src/HOL/Divides.thy
author bulwahn
Fri, 21 Oct 2011 11:17:14 +0200
changeset 45231 d85a2fdc586c
parent 44890 22f665a2e91c
child 45530 0c4853bb77bf
permissions -rw-r--r--
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
     1
(*  Title:      HOL/Divides.thy
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
6865
5577ffe4c2f1 now div and mod are overloaded; dvd is polymorphic
paulson
parents: 3366
diff changeset
     3
    Copyright   1999  University of Cambridge
18154
0c05abaf6244 add header
huffman
parents: 17609
diff changeset
     4
*)
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
     5
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
     6
header {* The division operators div and mod *}
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
     7
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14640
diff changeset
     8
theory Divides
33318
ddd97d9dfbfb moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33296
diff changeset
     9
imports Nat_Numeral Nat_Transfer
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
    10
uses "~~/src/Provers/Arith/cancel_div_mod.ML"
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14640
diff changeset
    11
begin
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
    12
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
    13
subsection {* Syntactic division operations *}
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
    14
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    15
class div = dvd +
27540
dc38e79f5a1c separate class dvd for divisibility predicate
haftmann
parents: 26748
diff changeset
    16
  fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    17
    and mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70)
27540
dc38e79f5a1c separate class dvd for divisibility predicate
haftmann
parents: 26748
diff changeset
    18
dc38e79f5a1c separate class dvd for divisibility predicate
haftmann
parents: 26748
diff changeset
    19
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    20
subsection {* Abstract division in commutative semirings. *}
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
    21
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
    22
class semiring_div = comm_semiring_1_cancel + no_zero_divisors + div +
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
    23
  assumes mod_div_equality: "a div b * b + a mod b = a"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    24
    and div_by_0 [simp]: "a div 0 = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    25
    and div_0 [simp]: "0 div a = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    26
    and div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
    27
    and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
    28
begin
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
    29
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
    30
text {* @{const div} and @{const mod} *}
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
    31
26062
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    32
lemma mod_div_equality2: "b * (a div b) + a mod b = a"
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    33
  unfolding mult_commute [of b]
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    34
  by (rule mod_div_equality)
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    35
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
    36
lemma mod_div_equality': "a mod b + a div b * b = a"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
    37
  using mod_div_equality [of a b]
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
    38
  by (simp only: add_ac)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
    39
26062
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    40
lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c"
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
    41
  by (simp add: mod_div_equality)
26062
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    42
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    43
lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c"
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
    44
  by (simp add: mod_div_equality2)
26062
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    45
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    46
lemma mod_by_0 [simp]: "a mod 0 = a"
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
    47
  using mod_div_equality [of a zero] by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    48
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    49
lemma mod_0 [simp]: "0 mod a = 0"
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
    50
  using mod_div_equality [of zero a] div_0 by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    51
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    52
lemma div_mult_self2 [simp]:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    53
  assumes "b \<noteq> 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    54
  shows "(a + b * c) div b = c + a div b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    55
  using assms div_mult_self1 [of b a c] by (simp add: mult_commute)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
    56
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    57
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    58
proof (cases "b = 0")
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    59
  case True then show ?thesis by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    60
next
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    61
  case False
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    62
  have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    63
    by (simp add: mod_div_equality)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    64
  also from False div_mult_self1 [of b a c] have
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    65
    "\<dots> = (c + a div b) * b + (a + c * b) mod b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
    66
      by (simp add: algebra_simps)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    67
  finally have "a = a div b * b + (a + c * b) mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    68
    by (simp add: add_commute [of a] add_assoc left_distrib)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    69
  then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    70
    by (simp add: mod_div_equality)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    71
  then show ?thesis by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    72
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    73
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    74
lemma mod_mult_self2 [simp]: "(a + b * c) mod b = a mod b"
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
    75
  by (simp add: mult_commute [of b])
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    76
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    77
lemma div_mult_self1_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> b * a div b = a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    78
  using div_mult_self2 [of b 0 a] by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    79
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    80
lemma div_mult_self2_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> a * b div b = a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    81
  using div_mult_self1 [of b 0 a] by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    82
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    83
lemma mod_mult_self1_is_0 [simp]: "b * a mod b = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    84
  using mod_mult_self2 [of 0 b a] by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    85
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    86
lemma mod_mult_self2_is_0 [simp]: "a * b mod b = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    87
  using mod_mult_self1 [of 0 a b] by simp
26062
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
    88
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    89
lemma div_by_1 [simp]: "a div 1 = a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    90
  using div_mult_self2_is_id [of 1 a] zero_neq_one by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    91
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    92
lemma mod_by_1 [simp]: "a mod 1 = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    93
proof -
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    94
  from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    95
  then have "a + a mod 1 = a + 0" by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    96
  then show ?thesis by (rule add_left_imp_eq)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    97
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    98
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    99
lemma mod_self [simp]: "a mod a = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   100
  using mod_mult_self2_is_0 [of 1] by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   101
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   102
lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   103
  using div_mult_self2_is_id [of _ 1] by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   104
27676
55676111ed69 (re-)added simp rules for (_ + _) div/mod _
haftmann
parents: 27651
diff changeset
   105
lemma div_add_self1 [simp]:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   106
  assumes "b \<noteq> 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   107
  shows "(b + a) div b = a div b + 1"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   108
  using assms div_mult_self1 [of b a 1] by (simp add: add_commute)
26062
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
   109
27676
55676111ed69 (re-)added simp rules for (_ + _) div/mod _
haftmann
parents: 27651
diff changeset
   110
lemma div_add_self2 [simp]:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   111
  assumes "b \<noteq> 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   112
  shows "(a + b) div b = a div b + 1"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   113
  using assms div_add_self1 [of b a] by (simp add: add_commute)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   114
27676
55676111ed69 (re-)added simp rules for (_ + _) div/mod _
haftmann
parents: 27651
diff changeset
   115
lemma mod_add_self1 [simp]:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   116
  "(b + a) mod b = a mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   117
  using mod_mult_self1 [of a 1 b] by (simp add: add_commute)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   118
27676
55676111ed69 (re-)added simp rules for (_ + _) div/mod _
haftmann
parents: 27651
diff changeset
   119
lemma mod_add_self2 [simp]:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   120
  "(a + b) mod b = a mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   121
  using mod_mult_self1 [of a 1 b] by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   122
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   123
lemma mod_div_decomp:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   124
  fixes a b
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   125
  obtains q r where "q = a div b" and "r = a mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   126
    and "a = q * b + r"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   127
proof -
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   128
  from mod_div_equality have "a = a div b * b + a mod b" by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   129
  moreover have "a div b = a div b" ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   130
  moreover have "a mod b = a mod b" ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   131
  note that ultimately show thesis by blast
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   132
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   133
45231
d85a2fdc586c replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
bulwahn
parents: 44890
diff changeset
   134
lemma dvd_eq_mod_eq_0 [code]: "a dvd b \<longleftrightarrow> b mod a = 0"
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   135
proof
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   136
  assume "b mod a = 0"
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   137
  with mod_div_equality [of b a] have "b div a * a = b" by simp
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   138
  then have "b = a * (b div a)" unfolding mult_commute ..
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   139
  then have "\<exists>c. b = a * c" ..
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   140
  then show "a dvd b" unfolding dvd_def .
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   141
next
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   142
  assume "a dvd b"
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   143
  then have "\<exists>c. b = a * c" unfolding dvd_def .
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   144
  then obtain c where "b = a * c" ..
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   145
  then have "b mod a = a * c mod a" by simp
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   146
  then have "b mod a = c * a mod a" by (simp add: mult_commute)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   147
  then show "b mod a = 0" by simp
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   148
qed
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   149
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   150
lemma mod_div_trivial [simp]: "a mod b div b = 0"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   151
proof (cases "b = 0")
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   152
  assume "b = 0"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   153
  thus ?thesis by simp
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   154
next
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   155
  assume "b \<noteq> 0"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   156
  hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   157
    by (rule div_mult_self1 [symmetric])
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   158
  also have "\<dots> = a div b"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   159
    by (simp only: mod_div_equality')
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   160
  also have "\<dots> = a div b + 0"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   161
    by simp
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   162
  finally show ?thesis
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   163
    by (rule add_left_imp_eq)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   164
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   165
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   166
lemma mod_mod_trivial [simp]: "a mod b mod b = a mod b"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   167
proof -
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   168
  have "a mod b mod b = (a mod b + a div b * b) mod b"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   169
    by (simp only: mod_mult_self1)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   170
  also have "\<dots> = a mod b"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   171
    by (simp only: mod_div_equality')
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   172
  finally show ?thesis .
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   173
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   174
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   175
lemma dvd_imp_mod_0: "a dvd b \<Longrightarrow> b mod a = 0"
29948
cdf12a1cb963 Cleaned up IntDiv and removed subsumed lemmas.
nipkow
parents: 29925
diff changeset
   176
by (rule dvd_eq_mod_eq_0[THEN iffD1])
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   177
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   178
lemma dvd_div_mult_self: "a dvd b \<Longrightarrow> (b div a) * a = b"
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   179
by (subst (2) mod_div_equality [of b a, symmetric]) (simp add:dvd_imp_mod_0)
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   180
33274
b6ff7db522b5 moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents: 32010
diff changeset
   181
lemma dvd_mult_div_cancel: "a dvd b \<Longrightarrow> a * (b div a) = b"
b6ff7db522b5 moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents: 32010
diff changeset
   182
by (drule dvd_div_mult_self) (simp add: mult_commute)
b6ff7db522b5 moved lemmas for dvd on nat to theories Nat and Power
haftmann
parents: 32010
diff changeset
   183
30052
410fefc247aa added dvd_div_mult
nipkow
parents: 30042
diff changeset
   184
lemma dvd_div_mult: "a dvd b \<Longrightarrow> (b div a) * c = b * c div a"
410fefc247aa added dvd_div_mult
nipkow
parents: 30042
diff changeset
   185
apply (cases "a = 0")
410fefc247aa added dvd_div_mult
nipkow
parents: 30042
diff changeset
   186
 apply simp
410fefc247aa added dvd_div_mult
nipkow
parents: 30042
diff changeset
   187
apply (auto simp: dvd_def mult_assoc)
410fefc247aa added dvd_div_mult
nipkow
parents: 30042
diff changeset
   188
done
410fefc247aa added dvd_div_mult
nipkow
parents: 30042
diff changeset
   189
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   190
lemma div_dvd_div[simp]:
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   191
  "a dvd b \<Longrightarrow> a dvd c \<Longrightarrow> (b div a dvd c div a) = (b dvd c)"
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   192
apply (cases "a = 0")
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   193
 apply simp
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   194
apply (unfold dvd_def)
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   195
apply auto
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   196
 apply(blast intro:mult_assoc[symmetric])
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44766
diff changeset
   197
apply(fastforce simp add: mult_assoc)
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   198
done
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29667
diff changeset
   199
30078
beee83623cc9 move lemma dvd_mod_imp_dvd into class semiring_div
huffman
parents: 30052
diff changeset
   200
lemma dvd_mod_imp_dvd: "[| k dvd m mod n;  k dvd n |] ==> k dvd m"
beee83623cc9 move lemma dvd_mod_imp_dvd into class semiring_div
huffman
parents: 30052
diff changeset
   201
  apply (subgoal_tac "k dvd (m div n) *n + m mod n")
beee83623cc9 move lemma dvd_mod_imp_dvd into class semiring_div
huffman
parents: 30052
diff changeset
   202
   apply (simp add: mod_div_equality)
beee83623cc9 move lemma dvd_mod_imp_dvd into class semiring_div
huffman
parents: 30052
diff changeset
   203
  apply (simp only: dvd_add dvd_mult)
beee83623cc9 move lemma dvd_mod_imp_dvd into class semiring_div
huffman
parents: 30052
diff changeset
   204
  done
beee83623cc9 move lemma dvd_mod_imp_dvd into class semiring_div
huffman
parents: 30052
diff changeset
   205
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   206
text {* Addition respects modular equivalence. *}
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   207
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   208
lemma mod_add_left_eq: "(a + b) mod c = (a mod c + b) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   209
proof -
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   210
  have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   211
    by (simp only: mod_div_equality)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   212
  also have "\<dots> = (a mod c + b + a div c * c) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   213
    by (simp only: add_ac)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   214
  also have "\<dots> = (a mod c + b) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   215
    by (rule mod_mult_self1)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   216
  finally show ?thesis .
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   217
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   218
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   219
lemma mod_add_right_eq: "(a + b) mod c = (a + b mod c) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   220
proof -
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   221
  have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   222
    by (simp only: mod_div_equality)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   223
  also have "\<dots> = (a + b mod c + b div c * c) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   224
    by (simp only: add_ac)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   225
  also have "\<dots> = (a + b mod c) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   226
    by (rule mod_mult_self1)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   227
  finally show ?thesis .
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   228
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   229
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   230
lemma mod_add_eq: "(a + b) mod c = (a mod c + b mod c) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   231
by (rule trans [OF mod_add_left_eq mod_add_right_eq])
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   232
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   233
lemma mod_add_cong:
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   234
  assumes "a mod c = a' mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   235
  assumes "b mod c = b' mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   236
  shows "(a + b) mod c = (a' + b') mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   237
proof -
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   238
  have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   239
    unfolding assms ..
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   240
  thus ?thesis
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   241
    by (simp only: mod_add_eq [symmetric])
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   242
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   243
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   244
lemma div_add [simp]: "z dvd x \<Longrightarrow> z dvd y
30837
3d4832d9f7e4 added strong_setprod_cong[cong] (in analogy with setsum)
nipkow
parents: 30729
diff changeset
   245
  \<Longrightarrow> (x + y) div z = x div z + y div z"
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   246
by (cases "z = 0", simp, unfold dvd_def, auto simp add: algebra_simps)
30837
3d4832d9f7e4 added strong_setprod_cong[cong] (in analogy with setsum)
nipkow
parents: 30729
diff changeset
   247
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   248
text {* Multiplication respects modular equivalence. *}
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   249
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   250
lemma mod_mult_left_eq: "(a * b) mod c = ((a mod c) * b) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   251
proof -
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   252
  have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   253
    by (simp only: mod_div_equality)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   254
  also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   255
    by (simp only: algebra_simps)
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   256
  also have "\<dots> = (a mod c * b) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   257
    by (rule mod_mult_self1)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   258
  finally show ?thesis .
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   259
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   260
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   261
lemma mod_mult_right_eq: "(a * b) mod c = (a * (b mod c)) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   262
proof -
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   263
  have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   264
    by (simp only: mod_div_equality)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   265
  also have "\<dots> = (a * (b mod c) + a * (b div c) * c) mod c"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   266
    by (simp only: algebra_simps)
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   267
  also have "\<dots> = (a * (b mod c)) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   268
    by (rule mod_mult_self1)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   269
  finally show ?thesis .
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   270
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   271
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   272
lemma mod_mult_eq: "(a * b) mod c = ((a mod c) * (b mod c)) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   273
by (rule trans [OF mod_mult_left_eq mod_mult_right_eq])
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   274
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   275
lemma mod_mult_cong:
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   276
  assumes "a mod c = a' mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   277
  assumes "b mod c = b' mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   278
  shows "(a * b) mod c = (a' * b') mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   279
proof -
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   280
  have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   281
    unfolding assms ..
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   282
  thus ?thesis
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   283
    by (simp only: mod_mult_eq [symmetric])
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   284
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   285
29404
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   286
lemma mod_mod_cancel:
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   287
  assumes "c dvd b"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   288
  shows "a mod b mod c = a mod c"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   289
proof -
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   290
  from `c dvd b` obtain k where "b = c * k"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   291
    by (rule dvdE)
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   292
  have "a mod b mod c = a mod (c * k) mod c"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   293
    by (simp only: `b = c * k`)
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   294
  also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   295
    by (simp only: mod_mult_self1)
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   296
  also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   297
    by (simp only: add_ac mult_ac)
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   298
  also have "\<dots> = a mod c"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   299
    by (simp only: mod_div_equality)
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   300
  finally show ?thesis .
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   301
qed
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   302
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   303
lemma div_mult_div_if_dvd:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   304
  "y dvd x \<Longrightarrow> z dvd w \<Longrightarrow> (x div y) * (w div z) = (x * w) div (y * z)"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   305
  apply (cases "y = 0", simp)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   306
  apply (cases "z = 0", simp)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   307
  apply (auto elim!: dvdE simp add: algebra_simps)
30476
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   308
  apply (subst mult_assoc [symmetric])
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   309
  apply (simp add: no_zero_divisors)
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   310
  done
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   311
35367
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   312
lemma div_mult_swap:
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   313
  assumes "c dvd b"
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   314
  shows "a * (b div c) = (a * b) div c"
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   315
proof -
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   316
  from assms have "b div c * (a div 1) = b * a div (c * 1)"
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   317
    by (simp only: div_mult_div_if_dvd one_dvd)
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   318
  then show ?thesis by (simp add: mult_commute)
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   319
qed
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   320
   
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   321
lemma div_mult_mult2 [simp]:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   322
  "c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   323
  by (drule div_mult_mult1) (simp add: mult_commute)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   324
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   325
lemma div_mult_mult1_if [simp]:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   326
  "(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   327
  by simp_all
30476
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   328
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   329
lemma mod_mult_mult1:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   330
  "(c * a) mod (c * b) = c * (a mod b)"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   331
proof (cases "c = 0")
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   332
  case True then show ?thesis by simp
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   333
next
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   334
  case False
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   335
  from mod_div_equality
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   336
  have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   337
  with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   338
    = c * a + c * (a mod b)" by (simp add: algebra_simps)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   339
  with mod_div_equality show ?thesis by simp 
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   340
qed
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   341
  
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   342
lemma mod_mult_mult2:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   343
  "(a * c) mod (b * c) = (a mod b) * c"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   344
  using mod_mult_mult1 [of c a b] by (simp add: mult_commute)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   345
31662
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   346
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   347
  unfolding dvd_def by (auto simp add: mod_mult_mult1)
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   348
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   349
lemma dvd_mod_iff: "k dvd n \<Longrightarrow> k dvd (m mod n) \<longleftrightarrow> k dvd m"
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   350
by (blast intro: dvd_mod_imp_dvd dvd_mod)
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   351
31009
41fd307cab30 dropped reference to class recpower and lemma duplicate
haftmann
parents: 30934
diff changeset
   352
lemma div_power:
31661
1e252b8b2334 move lemma div_power into semiring_div context; class ring_div inherits from idom
huffman
parents: 31009
diff changeset
   353
  "y dvd x \<Longrightarrow> (x div y) ^ n = x ^ n div y ^ n"
30476
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   354
apply (induct n)
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   355
 apply simp
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   356
apply(simp add: div_mult_div_if_dvd dvd_power_same)
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   357
done
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   358
35367
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   359
lemma dvd_div_eq_mult:
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   360
  assumes "a \<noteq> 0" and "a dvd b"  
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   361
  shows "b div a = c \<longleftrightarrow> b = c * a"
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   362
proof
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   363
  assume "b = c * a"
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   364
  then show "b div a = c" by (simp add: assms)
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   365
next
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   366
  assume "b div a = c"
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   367
  then have "b div a * a = c * a" by simp
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   368
  moreover from `a dvd b` have "b div a * a = b" by (simp add: dvd_div_mult_self)
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   369
  ultimately show "b = c * a" by simp
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   370
qed
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   371
   
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   372
lemma dvd_div_div_eq_mult:
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   373
  assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d"
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   374
  shows "b div a = d div c \<longleftrightarrow> b * c = a * d"
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   375
  using assms by (auto simp add: mult_commute [of _ a] dvd_div_mult_self dvd_div_eq_mult div_mult_swap intro: sym)
45a193f0ed0c lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
haftmann
parents: 35216
diff changeset
   376
31661
1e252b8b2334 move lemma div_power into semiring_div context; class ring_div inherits from idom
huffman
parents: 31009
diff changeset
   377
end
1e252b8b2334 move lemma div_power into semiring_div context; class ring_div inherits from idom
huffman
parents: 31009
diff changeset
   378
35673
178caf872f95 weakend class ring_div; tuned
haftmann
parents: 35644
diff changeset
   379
class ring_div = semiring_div + comm_ring_1
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   380
begin
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   381
36634
f9b43d197d16 a ring_div is a ring_1_no_zero_divisors
haftmann
parents: 35815
diff changeset
   382
subclass ring_1_no_zero_divisors ..
f9b43d197d16 a ring_div is a ring_1_no_zero_divisors
haftmann
parents: 35815
diff changeset
   383
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   384
text {* Negation respects modular equivalence. *}
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   385
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   386
lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   387
proof -
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   388
  have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   389
    by (simp only: mod_div_equality)
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   390
  also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   391
    by (simp only: minus_add_distrib minus_mult_left add_ac)
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   392
  also have "\<dots> = (- (a mod b)) mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   393
    by (rule mod_mult_self1)
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   394
  finally show ?thesis .
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   395
qed
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   396
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   397
lemma mod_minus_cong:
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   398
  assumes "a mod b = a' mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   399
  shows "(- a) mod b = (- a') mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   400
proof -
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   401
  have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   402
    unfolding assms ..
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   403
  thus ?thesis
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   404
    by (simp only: mod_minus_eq [symmetric])
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   405
qed
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   406
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   407
text {* Subtraction respects modular equivalence. *}
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   408
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   409
lemma mod_diff_left_eq: "(a - b) mod c = (a mod c - b) mod c"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   410
  unfolding diff_minus
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   411
  by (intro mod_add_cong mod_minus_cong) simp_all
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   412
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   413
lemma mod_diff_right_eq: "(a - b) mod c = (a - b mod c) mod c"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   414
  unfolding diff_minus
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   415
  by (intro mod_add_cong mod_minus_cong) simp_all
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   416
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   417
lemma mod_diff_eq: "(a - b) mod c = (a mod c - b mod c) mod c"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   418
  unfolding diff_minus
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   419
  by (intro mod_add_cong mod_minus_cong) simp_all
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   420
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   421
lemma mod_diff_cong:
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   422
  assumes "a mod c = a' mod c"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   423
  assumes "b mod c = b' mod c"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   424
  shows "(a - b) mod c = (a' - b') mod c"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   425
  unfolding diff_minus using assms
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   426
  by (intro mod_add_cong mod_minus_cong)
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   427
30180
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   428
lemma dvd_neg_div: "y dvd x \<Longrightarrow> -x div y = - (x div y)"
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   429
apply (case_tac "y = 0") apply simp
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   430
apply (auto simp add: dvd_def)
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   431
apply (subgoal_tac "-(y * k) = y * - k")
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   432
 apply (erule ssubst)
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   433
 apply (erule div_mult_self1_is_id)
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   434
apply simp
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   435
done
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   436
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   437
lemma dvd_div_neg: "y dvd x \<Longrightarrow> x div -y = - (x div y)"
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   438
apply (case_tac "y = 0") apply simp
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   439
apply (auto simp add: dvd_def)
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   440
apply (subgoal_tac "y * k = -y * -k")
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   441
 apply (erule ssubst)
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   442
 apply (rule div_mult_self1_is_id)
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   443
 apply simp
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   444
apply simp
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   445
done
6d29a873141f added lemmas by Jeremy Avigad
nipkow
parents: 30079
diff changeset
   446
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   447
end
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   448
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   449
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   450
subsection {* Division on @{typ nat} *}
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   451
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   452
text {*
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   453
  We define @{const div} and @{const mod} on @{typ nat} by means
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   454
  of a characteristic relation with two input arguments
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   455
  @{term "m\<Colon>nat"}, @{term "n\<Colon>nat"} and two output arguments
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   456
  @{term "q\<Colon>nat"}(uotient) and @{term "r\<Colon>nat"}(emainder).
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   457
*}
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   458
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   459
definition divmod_nat_rel :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   460
  "divmod_nat_rel m n qr \<longleftrightarrow>
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   461
    m = fst qr * n + snd qr \<and>
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   462
      (if n = 0 then fst qr = 0 else if n > 0 then 0 \<le> snd qr \<and> snd qr < n else n < snd qr \<and> snd qr \<le> 0)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   463
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   464
text {* @{const divmod_nat_rel} is total: *}
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   465
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   466
lemma divmod_nat_rel_ex:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   467
  obtains q r where "divmod_nat_rel m n (q, r)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   468
proof (cases "n = 0")
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   469
  case True  with that show thesis
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   470
    by (auto simp add: divmod_nat_rel_def)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   471
next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   472
  case False
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   473
  have "\<exists>q r. m = q * n + r \<and> r < n"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   474
  proof (induct m)
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   475
    case 0 with `n \<noteq> 0`
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   476
    have "(0\<Colon>nat) = 0 * n + 0 \<and> 0 < n" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   477
    then show ?case by blast
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   478
  next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   479
    case (Suc m) then obtain q' r'
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   480
      where m: "m = q' * n + r'" and n: "r' < n" by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   481
    then show ?case proof (cases "Suc r' < n")
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   482
      case True
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   483
      from m n have "Suc m = q' * n + Suc r'" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   484
      with True show ?thesis by blast
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   485
    next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   486
      case False then have "n \<le> Suc r'" by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   487
      moreover from n have "Suc r' \<le> n" by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   488
      ultimately have "n = Suc r'" by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   489
      with m have "Suc m = Suc q' * n + 0" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   490
      with `n \<noteq> 0` show ?thesis by blast
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   491
    qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   492
  qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   493
  with that show thesis
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   494
    using `n \<noteq> 0` by (auto simp add: divmod_nat_rel_def)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   495
qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   496
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   497
text {* @{const divmod_nat_rel} is injective: *}
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   498
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   499
lemma divmod_nat_rel_unique:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   500
  assumes "divmod_nat_rel m n qr"
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   501
    and "divmod_nat_rel m n qr'"
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   502
  shows "qr = qr'"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   503
proof (cases "n = 0")
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   504
  case True with assms show ?thesis
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   505
    by (cases qr, cases qr')
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   506
      (simp add: divmod_nat_rel_def)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   507
next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   508
  case False
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   509
  have aux: "\<And>q r q' r'. q' * n + r' = q * n + r \<Longrightarrow> r < n \<Longrightarrow> q' \<le> (q\<Colon>nat)"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   510
  apply (rule leI)
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   511
  apply (subst less_iff_Suc_add)
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   512
  apply (auto simp add: add_mult_distrib)
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   513
  done
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   514
  from `n \<noteq> 0` assms have "fst qr = fst qr'"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   515
    by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym)
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   516
  moreover from this assms have "snd qr = snd qr'"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   517
    by (simp add: divmod_nat_rel_def)
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   518
  ultimately show ?thesis by (cases qr, cases qr') simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   519
qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   520
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   521
text {*
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   522
  We instantiate divisibility on the natural numbers by
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   523
  means of @{const divmod_nat_rel}:
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   524
*}
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   525
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   526
instantiation nat :: semiring_div
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25162
diff changeset
   527
begin
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25162
diff changeset
   528
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   529
definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
37767
a2b7a20d6ea3 dropped superfluous [code del]s
haftmann
parents: 36634
diff changeset
   530
  "divmod_nat m n = (THE qr. divmod_nat_rel m n qr)"
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   531
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   532
lemma divmod_nat_rel_divmod_nat:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   533
  "divmod_nat_rel m n (divmod_nat m n)"
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   534
proof -
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   535
  from divmod_nat_rel_ex
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   536
    obtain qr where rel: "divmod_nat_rel m n qr" .
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   537
  then show ?thesis
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   538
  by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique)
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   539
qed
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   540
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   541
lemma divmod_nat_eq:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   542
  assumes "divmod_nat_rel m n qr" 
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   543
  shows "divmod_nat m n = qr"
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   544
  using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   545
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   546
definition div_nat where
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   547
  "m div n = fst (divmod_nat m n)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   548
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   549
definition mod_nat where
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   550
  "m mod n = snd (divmod_nat m n)"
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25162
diff changeset
   551
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   552
lemma divmod_nat_div_mod:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   553
  "divmod_nat m n = (m div n, m mod n)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   554
  unfolding div_nat_def mod_nat_def by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   555
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   556
lemma div_eq:
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   557
  assumes "divmod_nat_rel m n (q, r)" 
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   558
  shows "m div n = q"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   559
  using assms by (auto dest: divmod_nat_eq simp add: divmod_nat_div_mod)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   560
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   561
lemma mod_eq:
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   562
  assumes "divmod_nat_rel m n (q, r)" 
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   563
  shows "m mod n = r"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   564
  using assms by (auto dest: divmod_nat_eq simp add: divmod_nat_div_mod)
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25162
diff changeset
   565
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   566
lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)"
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   567
  by (simp add: div_nat_def mod_nat_def divmod_nat_rel_divmod_nat)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   568
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   569
lemma divmod_nat_zero:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   570
  "divmod_nat m 0 = (0, m)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   571
proof -
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   572
  from divmod_nat_rel [of m 0] show ?thesis
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   573
    unfolding divmod_nat_div_mod divmod_nat_rel_def by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   574
qed
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   575
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   576
lemma divmod_nat_base:
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   577
  assumes "m < n"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   578
  shows "divmod_nat m n = (0, m)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   579
proof -
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   580
  from divmod_nat_rel [of m n] show ?thesis
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   581
    unfolding divmod_nat_div_mod divmod_nat_rel_def
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   582
    using assms by (cases "m div n = 0")
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   583
      (auto simp add: gr0_conv_Suc [of "m div n"])
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   584
qed
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   585
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   586
lemma divmod_nat_step:
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   587
  assumes "0 < n" and "n \<le> m"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   588
  shows "divmod_nat m n = (Suc ((m - n) div n), (m - n) mod n)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   589
proof -
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   590
  from divmod_nat_rel have divmod_nat_m_n: "divmod_nat_rel m n (m div n, m mod n)" .
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   591
  with assms have m_div_n: "m div n \<ge> 1"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   592
    by (cases "m div n") (auto simp add: divmod_nat_rel_def)
35815
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   593
  have "divmod_nat_rel (m - n) n (m div n - Suc 0, m mod n)"
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   594
  proof -
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   595
    from assms have
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   596
      "n \<noteq> 0"
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   597
      "\<And>k. m = Suc k * n + m mod n ==> m - n = (Suc k - Suc 0) * n + m mod n"
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   598
      by simp_all
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   599
    then show ?thesis using assms divmod_nat_m_n 
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   600
      by (cases "m div n")
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   601
         (simp_all only: divmod_nat_rel_def fst_conv snd_conv, simp_all)
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
   602
  qed
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   603
  with divmod_nat_eq have "divmod_nat (m - n) n = (m div n - Suc 0, m mod n)" by simp
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   604
  moreover from divmod_nat_div_mod have "divmod_nat (m - n) n = ((m - n) div n, (m - n) mod n)" .
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   605
  ultimately have "m div n = Suc ((m - n) div n)"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   606
    and "m mod n = (m - n) mod n" using m_div_n by simp_all
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   607
  then show ?thesis using divmod_nat_div_mod by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   608
qed
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   609
26300
03def556e26e removed duplicate lemmas;
wenzelm
parents: 26100
diff changeset
   610
text {* The ''recursion'' equations for @{const div} and @{const mod} *}
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   611
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   612
lemma div_less [simp]:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   613
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   614
  assumes "m < n"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   615
  shows "m div n = 0"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   616
  using assms divmod_nat_base divmod_nat_div_mod by simp
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   617
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   618
lemma le_div_geq:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   619
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   620
  assumes "0 < n" and "n \<le> m"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   621
  shows "m div n = Suc ((m - n) div n)"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   622
  using assms divmod_nat_step divmod_nat_div_mod by simp
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   623
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   624
lemma mod_less [simp]:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   625
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   626
  assumes "m < n"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   627
  shows "m mod n = m"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   628
  using assms divmod_nat_base divmod_nat_div_mod by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   629
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   630
lemma le_mod_geq:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   631
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   632
  assumes "n \<le> m"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   633
  shows "m mod n = (m - n) mod n"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   634
  using assms divmod_nat_step divmod_nat_div_mod by (cases "n = 0") simp_all
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   635
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   636
instance proof -
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   637
  have [simp]: "\<And>n::nat. n div 0 = 0"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   638
    by (simp add: div_nat_def divmod_nat_zero)
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   639
  have [simp]: "\<And>n::nat. 0 div n = 0"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   640
  proof -
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   641
    fix n :: nat
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   642
    show "0 div n = 0"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   643
      by (cases "n = 0") simp_all
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   644
  qed
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   645
  show "OFCLASS(nat, semiring_div_class)" proof
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   646
    fix m n :: nat
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   647
    show "m div n * n + m mod n = m"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   648
      using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def)
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   649
  next
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   650
    fix m n q :: nat
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   651
    assume "n \<noteq> 0"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   652
    then show "(q + m * n) div n = m + q div n"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   653
      by (induct m) (simp_all add: le_div_geq)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   654
  next
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   655
    fix m n q :: nat
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   656
    assume "m \<noteq> 0"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   657
    then show "(m * n) div (m * q) = n div q"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   658
    proof (cases "n \<noteq> 0 \<and> q \<noteq> 0")
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   659
      case False then show ?thesis by auto
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   660
    next
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   661
      case True with `m \<noteq> 0`
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   662
        have "m > 0" and "n > 0" and "q > 0" by auto
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   663
      then have "\<And>a b. divmod_nat_rel n q (a, b) \<Longrightarrow> divmod_nat_rel (m * n) (m * q) (a, m * b)"
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   664
        by (auto simp add: divmod_nat_rel_def) (simp_all add: algebra_simps)
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   665
      moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" .
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   666
      ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" .
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   667
      then show ?thesis by (simp add: div_eq)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   668
    qed
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   669
  qed simp_all
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   670
qed
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   671
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   672
end
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   673
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
   674
lemma divmod_nat_if [code]: "divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
   675
  let (q, r) = divmod_nat (m - n) n in (Suc q, r))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
   676
by (simp add: divmod_nat_zero divmod_nat_base divmod_nat_step)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
   677
    (simp add: divmod_nat_div_mod)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
   678
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   679
text {* Simproc for cancelling @{const div} and @{const mod} *}
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   680
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
   681
ML {*
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 41792
diff changeset
   682
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 39489
diff changeset
   683
(
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
   684
  val div_name = @{const_name div};
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
   685
  val mod_name = @{const_name mod};
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
   686
  val mk_binop = HOLogic.mk_binop;
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
   687
  val mk_sum = Nat_Arith.mk_sum;
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
   688
  val dest_sum = Nat_Arith.dest_sum;
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   689
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
   690
  val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   691
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
   692
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
35050
9f841f20dca6 renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents: 34982
diff changeset
   693
    (@{thm add_0_left} :: @{thm add_0_right} :: @{thms add_ac}))
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 39489
diff changeset
   694
)
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   695
*}
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   696
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 41792
diff changeset
   697
simproc_setup cancel_div_mod_nat ("(m::nat) + n") = {* K Cancel_Div_Mod_Nat.proc *}
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 41792
diff changeset
   698
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   699
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   700
subsubsection {* Quotient *}
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   701
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   702
lemma div_geq: "0 < n \<Longrightarrow>  \<not> m < n \<Longrightarrow> m div n = Suc ((m - n) div n)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   703
by (simp add: le_div_geq linorder_not_less)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   704
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   705
lemma div_if: "0 < n \<Longrightarrow> m div n = (if m < n then 0 else Suc ((m - n) div n))"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   706
by (simp add: div_geq)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   707
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   708
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   709
by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   710
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   711
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   712
by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   713
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   714
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   715
subsubsection {* Remainder *}
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   716
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   717
lemma mod_less_divisor [simp]:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   718
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   719
  assumes "n > 0"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   720
  shows "m mod n < (n::nat)"
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   721
  using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   722
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   723
lemma mod_less_eq_dividend [simp]:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   724
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   725
  shows "m mod n \<le> m"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   726
proof (rule add_leD2)
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   727
  from mod_div_equality have "m div n * n + m mod n = m" .
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   728
  then show "m div n * n + m mod n \<le> m" by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   729
qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   730
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   731
lemma mod_geq: "\<not> m < (n\<Colon>nat) \<Longrightarrow> m mod n = (m - n) mod n"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   732
by (simp add: le_mod_geq linorder_not_less)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   733
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   734
lemma mod_if: "m mod (n\<Colon>nat) = (if m < n then m else (m - n) mod n)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   735
by (simp add: le_mod_geq)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   736
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   737
lemma mod_1 [simp]: "m mod Suc 0 = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   738
by (induct m) (simp_all add: mod_geq)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   739
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   740
lemma mod_mult_distrib: "(m mod n) * (k\<Colon>nat) = (m * k) mod (n * k)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   741
  apply (cases "n = 0", simp)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   742
  apply (cases "k = 0", simp)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   743
  apply (induct m rule: nat_less_induct)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   744
  apply (subst mod_if, simp)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   745
  apply (simp add: mod_geq diff_mult_distrib)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   746
  done
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   747
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   748
lemma mod_mult_distrib2: "(k::nat) * (m mod n) = (k*m) mod (k*n)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   749
by (simp add: mult_commute [of k] mod_mult_distrib)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   750
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   751
(* a simple rearrangement of mod_div_equality: *)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   752
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   753
by (cut_tac a = m and b = n in mod_div_equality2, arith)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   754
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15251
diff changeset
   755
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   756
  apply (drule mod_less_divisor [where m = m])
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   757
  apply simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   758
  done
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   759
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   760
subsubsection {* Quotient and Remainder *}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   761
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   762
lemma divmod_nat_rel_mult1_eq:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   763
  "divmod_nat_rel b c (q, r) \<Longrightarrow> c > 0
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   764
   \<Longrightarrow> divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)"
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   765
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   766
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   767
lemma div_mult1_eq:
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   768
  "(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)"
25134
3d4953e88449 Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents: 25112
diff changeset
   769
apply (cases "c = 0", simp)
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   770
apply (blast intro: divmod_nat_rel [THEN divmod_nat_rel_mult1_eq, THEN div_eq])
25134
3d4953e88449 Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents: 25112
diff changeset
   771
done
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   772
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   773
lemma divmod_nat_rel_add1_eq:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   774
  "divmod_nat_rel a c (aq, ar) \<Longrightarrow> divmod_nat_rel b c (bq, br) \<Longrightarrow>  c > 0
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   775
   \<Longrightarrow> divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)"
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   776
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   777
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   778
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   779
lemma div_add1_eq:
25134
3d4953e88449 Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents: 25112
diff changeset
   780
  "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
3d4953e88449 Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents: 25112
diff changeset
   781
apply (cases "c = 0", simp)
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   782
apply (blast intro: divmod_nat_rel_add1_eq [THEN div_eq] divmod_nat_rel)
25134
3d4953e88449 Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents: 25112
diff changeset
   783
done
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   784
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   785
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   786
  apply (cut_tac m = q and n = c in mod_less_divisor)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   787
  apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   788
  apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   789
  apply (simp add: add_mult_distrib2)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   790
  done
10559
d3fd54fc659b many new div and mod properties (borrowed from Integ/IntDiv)
paulson
parents: 10214
diff changeset
   791
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   792
lemma divmod_nat_rel_mult2_eq:
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   793
  "divmod_nat_rel a b (q, r) \<Longrightarrow> 0 < b \<Longrightarrow> 0 < c
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   794
   \<Longrightarrow> divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)"
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   795
by (auto simp add: mult_ac divmod_nat_rel_def add_mult_distrib2 [symmetric] mod_lemma)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   796
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   797
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   798
  apply (cases "b = 0", simp)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   799
  apply (cases "c = 0", simp)
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   800
  apply (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_eq])
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   801
  done
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   802
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   803
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   804
  apply (cases "b = 0", simp)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   805
  apply (cases "c = 0", simp)
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   806
  apply (auto simp add: mult_commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_eq])
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   807
  done
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   808
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   809
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   810
subsubsection{*Further Facts about Quotient and Remainder*}
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   811
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   812
lemma div_1 [simp]: "m div Suc 0 = m"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   813
by (induct m) (simp_all add: div_geq)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   814
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   815
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   816
(* Monotonicity of div in first argument *)
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   817
lemma div_le_mono [rule_format (no_asm)]:
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   818
    "\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   819
apply (case_tac "k=0", simp)
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   820
apply (induct "n" rule: nat_less_induct, clarify)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   821
apply (case_tac "n<k")
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   822
(* 1  case n<k *)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   823
apply simp
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   824
(* 2  case n >= k *)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   825
apply (case_tac "m<k")
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   826
(* 2.1  case m<k *)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   827
apply simp
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   828
(* 2.2  case m>=k *)
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15251
diff changeset
   829
apply (simp add: div_geq diff_le_mono)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   830
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   831
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   832
(* Antimonotonicity of div in second argument *)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   833
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   834
apply (subgoal_tac "0<n")
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   835
 prefer 2 apply simp
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   836
apply (induct_tac k rule: nat_less_induct)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   837
apply (rename_tac "k")
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   838
apply (case_tac "k<n", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   839
apply (subgoal_tac "~ (k<m) ")
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   840
 prefer 2 apply simp
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   841
apply (simp add: div_geq)
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   842
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   843
 prefer 2
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   844
 apply (blast intro: div_le_mono diff_le_mono2)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   845
apply (rule le_trans, simp)
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15251
diff changeset
   846
apply (simp)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   847
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   848
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   849
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   850
apply (case_tac "n=0", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   851
apply (subgoal_tac "m div n \<le> m div 1", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   852
apply (rule div_le_mono2)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   853
apply (simp_all (no_asm_simp))
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   854
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   855
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   856
(* Similar for "less than" *)
17085
5b57f995a179 more simprules now have names
paulson
parents: 17084
diff changeset
   857
lemma div_less_dividend [rule_format]:
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   858
     "!!n::nat. 1<n ==> 0 < m --> m div n < m"
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   859
apply (induct_tac m rule: nat_less_induct)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   860
apply (rename_tac "m")
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   861
apply (case_tac "m<n", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   862
apply (subgoal_tac "0<n")
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   863
 prefer 2 apply simp
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   864
apply (simp add: div_geq)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   865
apply (case_tac "n<m")
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   866
 apply (subgoal_tac "(m-n) div n < (m-n) ")
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   867
  apply (rule impI less_trans_Suc)+
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   868
apply assumption
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15251
diff changeset
   869
  apply (simp_all)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   870
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   871
17085
5b57f995a179 more simprules now have names
paulson
parents: 17084
diff changeset
   872
declare div_less_dividend [simp]
5b57f995a179 more simprules now have names
paulson
parents: 17084
diff changeset
   873
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   874
text{*A fact for the mutilated chess board*}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   875
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   876
apply (case_tac "n=0", simp)
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
   877
apply (induct "m" rule: nat_less_induct)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   878
apply (case_tac "Suc (na) <n")
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   879
(* case Suc(na) < n *)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   880
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   881
(* case n \<le> Suc(na) *)
16796
140f1e0ea846 generlization of some "nat" theorems
paulson
parents: 16733
diff changeset
   882
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15251
diff changeset
   883
apply (auto simp add: Suc_diff_le le_mod_geq)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   884
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   885
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   886
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   887
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
17084
fb0a80aef0be classical rules must have names for ATP integration
paulson
parents: 16796
diff changeset
   888
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   889
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   890
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   891
(*Loses information, namely we also have r<d provided d is nonzero*)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   892
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   893
  apply (cut_tac a = m in mod_div_equality)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   894
  apply (simp only: add_ac)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   895
  apply (blast intro: sym)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   896
  done
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   897
13152
2a54f99b44b3 Divides.ML -> Divides_lemmas.ML
nipkow
parents: 12338
diff changeset
   898
lemma split_div:
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   899
 "P(n div k :: nat) =
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   900
 ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   901
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   902
proof
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   903
  assume P: ?P
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   904
  show ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   905
  proof (cases)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   906
    assume "k = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   907
    with P show ?Q by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   908
  next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   909
    assume not0: "k \<noteq> 0"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   910
    thus ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   911
    proof (simp, intro allI impI)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   912
      fix i j
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   913
      assume n: "n = k*i + j" and j: "j < k"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   914
      show "P i"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   915
      proof (cases)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   916
        assume "i = 0"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   917
        with n j P show "P i" by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   918
      next
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   919
        assume "i \<noteq> 0"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
   920
        with not0 n j P show "P i" by(simp add:add_ac)
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   921
      qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   922
    qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   923
  qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   924
next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   925
  assume Q: ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   926
  show ?P
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   927
  proof (cases)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   928
    assume "k = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   929
    with Q show ?P by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   930
  next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   931
    assume not0: "k \<noteq> 0"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   932
    with Q have R: ?R by simp
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   933
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13189
diff changeset
   934
    show ?P by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   935
  qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   936
qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   937
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
   938
lemma split_div_lemma:
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   939
  assumes "0 < n"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   940
  shows "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> q = ((m\<Colon>nat) div n)" (is "?lhs \<longleftrightarrow> ?rhs")
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   941
proof
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   942
  assume ?rhs
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   943
  with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   944
  then have A: "n * q \<le> m" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   945
  have "n - (m mod n) > 0" using mod_less_divisor assms by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   946
  then have "m < m + (n - (m mod n))" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   947
  then have "m < n + (m - (m mod n))" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   948
  with nq have "m < n + n * q" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   949
  then have B: "m < n * Suc q" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   950
  from A B show ?lhs ..
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   951
next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   952
  assume P: ?lhs
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   953
  then have "divmod_nat_rel m n (q, m - n * q)"
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   954
    unfolding divmod_nat_rel_def by (auto simp add: mult_ac)
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   955
  with divmod_nat_rel_unique divmod_nat_rel [of m n]
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   956
  have "(q, m - n * q) = (m div n, m mod n)" by auto
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   957
  then show ?rhs by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   958
qed
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
   959
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
   960
theorem split_div':
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
   961
  "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
   962
   (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
   963
  apply (case_tac "0 < n")
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
   964
  apply (simp only: add: split_div_lemma)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   965
  apply simp_all
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
   966
  done
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
   967
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   968
lemma split_mod:
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   969
 "P(n mod k :: nat) =
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   970
 ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   971
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   972
proof
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   973
  assume P: ?P
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   974
  show ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   975
  proof (cases)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   976
    assume "k = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   977
    with P show ?Q by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   978
  next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   979
    assume not0: "k \<noteq> 0"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   980
    thus ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   981
    proof (simp, intro allI impI)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   982
      fix i j
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   983
      assume "n = k*i + j" "j < k"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   984
      thus "P j" using not0 P by(simp add:add_ac mult_ac)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   985
    qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   986
  qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   987
next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   988
  assume Q: ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   989
  show ?P
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   990
  proof (cases)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   991
    assume "k = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   992
    with Q show ?P by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   993
  next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   994
    assume not0: "k \<noteq> 0"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   995
    with Q have R: ?R by simp
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   996
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13189
diff changeset
   997
    show ?P by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   998
  qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
   999
qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1000
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1001
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1002
  apply (rule_tac P="%x. m mod n = x - (m div n) * n" in
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1003
    subst [OF mod_div_equality [of _ n]])
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1004
  apply arith
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1005
  done
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1006
22800
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1007
lemma div_mod_equality':
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1008
  fixes m n :: nat
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1009
  shows "m div n * n = m - m mod n"
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1010
proof -
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1011
  have "m mod n \<le> m mod n" ..
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1012
  from div_mod_equality have 
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1013
    "m div n * n + m mod n - m mod n = m - m mod n" by simp
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1014
  with diff_add_assoc [OF `m mod n \<le> m mod n`, of "m div n * n"] have
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1015
    "m div n * n + (m mod n - m mod n) = m - m mod n"
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1016
    by simp
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1017
  then show ?thesis by simp
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1018
qed
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1019
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1020
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
  1021
subsubsection {*An ``induction'' law for modulus arithmetic.*}
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1022
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1023
lemma mod_induct_0:
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1024
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1025
  and base: "P i" and i: "i<p"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1026
  shows "P 0"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1027
proof (rule ccontr)
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1028
  assume contra: "\<not>(P 0)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1029
  from i have p: "0<p" by simp
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1030
  have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1031
  proof
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1032
    fix k
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1033
    show "?A k"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1034
    proof (induct k)
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1035
      show "?A 0" by simp  -- "by contradiction"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1036
    next
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1037
      fix n
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1038
      assume ih: "?A n"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1039
      show "?A (Suc n)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1040
      proof (clarsimp)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1041
        assume y: "P (p - Suc n)"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1042
        have n: "Suc n < p"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1043
        proof (rule ccontr)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1044
          assume "\<not>(Suc n < p)"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1045
          hence "p - Suc n = 0"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1046
            by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1047
          with y contra show "False"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1048
            by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1049
        qed
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1050
        hence n2: "Suc (p - Suc n) = p-n" by arith
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1051
        from p have "p - Suc n < p" by arith
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1052
        with y step have z: "P ((Suc (p - Suc n)) mod p)"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1053
          by blast
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1054
        show "False"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1055
        proof (cases "n=0")
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1056
          case True
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1057
          with z n2 contra show ?thesis by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1058
        next
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1059
          case False
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1060
          with p have "p-n < p" by arith
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1061
          with z n2 False ih show ?thesis by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1062
        qed
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1063
      qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1064
    qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1065
  qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1066
  moreover
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1067
  from i obtain k where "0<k \<and> i+k=p"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1068
    by (blast dest: less_imp_add_positive)
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1069
  hence "0<k \<and> i=p-k" by auto
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1070
  moreover
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1071
  note base
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1072
  ultimately
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1073
  show "False" by blast
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1074
qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1075
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1076
lemma mod_induct:
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1077
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1078
  and base: "P i" and i: "i<p" and j: "j<p"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1079
  shows "P j"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1080
proof -
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1081
  have "\<forall>j<p. P j"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1082
  proof
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1083
    fix j
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1084
    show "j<p \<longrightarrow> P j" (is "?A j")
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1085
    proof (induct j)
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1086
      from step base i show "?A 0"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1087
        by (auto elim: mod_induct_0)
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1088
    next
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1089
      fix k
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1090
      assume ih: "?A k"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1091
      show "?A (Suc k)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1092
      proof
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1093
        assume suc: "Suc k < p"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1094
        hence k: "k<p" by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1095
        with ih have "P k" ..
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1096
        with step k have "P (Suc k mod p)"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1097
          by blast
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1098
        moreover
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1099
        from suc have "Suc k mod p = Suc k"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1100
          by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1101
        ultimately
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1102
        show "P (Suc k)" by simp
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1103
      qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1104
    qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1105
  qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1106
  with j show ?thesis by blast
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1107
qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1108
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1109
lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1110
by (auto simp add: numeral_2_eq_2 le_div_geq)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1111
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1112
lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1113
by (simp add: nat_mult_2 [symmetric])
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1114
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1115
lemma mod2_Suc_Suc [simp]: "Suc(Suc(m)) mod 2 = m mod 2"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1116
apply (subgoal_tac "m mod 2 < 2")
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1117
apply (erule less_2_cases [THEN disjE])
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35050
diff changeset
  1118
apply (simp_all (no_asm_simp) add: Let_def mod_Suc)
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1119
done
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1120
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1121
lemma mod2_gr_0 [simp]: "0 < (m\<Colon>nat) mod 2 \<longleftrightarrow> m mod 2 = 1"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1122
proof -
35815
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1123
  { fix n :: nat have  "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (cases n) simp_all }
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1124
  moreover have "m mod 2 < 2" by simp
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1125
  ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" .
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1126
  then show ?thesis by auto
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1127
qed
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1128
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1129
text{*These lemmas collapse some needless occurrences of Suc:
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1130
    at least three Sucs, since two and fewer are rewritten back to Suc again!
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1131
    We already have some rules to simplify operands smaller than 3.*}
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1132
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1133
lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1134
by (simp add: Suc3_eq_add_3)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1135
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1136
lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1137
by (simp add: Suc3_eq_add_3)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1138
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1139
lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1140
by (simp add: Suc3_eq_add_3)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1141
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1142
lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1143
by (simp add: Suc3_eq_add_3)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1144
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1145
lemmas Suc_div_eq_add3_div_number_of =
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1146
    Suc_div_eq_add3_div [of _ "number_of v", standard]
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1147
declare Suc_div_eq_add3_div_number_of [simp]
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1148
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1149
lemmas Suc_mod_eq_add3_mod_number_of =
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1150
    Suc_mod_eq_add3_mod [of _ "number_of v", standard]
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1151
declare Suc_mod_eq_add3_mod_number_of [simp]
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1152
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1153
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1154
lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1" 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1155
apply (induct "m")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1156
apply (simp_all add: mod_Suc)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1157
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1158
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1159
declare Suc_times_mod_eq [of "number_of w", standard, simp]
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1160
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1161
lemma [simp]: "n div k \<le> (Suc n) div k"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1162
by (simp add: div_le_mono) 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1163
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1164
lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1165
by (cases n) simp_all
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1166
35815
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1167
lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2"
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1168
proof -
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1169
  from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1170
  from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp 
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1171
qed
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1172
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1173
  (* Potential use of algebra : Equality modulo n*)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1174
lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1175
by (simp add: mult_ac add_ac)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1176
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1177
lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1178
proof -
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1179
  have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1180
  also have "... = Suc m mod n" by (rule mod_mult_self3) 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1181
  finally show ?thesis .
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1182
qed
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1183
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1184
lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1185
apply (subst mod_Suc [of m]) 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1186
apply (subst mod_Suc [of "m mod n"], simp) 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1187
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1188
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1189
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1190
subsection {* Division on @{typ int} *}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1191
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1192
definition divmod_int_rel :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool" where
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1193
    --{*definition of quotient and remainder*}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1194
    [code]: "divmod_int_rel a b = (\<lambda>(q, r). a = b * q + r \<and>
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1195
               (if 0 < b then 0 \<le> r \<and> r < b else b < r \<and> r \<le> 0))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1196
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1197
definition adjust :: "int \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int" where
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1198
    --{*for the division algorithm*}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1199
    [code]: "adjust b = (\<lambda>(q, r). if 0 \<le> r - b then (2 * q + 1, r - b)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1200
                         else (2 * q, r))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1201
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1202
text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1203
function posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1204
  "posDivAlg a b = (if a < b \<or>  b \<le> 0 then (0, a)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1205
     else adjust b (posDivAlg a (2 * b)))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1206
by auto
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1207
termination by (relation "measure (\<lambda>(a, b). nat (a - b + 1))")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1208
  (auto simp add: mult_2)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1209
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1210
text{*algorithm for the case @{text "a<0, b>0"}*}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1211
function negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1212
  "negDivAlg a b = (if 0 \<le>a + b \<or> b \<le> 0  then (-1, a + b)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1213
     else adjust b (negDivAlg a (2 * b)))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1214
by auto
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1215
termination by (relation "measure (\<lambda>(a, b). nat (- a - b))")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1216
  (auto simp add: mult_2)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1217
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1218
text{*algorithm for the general case @{term "b\<noteq>0"}*}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1219
definition negateSnd :: "int \<times> int \<Rightarrow> int \<times> int" where
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1220
  [code_unfold]: "negateSnd = apsnd uminus"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1221
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1222
definition divmod_int :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1223
    --{*The full division algorithm considers all possible signs for a, b
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1224
       including the special case @{text "a=0, b<0"} because 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1225
       @{term negDivAlg} requires @{term "a<0"}.*}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1226
  "divmod_int a b = (if 0 \<le> a then if 0 \<le> b then posDivAlg a b
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1227
                  else if a = 0 then (0, 0)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1228
                       else negateSnd (negDivAlg (-a) (-b))
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1229
               else 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1230
                  if 0 < b then negDivAlg a b
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1231
                  else negateSnd (posDivAlg (-a) (-b)))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1232
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1233
instantiation int :: Divides.div
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1234
begin
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1235
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1236
definition
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1237
  "a div b = fst (divmod_int a b)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1238
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1239
definition
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1240
 "a mod b = snd (divmod_int a b)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1241
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1242
instance ..
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1243
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
  1244
end
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1245
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1246
lemma divmod_int_mod_div:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1247
  "divmod_int p q = (p div q, p mod q)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1248
  by (auto simp add: div_int_def mod_int_def)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1249
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1250
text{*
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1251
Here is the division algorithm in ML:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1252
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1253
\begin{verbatim}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1254
    fun posDivAlg (a,b) =
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1255
      if a<b then (0,a)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1256
      else let val (q,r) = posDivAlg(a, 2*b)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1257
               in  if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1258
           end
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1259
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1260
    fun negDivAlg (a,b) =
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1261
      if 0\<le>a+b then (~1,a+b)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1262
      else let val (q,r) = negDivAlg(a, 2*b)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1263
               in  if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1264
           end;
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1265
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1266
    fun negateSnd (q,r:int) = (q,~r);
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1267
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1268
    fun divmod (a,b) = if 0\<le>a then 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1269
                          if b>0 then posDivAlg (a,b) 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1270
                           else if a=0 then (0,0)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1271
                                else negateSnd (negDivAlg (~a,~b))
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1272
                       else 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1273
                          if 0<b then negDivAlg (a,b)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1274
                          else        negateSnd (posDivAlg (~a,~b));
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1275
\end{verbatim}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1276
*}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1277
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1278
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1279
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1280
subsubsection{*Uniqueness and Monotonicity of Quotients and Remainders*}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1281
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1282
lemma unique_quotient_lemma:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1283
     "[| b*q' + r'  \<le> b*q + r;  0 \<le> r';  r' < b;  r < b |]  
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1284
      ==> q' \<le> (q::int)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1285
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1286
 prefer 2 apply (simp add: right_diff_distrib)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1287
apply (subgoal_tac "0 < b * (1 + q - q') ")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1288
apply (erule_tac [2] order_le_less_trans)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1289
 prefer 2 apply (simp add: right_diff_distrib right_distrib)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1290
apply (subgoal_tac "b * q' < b * (1 + q) ")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1291
 prefer 2 apply (simp add: right_diff_distrib right_distrib)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1292
apply (simp add: mult_less_cancel_left)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1293
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1294
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1295
lemma unique_quotient_lemma_neg:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1296
     "[| b*q' + r' \<le> b*q + r;  r \<le> 0;  b < r;  b < r' |]  
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1297
      ==> q \<le> (q'::int)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1298
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1299
    auto)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1300
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1301
lemma unique_quotient:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1302
     "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r');  b \<noteq> 0 |]  
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1303
      ==> q = q'"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1304
apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1305
apply (blast intro: order_antisym
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1306
             dest: order_eq_refl [THEN unique_quotient_lemma] 
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: