484
  let fun rots (0,_) = hcs
wenzelm@24300
   485
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   486
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   487
  in case nliterals(prop_of th) of
wenzelm@24300
   488
        1 => th::hcs
paulson@15579
   489
      | n => rots(n, assoc_right th)
paulson@15579
   490
  end;
paulson@9840
   491
paulson@15579
   492
(*Use "theorem naming" to label the clauses*)
paulson@15579
   493
fun name_thms label =
wenzelm@33339
   494
    let fun name1 th (k, ths) =
wenzelm@27865
   495
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33339
   496
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   497
paulson@16563
   498
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   499
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   500
wenzelm@33317
   501
val neg_clauses = filter is_negative;
paulson@9840
   502
paulson@9840
   503
paulson@15579
   504
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   505
haftmann@38557
   506
fun rhyps (Const("==>",_) $ (Const(@{const_name Trueprop},_) $ A) $ phi,
wenzelm@24300
   507
           As) = rhyps(phi, A::As)
paulson@15579
   508
  | rhyps (_, As) = As;
paulson@9840
   509
paulson@15579
   510
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   511
paulson@15579
   512
(*The stringtree detects repeated assumptions.*)
wenzelm@33245
   513
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   514
paulson@15579
   515
(*detects repetitions in a list of terms*)
paulson@15579
   516
fun has_reps [] = false
paulson@15579
   517
  | has_reps [_] = false
paulson@15579
   518
  | has_reps [t,u] = (t aconv u)
wenzelm@33245
   519
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   520
paulson@15579
   521
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   522
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   523
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   524
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   525
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   526
paulson@18508
   527
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   528
paulson@15579
   529
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   530
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   531
fun check_tac st =
paulson@15579
   532
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   533
  then  Seq.empty  else  Seq.single st;
paulson@9840
   534
paulson@9840
   535
paulson@15579
   536
(* net_resolve_tac actually made it slower... *)
paulson@15579
   537
fun prolog_step_tac horns i =
paulson@15579
   538
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   539
    TRYALL_eq_assume_tac;
paulson@9840
   540
paulson@9840
   541
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33339
   542
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   543
wenzelm@33339
   544
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   545
paulson@9840
   546
paulson@9840
   547
(*Negation Normal Form*)
paulson@9840
   548
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   549
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   550
haftmann@38557
   551
fun ok4nnf (Const (@{const_name Trueprop},_) $ (Const (@{const_name Not}, _) $ t)) = rigid t
haftmann@38557
   552
  | ok4nnf (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   553
  | ok4nnf _ = false;
paulson@21102
   554
wenzelm@32262
   555
fun make_nnf1 ctxt th =
wenzelm@24300
   556
  if ok4nnf (concl_of th)
wenzelm@32262
   557
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   558
    handle THM ("tryres", _, _) =>
wenzelm@32262
   559
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   560
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   561
    handle THM ("tryres", _, _) => th
blanchet@38608
   562
  else th
paulson@9840
   563
blanchet@42739
   564
fun unfold_set_const_simps ctxt =
blanchet@42739
   565
  if Config.get ctxt unfold_set_consts then @{thms Collect_def_raw mem_def_raw}
blanchet@42739
   566
  else []
blanchet@42739
   567
wenzelm@24300
   568
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   569
  nnf_ss also includes the one-point simprocs,
paulson@18405
   570
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   571
val nnf_simps =
blanchet@37539
   572
  @{thms simp_implies_def Ex1_def Ball_def Bex_def if_True if_False if_cancel
blanchet@37539
   573
         if_eq_cancel cases_simp}
blanchet@37539
   574
val nnf_extra_simps = @{thms split_ifs ex_simps all_simps simp_thms}
paulson@18405
   575
paulson@18405
   576
val nnf_ss =
wenzelm@24300
   577
  HOL_basic_ss addsimps nnf_extra_simps
wenzelm@42455
   578
    addsimprocs [@{simproc defined_All}, @{simproc defined_Ex}, @{simproc neq}, @{simproc let_simp}];
paulson@15872
   579
blanchet@42750
   580
fun presimplify ctxt =
blanchet@42750
   581
  rewrite_rule (map safe_mk_meta_eq nnf_simps)
blanchet@42750
   582
  #> simplify nnf_ss
blanchet@42750
   583
  (* TODO: avoid introducing "Set.member" in "Ball_def" "Bex_def" above if and
blanchet@42750
   584
     when "metis_unfold_set_consts" becomes the only mode of operation. *)
blanchet@42750
   585
  #> Raw_Simplifier.rewrite_rule (unfold_set_const_simps ctxt)
blanchet@38089
   586
wenzelm@32262
   587
fun make_nnf ctxt th = case prems_of th of
blanchet@42750
   588
    [] => th |> presimplify ctxt |> make_nnf1 ctxt
paulson@21050
   589
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   590
blanchet@39950
   591
fun choice_theorems thy =
blanchet@39950
   592
  try (Global_Theory.get_thm thy) "Hilbert_Choice.choice" |> the_list
blanchet@39950
   593
blanchet@39900
   594
(* Pull existential quantifiers to front. This accomplishes Skolemization for
blanchet@39900
   595
   clauses that arise from a subgoal. *)
blanchet@39950
   596
fun skolemize_with_choice_theorems ctxt choice_ths =
blanchet@39900
   597
  let
blanchet@39900
   598
    fun aux th =
blanchet@39900
   599
      if not (has_conns [@{const_name Ex}] (prop_of th)) then
blanchet@39900
   600
        th
blanchet@39900
   601
      else
blanchet@39901
   602
        tryres (th, choice_ths @
blanchet@39900
   603
                    [conj_exD1, conj_exD2, disj_exD, disj_exD1, disj_exD2])
blanchet@39900
   604
        |> aux
blanchet@39900
   605
        handle THM ("tryres", _, _) =>
blanchet@39900
   606
               tryres (th, [conj_forward, disj_forward, all_forward])
blanchet@39900
   607
               |> forward_res ctxt aux
blanchet@39900
   608
               |> aux
blanchet@39900
   609
               handle THM ("tryres", _, _) =>
blanchet@40262
   610
                      rename_bound_vars_RS th ex_forward
blanchet@39900
   611
                      |> forward_res ctxt aux
blanchet@39900
   612
  in aux o make_nnf ctxt end
paulson@29684
   613
blanchet@39950
   614
fun skolemize ctxt =
wenzelm@42361
   615
  let val thy = Proof_Context.theory_of ctxt in
blanchet@39950
   616
    skolemize_with_choice_theorems ctxt (choice_theorems thy)
blanchet@39950
   617
  end
blanchet@39904
   618
blanchet@42760
   619
(* Removes the lambdas from an equation of the form "t = (%x1 ... xn. u)". It
blanchet@42760
   620
   would be desirable to do this symmetrically but there's at least one existing
blanchet@42760
   621
   proof in "Tarski" that relies on the current behavior. *)
blanchet@42747
   622
fun extensionalize_conv ctxt ct =
blanchet@42747
   623
  case term_of ct of
blanchet@42760
   624
    Const (@{const_name HOL.eq}, _) $ _ $ Abs _ =>
blanchet@42760
   625
    ct |> (Conv.rewr_conv @{thm fun_eq_iff [THEN eq_reflection]}
blanchet@42760
   626
           then_conv extensionalize_conv ctxt)
blanchet@42747
   627
  | _ $ _ => Conv.comb_conv (extensionalize_conv ctxt) ct
blanchet@42747
   628
  | Abs _ => Conv.abs_conv (extensionalize_conv o snd) ctxt ct
blanchet@42747
   629
  | _ => Conv.all_conv ct
blanchet@42747
   630
blanchet@42747
   631
val extensionalize_theorem = Conv.fconv_rule o extensionalize_conv
blanchet@42747
   632
blanchet@39900
   633
(* "RS" can fail if "unify_search_bound" is too small. *)
blanchet@42747
   634
fun try_skolemize_etc ctxt =
blanchet@42747
   635
  Raw_Simplifier.rewrite_rule (unfold_set_const_simps ctxt)
blanchet@42747
   636
  (* Extensionalize "th", because that makes sense and that's what Sledgehammer
blanchet@42747
   637
     does, but also keep an unextensionalized version of "th" for backward
blanchet@42747
   638
     compatibility. *)
blanchet@42747
   639
  #> (fn th => insert Thm.eq_thm_prop (extensionalize_theorem ctxt th) [th])
blanchet@42747
   640
  #> map_filter (fn th => try (skolemize ctxt) th
blanchet@42747
   641
                          |> tap (fn NONE =>
blanchet@42747
   642
                                     trace_msg ctxt (fn () =>
blanchet@42747
   643
                                         "Failed to skolemize " ^
blanchet@42747
   644
                                          Display.string_of_thm ctxt th)
blanchet@42747
   645
                                   | _ => ()))
paulson@25694
   646
wenzelm@33339
   647
fun add_clauses th cls =
wenzelm@36603
   648
  let val ctxt0 = Variable.global_thm_context th
wenzelm@33339
   649
      val (cnfs, ctxt) = make_cnf [] th ctxt0
paulson@24937
   650
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   651
paulson@9840
   652
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   653
  The resulting clauses are HOL disjunctions.*)
wenzelm@39235
   654
fun make_clauses_unsorted ths = fold_rev add_clauses ths [];
blanchet@35869
   655
val make_clauses = sort_clauses o make_clauses_unsorted;
quigley@15773
   656
paulson@16563
   657
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   658
fun make_horns ths =
paulson@9840
   659
    name_thms "Horn#"
wenzelm@33339
   660
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   661
paulson@9840
   662
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   663
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   664
wenzelm@9869
   665
fun best_prolog_tac sizef horns =
paulson@9840
   666
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   667
wenzelm@9869
   668
fun depth_prolog_tac horns =
paulson@9840
   669
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   670
paulson@9840
   671
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   672
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   673
wenzelm@32262
   674
fun skolemize_prems_tac ctxt prems =
blanchet@42747
   675
  cut_facts_tac (maps (try_skolemize_etc ctxt) prems) THEN' REPEAT o etac exE
paulson@9840
   676
paulson@22546
   677
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   678
  Function mkcl converts theorems to clauses.*)
blanchet@39037
   679
fun MESON preskolem_tac mkcl cltac ctxt i st =
paulson@16588
   680
  SELECT_GOAL
wenzelm@35625
   681
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   682
            rtac ccontr 1,
blanchet@39269
   683
            preskolem_tac,
wenzelm@32283
   684
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
blanchet@39269
   685
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32283
   686
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   687
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   688
blanchet@39037
   689
paulson@9840
   690
(** Best-first search versions **)
paulson@9840
   691
paulson@16563
   692
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   693
fun best_meson_tac sizef =
blanchet@39269
   694
  MESON all_tac make_clauses
paulson@22546
   695
    (fn cls =>
paulson@9840
   696
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   697
                         (has_fewer_prems 1, sizef)
paulson@9840
   698
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   699
paulson@9840
   700
(*First, breaks the goal into independent units*)
wenzelm@32262
   701
fun safe_best_meson_tac ctxt =
wenzelm@32262
   702
     SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN
wenzelm@32262
   703
                  TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   704
paulson@9840
   705
(** Depth-first search version **)
paulson@9840
   706
paulson@9840
   707
val depth_meson_tac =
blanchet@39269
   708
  MESON all_tac make_clauses
paulson@22546
   709
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)]);
paulson@9840
   710
paulson@9840
   711
paulson@9840
   712
(** Iterative deepening version **)
paulson@9840
   713
paulson@9840
   714
(*This version does only one inference per call;
paulson@9840
   715
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   716
fun prolog_step_tac' horns =
blanchet@39328
   717
    let val (horn0s, _) = (*0 subgoals vs 1 or more*)
paulson@9840
   718
            take_prefix Thm.no_prems horns
paulson@9840
   719
        val nrtac = net_resolve_tac horns
paulson@9840
   720
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   721
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   722
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   723
    end;
paulson@9840
   724
wenzelm@9869
   725
fun iter_deepen_prolog_tac horns =
wenzelm@38802
   726
    ITER_DEEPEN iter_deepen_limit (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   727
blanchet@39269
   728
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON all_tac make_clauses
wenzelm@32091
   729
  (fn cls =>
wenzelm@32091
   730
    (case (gocls (cls @ ths)) of
wenzelm@32091
   731
      [] => no_tac  (*no goal clauses*)
wenzelm@32091
   732
    | goes =>
wenzelm@32091
   733
        let
wenzelm@32091
   734
          val horns = make_horns (cls @ ths)
blanchet@39979
   735
          val _ = trace_msg ctxt (fn () =>
wenzelm@32091
   736
            cat_lines ("meson method called:" ::
wenzelm@32262
   737
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32262
   738
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@38802
   739
        in
wenzelm@38802
   740
          THEN_ITER_DEEPEN iter_deepen_limit
wenzelm@38802
   741
            (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@38802
   742
        end));
paulson@9840
   743
wenzelm@32262
   744
fun meson_tac ctxt ths =
wenzelm@32262
   745
  SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   746
wenzelm@9869
   747
paulson@14813
   748
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   749
wenzelm@24300
   750
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   751
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   752
paulson@14744
   753
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   754
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   755
  prevents a double negation.*)
wenzelm@27239
   756
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   757
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   758
wenzelm@24300
   759
fun negated_asm_of_head th =
paulson@14744
   760
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   761
paulson@26066
   762
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   763
fun make_meta_clause th =
wenzelm@33832
   764
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   765
  in  
wenzelm@35845
   766
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   767
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   768
  end;
wenzelm@24300
   769
paulson@14744
   770
fun make_meta_clauses ths =
paulson@14744
   771
    name_thms "MClause#"
wenzelm@22360
   772
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   773
paulson@9840
   774
end;