src/HOL/MicroJava/J/TypeRel.thy
author bulwahn
Fri Oct 21 11:17:14 2011 +0200 (2011-10-21)
changeset 45231 d85a2fdc586c
parent 44035 322d1657c40c
child 45970 b6d0cff57d96
permissions -rw-r--r--
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
nipkow@8011
     1
(*  Title:      HOL/MicroJava/J/TypeRel.thy
wenzelm@41589
     2
    Author:     David von Oheimb, Technische Universitaet Muenchen
oheimb@11070
     3
*)
nipkow@8011
     4
kleing@12911
     5
header {* \isaheader{Relations between Java Types} *}
nipkow@8011
     6
krauss@44014
     7
theory TypeRel imports Decl "~~/src/HOL/Library/Wfrec" begin
nipkow@8011
     8
berghofe@22271
     9
-- "direct subclass, cf. 8.1.3"
haftmann@33954
    10
haftmann@33954
    11
inductive_set
haftmann@33954
    12
  subcls1 :: "'c prog => (cname \<times> cname) set"
haftmann@33954
    13
  and subcls1' :: "'c prog => cname \<Rightarrow> cname => bool" ("_ \<turnstile> _ \<prec>C1 _" [71,71,71] 70)
berghofe@22271
    14
  for G :: "'c prog"
berghofe@22271
    15
where
haftmann@33954
    16
  "G \<turnstile> C \<prec>C1 D \<equiv> (C, D) \<in> subcls1 G"
haftmann@33954
    17
  | subcls1I: "\<lbrakk>class G C = Some (D,rest); C \<noteq> Object\<rbrakk> \<Longrightarrow> G \<turnstile> C \<prec>C1 D"
kleing@10061
    18
berghofe@22271
    19
abbreviation
haftmann@33954
    20
  subcls  :: "'c prog => cname \<Rightarrow> cname => bool" ("_ \<turnstile> _ \<preceq>C _"  [71,71,71] 70)
haftmann@33954
    21
  where "G \<turnstile> C \<preceq>C D \<equiv> (C, D) \<in> (subcls1 G)^*"
haftmann@33954
    22
oheimb@11026
    23
lemma subcls1D: 
oheimb@11026
    24
  "G\<turnstile>C\<prec>C1D \<Longrightarrow> C \<noteq> Object \<and> (\<exists>fs ms. class G C = Some (D,fs,ms))"
berghofe@22271
    25
apply (erule subcls1.cases)
oheimb@11026
    26
apply auto
oheimb@11026
    27
done
oheimb@11026
    28
haftmann@33954
    29
lemma subcls1_def2:
haftmann@33954
    30
  "subcls1 P =
haftmann@33954
    31
     (SIGMA C:{C. is_class P C}. {D. C\<noteq>Object \<and> fst (the (class P C))=D})"
haftmann@33954
    32
  by (auto simp add: is_class_def dest: subcls1D intro: subcls1I)
oheimb@11026
    33
haftmann@33954
    34
lemma finite_subcls1: "finite (subcls1 G)"
berghofe@23757
    35
apply(simp add: subcls1_def2 del: mem_Sigma_iff)
oheimb@11026
    36
apply(rule finite_SigmaI [OF finite_is_class])
oheimb@11026
    37
apply(rule_tac B = "{fst (the (class G C))}" in finite_subset)
oheimb@11026
    38
apply  auto
oheimb@11026
    39
done
oheimb@11026
    40
haftmann@33954
    41
lemma subcls_is_class: "(C, D) \<in> (subcls1 G)^+  ==> is_class G C"
oheimb@11026
    42
apply (unfold is_class_def)
haftmann@33954
    43
apply(erule trancl_trans_induct)
oheimb@11026
    44
apply (auto dest!: subcls1D)
oheimb@11026
    45
done
oheimb@11026
    46
oheimb@11266
    47
lemma subcls_is_class2 [rule_format (no_asm)]: 
oheimb@11266
    48
  "G\<turnstile>C\<preceq>C D \<Longrightarrow> is_class G D \<longrightarrow> is_class G C"
oheimb@11026
    49
apply (unfold is_class_def)
haftmann@33954
    50
apply (erule rtrancl_induct)
oheimb@11026
    51
apply  (drule_tac [2] subcls1D)
oheimb@11026
    52
apply  auto
oheimb@11026
    53
done
oheimb@11026
    54
haftmann@35416
    55
definition class_rec :: "'c prog \<Rightarrow> cname \<Rightarrow> 'a \<Rightarrow>
haftmann@35416
    56
    (cname \<Rightarrow> fdecl list \<Rightarrow> 'c mdecl list \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@33954
    57
  "class_rec G == wfrec ((subcls1 G)^-1)
berghofe@13090
    58
    (\<lambda>r C t f. case class G C of
haftmann@28524
    59
         None \<Rightarrow> undefined
berghofe@13090
    60
       | Some (D,fs,ms) \<Rightarrow> 
berghofe@13090
    61
           f C fs ms (if C = Object then t else r D t f))"
nipkow@11284
    62
haftmann@33954
    63
lemma class_rec_lemma:
haftmann@33954
    64
  assumes wf: "wf ((subcls1 G)^-1)"
haftmann@33954
    65
    and cls: "class G C = Some (D, fs, ms)"
haftmann@33954
    66
  shows "class_rec G C t f = f C fs ms (if C=Object then t else class_rec G D t f)"
haftmann@33954
    67
proof -
haftmann@33954
    68
  from wf have step: "\<And>H a. wfrec ((subcls1 G)\<inverse>) H a =
haftmann@33954
    69
    H (cut (wfrec ((subcls1 G)\<inverse>) H) ((subcls1 G)\<inverse>) a) a"
haftmann@33954
    70
    by (rule wfrec)
haftmann@33954
    71
  have cut: "\<And>f. C \<noteq> Object \<Longrightarrow> cut f ((subcls1 G)\<inverse>) C D = f D"
haftmann@33954
    72
    by (rule cut_apply [where r="(subcls1 G)^-1", simplified, OF subcls1I, OF cls])
haftmann@33954
    73
  from cls show ?thesis by (simp add: step cut class_rec_def)
haftmann@33954
    74
qed
oheimb@11026
    75
haftmann@20970
    76
definition
haftmann@33954
    77
  "wf_class G = wf ((subcls1 G)^-1)"
haftmann@20970
    78
haftmann@20970
    79
Andreas@44035
    80
Andreas@44035
    81
text {* Code generator setup *}
Andreas@44035
    82
Andreas@44035
    83
code_pred 
Andreas@44035
    84
  (modes: i \<Rightarrow> i \<Rightarrow> o \<Rightarrow> bool, i \<Rightarrow> i \<Rightarrow> i \<Rightarrow> bool)
Andreas@44035
    85
  subcls1p 
Andreas@44035
    86
  .
Andreas@44035
    87
declare subcls1_def[unfolded Collect_def, code_pred_def]
Andreas@44035
    88
code_pred 
Andreas@44035
    89
  (modes: i \<Rightarrow> i \<times> o \<Rightarrow> bool, i \<Rightarrow> i \<times> i \<Rightarrow> bool)
Andreas@44035
    90
  [inductify]
Andreas@44035
    91
  subcls1 
Andreas@44035
    92
  .
Andreas@44035
    93
Andreas@44035
    94
definition subcls' where "subcls' G = (subcls1p G)^**"
Andreas@44035
    95
code_pred
Andreas@44035
    96
  (modes: i \<Rightarrow> i \<Rightarrow> i \<Rightarrow> bool, i \<Rightarrow> i \<Rightarrow> o \<Rightarrow> bool)
Andreas@44035
    97
  [inductify]
Andreas@44035
    98
  subcls'
Andreas@44035
    99
.
bulwahn@45231
   100
lemma subcls_conv_subcls' [code_unfold]:
Andreas@44035
   101
  "(subcls1 G)^* = (\<lambda>(C, D). subcls' G C D)"
Andreas@44035
   102
by(simp add: subcls'_def subcls1_def rtrancl_def)(simp add: Collect_def)
Andreas@44035
   103
Andreas@44035
   104
lemma class_rec_code [code]:
Andreas@44035
   105
  "class_rec G C t f = 
Andreas@44035
   106
  (if wf_class G then 
Andreas@44035
   107
    (case class G C of
Andreas@44035
   108
       None \<Rightarrow> class_rec G C t f
Andreas@44035
   109
     | Some (D, fs, ms) \<Rightarrow> 
Andreas@44035
   110
       if C = Object then f Object fs ms t else f C fs ms (class_rec G D t f))
Andreas@44035
   111
   else class_rec G C t f)"
Andreas@44035
   112
apply(cases "wf_class G")
Andreas@44035
   113
 apply(unfold class_rec_def wf_class_def)
Andreas@44035
   114
 apply(subst wfrec, assumption)
Andreas@44035
   115
 apply(cases "class G C")
Andreas@44035
   116
  apply(simp add: wfrec)
Andreas@44035
   117
 apply clarsimp
Andreas@44035
   118
 apply(rename_tac D fs ms)
Andreas@44035
   119
 apply(rule_tac f="f C fs ms" in arg_cong)
Andreas@44035
   120
 apply(clarsimp simp add: cut_def)
Andreas@44035
   121
 apply(blast intro: subcls1I)
Andreas@44035
   122
apply simp
Andreas@44035
   123
done
krauss@32461
   124
Andreas@44035
   125
lemma wf_class_code [code]:
Andreas@44035
   126
  "wf_class G \<longleftrightarrow> (\<forall>(C, rest) \<in> set G. C \<noteq> Object \<longrightarrow> \<not> G \<turnstile> fst (the (class G C)) \<preceq>C C)"
Andreas@44035
   127
proof
Andreas@44035
   128
  assume "wf_class G"
Andreas@44035
   129
  hence wf: "wf (((subcls1 G)^+)^-1)" unfolding wf_class_def by(rule wf_converse_trancl)
Andreas@44035
   130
  hence acyc: "acyclic ((subcls1 G)^+)" by(auto dest: wf_acyclic)
Andreas@44035
   131
  show "\<forall>(C, rest) \<in> set G. C \<noteq> Object \<longrightarrow> \<not> G \<turnstile> fst (the (class G C)) \<preceq>C C"
Andreas@44035
   132
  proof(safe)
Andreas@44035
   133
    fix C D fs ms
Andreas@44035
   134
    assume "(C, D, fs, ms) \<in> set G"
Andreas@44035
   135
      and "C \<noteq> Object"
Andreas@44035
   136
      and subcls: "G \<turnstile> fst (the (class G C)) \<preceq>C C"
Andreas@44035
   137
    from `(C, D, fs, ms) \<in> set G` obtain D' fs' ms'
Andreas@44035
   138
      where "class": "class G C = Some (D', fs', ms')"
Andreas@44035
   139
      unfolding class_def by(auto dest!: weak_map_of_SomeI)
Andreas@44035
   140
    hence "G \<turnstile> C \<prec>C1 D'" using `C \<noteq> Object` ..
Andreas@44035
   141
    hence "(C, D') \<in> (subcls1 G)^+" ..
Andreas@44035
   142
    also with acyc have "C \<noteq> D'" by(auto simp add: acyclic_def)
Andreas@44035
   143
    with subcls "class" have "(D', C) \<in> (subcls1 G)^+" by(auto dest: rtranclD)
Andreas@44035
   144
    finally show False using acyc by(auto simp add: acyclic_def)
Andreas@44035
   145
  qed
Andreas@44035
   146
next
Andreas@44035
   147
  assume rhs[rule_format]: "\<forall>(C, rest) \<in> set G. C \<noteq> Object \<longrightarrow> \<not> G \<turnstile> fst (the (class G C)) \<preceq>C C"
Andreas@44035
   148
  have "acyclic (subcls1 G)"
Andreas@44035
   149
  proof(intro acyclicI strip notI)
Andreas@44035
   150
    fix C
Andreas@44035
   151
    assume "(C, C) \<in> (subcls1 G)\<^sup>+"
Andreas@44035
   152
    thus False
Andreas@44035
   153
    proof(cases)
Andreas@44035
   154
      case base
Andreas@44035
   155
      then obtain rest where "class G C = Some (C, rest)"
Andreas@44035
   156
        and "C \<noteq> Object" by cases
Andreas@44035
   157
      from `class G C = Some (C, rest)` have "(C, C, rest) \<in> set G"
Andreas@44035
   158
        unfolding class_def by(rule map_of_SomeD)
Andreas@44035
   159
      with `C \<noteq> Object` `class G C = Some (C, rest)`
Andreas@44035
   160
      have "\<not> G \<turnstile> C \<preceq>C C" by(auto dest: rhs)
Andreas@44035
   161
      thus False by simp
Andreas@44035
   162
    next
Andreas@44035
   163
      case (step D)
Andreas@44035
   164
      from `G \<turnstile> D \<prec>C1 C` obtain rest where "class G D = Some (C, rest)"
Andreas@44035
   165
        and "D \<noteq> Object" by cases
Andreas@44035
   166
      from `class G D = Some (C, rest)` have "(D, C, rest) \<in> set G"
Andreas@44035
   167
        unfolding class_def by(rule map_of_SomeD)
Andreas@44035
   168
      with `D \<noteq> Object` `class G D = Some (C, rest)`
Andreas@44035
   169
      have "\<not> G \<turnstile> C \<preceq>C D" by(auto dest: rhs)
Andreas@44035
   170
      moreover from `(C, D) \<in> (subcls1 G)\<^sup>+`
Andreas@44035
   171
      have "G \<turnstile> C \<preceq>C D" by(rule trancl_into_rtrancl)
Andreas@44035
   172
      ultimately show False by contradiction
Andreas@44035
   173
    qed
Andreas@44035
   174
  qed
Andreas@44035
   175
  thus "wf_class G" unfolding wf_class_def
Andreas@44035
   176
    by(rule finite_acyclic_wf_converse[OF finite_subcls1])
Andreas@44035
   177
qed
krauss@32461
   178
nipkow@8011
   179
consts
nipkow@14134
   180
  method :: "'c prog \<times> cname => ( sig   \<rightharpoonup> cname \<times> ty \<times> 'c)" (* ###curry *)
nipkow@14134
   181
  field  :: "'c prog \<times> cname => ( vname \<rightharpoonup> cname \<times> ty     )" (* ###curry *)
oheimb@11026
   182
  fields :: "'c prog \<times> cname => ((vname \<times> cname) \<times> ty) list" (* ###curry *)
nipkow@8011
   183
kleing@12517
   184
-- "methods of a class, with inheritance, overriding and hiding, cf. 8.4.6"
Andreas@44035
   185
defs method_def [code]: "method \<equiv> \<lambda>(G,C). class_rec G C empty (\<lambda>C fs ms ts.
oheimb@11026
   186
                           ts ++ map_of (map (\<lambda>(s,m). (s,(C,m))) ms))"
oheimb@11026
   187
haftmann@33954
   188
lemma method_rec_lemma: "[|class G C = Some (D,fs,ms); wf ((subcls1 G)^-1)|] ==>
oheimb@11026
   189
  method (G,C) = (if C = Object then empty else method (G,D)) ++  
oheimb@11026
   190
  map_of (map (\<lambda>(s,m). (s,(C,m))) ms)"
oheimb@11026
   191
apply (unfold method_def)
oheimb@11026
   192
apply (simp split del: split_if)
oheimb@11026
   193
apply (erule (1) class_rec_lemma [THEN trans]);
oheimb@11026
   194
apply auto
oheimb@11026
   195
done
oheimb@11026
   196
nipkow@8011
   197
kleing@12517
   198
-- "list of fields of a class, including inherited and hidden ones"
Andreas@44035
   199
defs fields_def [code]: "fields \<equiv> \<lambda>(G,C). class_rec G C []    (\<lambda>C fs ms ts.
oheimb@11026
   200
                           map (\<lambda>(fn,ft). ((fn,C),ft)) fs @ ts)"
oheimb@11026
   201
haftmann@33954
   202
lemma fields_rec_lemma: "[|class G C = Some (D,fs,ms); wf ((subcls1 G)^-1)|] ==>
oheimb@11026
   203
 fields (G,C) = 
oheimb@11026
   204
  map (\<lambda>(fn,ft). ((fn,C),ft)) fs @ (if C = Object then [] else fields (G,D))"
oheimb@11026
   205
apply (unfold fields_def)
oheimb@11026
   206
apply (simp split del: split_if)
oheimb@11026
   207
apply (erule (1) class_rec_lemma [THEN trans]);
oheimb@11026
   208
apply auto
oheimb@11026
   209
done
oheimb@11026
   210
oheimb@11026
   211
Andreas@44035
   212
defs field_def [code]: "field == map_of o (map (\<lambda>((fn,fd),ft). (fn,(fd,ft)))) o fields"
oheimb@11026
   213
oheimb@11026
   214
lemma field_fields: 
oheimb@11026
   215
"field (G,C) fn = Some (fd, fT) \<Longrightarrow> map_of (fields (G,C)) (fn, fd) = Some fT"
oheimb@11026
   216
apply (unfold field_def)
oheimb@11026
   217
apply (rule table_of_remap_SomeD)
oheimb@11026
   218
apply simp
oheimb@11026
   219
done
oheimb@11026
   220
oheimb@11026
   221
kleing@12517
   222
-- "widening, viz. method invocation conversion,cf. 5.3 i.e. sort of syntactic subtyping"
berghofe@23757
   223
inductive
berghofe@22271
   224
  widen   :: "'c prog => [ty   , ty   ] => bool" ("_ \<turnstile> _ \<preceq> _"   [71,71,71] 70)
berghofe@22271
   225
  for G :: "'c prog"
berghofe@22271
   226
where
kleing@12517
   227
  refl   [intro!, simp]:       "G\<turnstile>      T \<preceq> T"   -- "identity conv., cf. 5.1.1"
berghofe@22271
   228
| subcls         : "G\<turnstile>C\<preceq>C D ==> G\<turnstile>Class C \<preceq> Class D"
berghofe@22271
   229
| null   [intro!]:             "G\<turnstile>     NT \<preceq> RefT R"
nipkow@8011
   230
Andreas@44035
   231
code_pred widen .
Andreas@44035
   232
wenzelm@22597
   233
lemmas refl = HOL.refl
wenzelm@22597
   234
kleing@12517
   235
-- "casting conversion, cf. 5.5 / 5.1.5"
kleing@12517
   236
-- "left out casts on primitve types"
berghofe@23757
   237
inductive
berghofe@22271
   238
  cast    :: "'c prog => [ty   , ty   ] => bool" ("_ \<turnstile> _ \<preceq>? _"  [71,71,71] 70)
berghofe@22271
   239
  for G :: "'c prog"
berghofe@22271
   240
where
streckem@14045
   241
  widen:  "G\<turnstile> C\<preceq> D ==> G\<turnstile>C \<preceq>? D"
berghofe@22271
   242
| subcls: "G\<turnstile> D\<preceq>C C ==> G\<turnstile>Class C \<preceq>? Class D"
oheimb@11026
   243
oheimb@11026
   244
lemma widen_PrimT_RefT [iff]: "(G\<turnstile>PrimT pT\<preceq>RefT rT) = False"
oheimb@11026
   245
apply (rule iffI)
berghofe@22271
   246
apply (erule widen.cases)
oheimb@11026
   247
apply auto
oheimb@11026
   248
done
oheimb@11026
   249
oheimb@11026
   250
lemma widen_RefT: "G\<turnstile>RefT R\<preceq>T ==> \<exists>t. T=RefT t"
berghofe@23757
   251
apply (ind_cases "G\<turnstile>RefT R\<preceq>T")
oheimb@11026
   252
apply auto
oheimb@11026
   253
done
oheimb@11026
   254
oheimb@11026
   255
lemma widen_RefT2: "G\<turnstile>S\<preceq>RefT R ==> \<exists>t. S=RefT t"
berghofe@23757
   256
apply (ind_cases "G\<turnstile>S\<preceq>RefT R")
oheimb@11026
   257
apply auto
oheimb@11026
   258
done
oheimb@11026
   259
oheimb@11026
   260
lemma widen_Class: "G\<turnstile>Class C\<preceq>T ==> \<exists>D. T=Class D"
berghofe@23757
   261
apply (ind_cases "G\<turnstile>Class C\<preceq>T")
oheimb@11026
   262
apply auto
oheimb@11026
   263
done
oheimb@11026
   264
oheimb@11026
   265
lemma widen_Class_NullT [iff]: "(G\<turnstile>Class C\<preceq>NT) = False"
oheimb@11026
   266
apply (rule iffI)
berghofe@23757
   267
apply (ind_cases "G\<turnstile>Class C\<preceq>NT")
oheimb@11026
   268
apply auto
oheimb@11026
   269
done
nipkow@8011
   270
oheimb@11026
   271
lemma widen_Class_Class [iff]: "(G\<turnstile>Class C\<preceq> Class D) = (G\<turnstile>C\<preceq>C D)"
oheimb@11026
   272
apply (rule iffI)
berghofe@23757
   273
apply (ind_cases "G\<turnstile>Class C \<preceq> Class D")
oheimb@11026
   274
apply (auto elim: widen.subcls)
oheimb@11026
   275
done
oheimb@11026
   276
streckem@14045
   277
lemma widen_NT_Class [simp]: "G \<turnstile> T \<preceq> NT \<Longrightarrow> G \<turnstile> T \<preceq> Class D"
berghofe@23757
   278
by (ind_cases "G \<turnstile> T \<preceq> NT",  auto)
streckem@14045
   279
streckem@14045
   280
lemma cast_PrimT_RefT [iff]: "(G\<turnstile>PrimT pT\<preceq>? RefT rT) = False"
streckem@14045
   281
apply (rule iffI)
berghofe@22271
   282
apply (erule cast.cases)
streckem@14045
   283
apply auto
streckem@14045
   284
done
streckem@14045
   285
streckem@14045
   286
lemma cast_RefT: "G \<turnstile> C \<preceq>? Class D \<Longrightarrow> \<exists> rT. C = RefT rT"
streckem@14045
   287
apply (erule cast.cases)
streckem@14045
   288
apply simp apply (erule widen.cases) 
streckem@14045
   289
apply auto
streckem@14045
   290
done
streckem@14045
   291
kleing@12517
   292
theorem widen_trans[trans]: "\<lbrakk>G\<turnstile>S\<preceq>U; G\<turnstile>U\<preceq>T\<rbrakk> \<Longrightarrow> G\<turnstile>S\<preceq>T"
oheimb@11026
   293
proof -
kleing@12517
   294
  assume "G\<turnstile>S\<preceq>U" thus "\<And>T. G\<turnstile>U\<preceq>T \<Longrightarrow> G\<turnstile>S\<preceq>T"
wenzelm@11987
   295
  proof induct
kleing@12517
   296
    case (refl T T') thus "G\<turnstile>T\<preceq>T'" .
oheimb@11026
   297
  next
wenzelm@11987
   298
    case (subcls C D T)
oheimb@11026
   299
    then obtain E where "T = Class E" by (blast dest: widen_Class)
berghofe@22271
   300
    with subcls show "G\<turnstile>Class C\<preceq>T" by auto
oheimb@11026
   301
  next
wenzelm@11987
   302
    case (null R RT)
oheimb@11026
   303
    then obtain rt where "RT = RefT rt" by (blast dest: widen_RefT)
oheimb@11026
   304
    thus "G\<turnstile>NT\<preceq>RT" by auto
oheimb@11026
   305
  qed
oheimb@11026
   306
qed
oheimb@11026
   307
nipkow@8011
   308
end