src/HOL/Old_Number_Theory/Gauss.thy
author bulwahn
Fri Oct 21 11:17:14 2011 +0200 (2011-10-21)
changeset 45231 d85a2fdc586c
parent 44766 d4d33a4d7548
child 46756 faf62905cd53
permissions -rw-r--r--
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
wenzelm@38159
     1
(*  Title:      HOL/Old_Number_Theory/Gauss.thy
wenzelm@38159
     2
    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
paulson@13871
     3
*)
paulson@13871
     4
paulson@13871
     5
header {* Gauss' Lemma *}
paulson@13871
     6
haftmann@27556
     7
theory Gauss
haftmann@27556
     8
imports Euler
haftmann@27556
     9
begin
paulson@13871
    10
paulson@13871
    11
locale GAUSS =
paulson@13871
    12
  fixes p :: "int"
paulson@13871
    13
  fixes a :: "int"
paulson@13871
    14
nipkow@16663
    15
  assumes p_prime: "zprime p"
paulson@13871
    16
  assumes p_g_2: "2 < p"
paulson@13871
    17
  assumes p_a_relprime: "~[a = 0](mod p)"
paulson@13871
    18
  assumes a_nonzero:    "0 < a"
wenzelm@21233
    19
begin
paulson@13871
    20
wenzelm@38159
    21
definition "A = {(x::int). 0 < x & x \<le> ((p - 1) div 2)}"
wenzelm@38159
    22
definition "B = (%x. x * a) ` A"
wenzelm@38159
    23
definition "C = StandardRes p ` B"
wenzelm@38159
    24
definition "D = C \<inter> {x. x \<le> ((p - 1) div 2)}"
wenzelm@38159
    25
definition "E = C \<inter> {x. ((p - 1) div 2) < x}"
wenzelm@38159
    26
definition "F = (%x. (p - x)) ` E"
wenzelm@21233
    27
paulson@13871
    28
paulson@13871
    29
subsection {* Basic properties of p *}
paulson@13871
    30
wenzelm@21233
    31
lemma p_odd: "p \<in> zOdd"
paulson@13871
    32
  by (auto simp add: p_prime p_g_2 zprime_zOdd_eq_grt_2)
paulson@13871
    33
wenzelm@21233
    34
lemma p_g_0: "0 < p"
wenzelm@18369
    35
  using p_g_2 by auto
paulson@13871
    36
wenzelm@21233
    37
lemma int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2"
wenzelm@26289
    38
  using ListMem.insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff)
paulson@13871
    39
wenzelm@21233
    40
lemma p_minus_one_l: "(p - 1) div 2 < p"
wenzelm@18369
    41
proof -
wenzelm@18369
    42
  have "(p - 1) div 2 \<le> (p - 1) div 1"
wenzelm@18369
    43
    by (rule zdiv_mono2) (auto simp add: p_g_0)
wenzelm@18369
    44
  also have "\<dots> = p - 1" by simp
wenzelm@18369
    45
  finally show ?thesis by simp
wenzelm@18369
    46
qed
paulson@13871
    47
wenzelm@21233
    48
lemma p_eq: "p = (2 * (p - 1) div 2) + 1"
nipkow@30034
    49
  using div_mult_self1_is_id [of 2 "p - 1"] by auto
paulson@13871
    50
wenzelm@21233
    51
wenzelm@21288
    52
lemma (in -) zodd_imp_zdiv_eq: "x \<in> zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)"
paulson@13871
    53
  apply (frule odd_minus_one_even)
paulson@13871
    54
  apply (simp add: zEven_def)
paulson@13871
    55
  apply (subgoal_tac "2 \<noteq> 0")
nipkow@30034
    56
  apply (frule_tac b = "2 :: int" and a = "x - 1" in div_mult_self1_is_id)
wenzelm@18369
    57
  apply (auto simp add: even_div_2_prop2)
wenzelm@18369
    58
  done
paulson@13871
    59
wenzelm@21233
    60
wenzelm@21233
    61
lemma p_eq2: "p = (2 * ((p - 1) div 2)) + 1"
paulson@13871
    62
  apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto)
wenzelm@18369
    63
  apply (frule zodd_imp_zdiv_eq, auto)
wenzelm@18369
    64
  done
paulson@13871
    65
wenzelm@21233
    66
paulson@13871
    67
subsection {* Basic Properties of the Gauss Sets *}
paulson@13871
    68
wenzelm@21233
    69
lemma finite_A: "finite (A)"
wenzelm@18369
    70
  apply (auto simp add: A_def)
wenzelm@18369
    71
  apply (subgoal_tac "{x. 0 < x & x \<le> (p - 1) div 2} \<subseteq> {x. 0 \<le> x & x < 1 + (p - 1) div 2}")
wenzelm@18369
    72
  apply (auto simp add: bdd_int_set_l_finite finite_subset)
wenzelm@18369
    73
  done
paulson@13871
    74
wenzelm@21233
    75
lemma finite_B: "finite (B)"
nipkow@40786
    76
by (auto simp add: B_def finite_A)
paulson@13871
    77
wenzelm@21233
    78
lemma finite_C: "finite (C)"
nipkow@40786
    79
by (auto simp add: C_def finite_B)
paulson@13871
    80
wenzelm@21233
    81
lemma finite_D: "finite (D)"
wenzelm@41541
    82
by (auto simp add: D_def finite_C)
paulson@13871
    83
wenzelm@21233
    84
lemma finite_E: "finite (E)"
wenzelm@41541
    85
by (auto simp add: E_def finite_C)
paulson@13871
    86
wenzelm@21233
    87
lemma finite_F: "finite (F)"
nipkow@40786
    88
by (auto simp add: F_def finite_E)
paulson@13871
    89
wenzelm@21233
    90
lemma C_eq: "C = D \<union> E"
nipkow@40786
    91
by (auto simp add: C_def D_def E_def)
paulson@13871
    92
wenzelm@21233
    93
lemma A_card_eq: "card A = nat ((p - 1) div 2)"
wenzelm@18369
    94
  apply (auto simp add: A_def)
paulson@13871
    95
  apply (insert int_nat)
paulson@13871
    96
  apply (erule subst)
wenzelm@18369
    97
  apply (auto simp add: card_bdd_int_set_l_le)
wenzelm@18369
    98
  done
paulson@13871
    99
wenzelm@21233
   100
lemma inj_on_xa_A: "inj_on (%x. x * a) A"
wenzelm@18369
   101
  using a_nonzero by (simp add: A_def inj_on_def)
paulson@13871
   102
wenzelm@21233
   103
lemma A_res: "ResSet p A"
wenzelm@18369
   104
  apply (auto simp add: A_def ResSet_def)
wenzelm@18369
   105
  apply (rule_tac m = p in zcong_less_eq)
wenzelm@18369
   106
  apply (insert p_g_2, auto)
wenzelm@18369
   107
  done
paulson@13871
   108
wenzelm@21233
   109
lemma B_res: "ResSet p B"
paulson@13871
   110
  apply (insert p_g_2 p_a_relprime p_minus_one_l)
wenzelm@18369
   111
  apply (auto simp add: B_def)
paulson@13871
   112
  apply (rule ResSet_image)
wenzelm@18369
   113
  apply (auto simp add: A_res)
paulson@13871
   114
  apply (auto simp add: A_def)
wenzelm@18369
   115
proof -
wenzelm@18369
   116
  fix x fix y
wenzelm@18369
   117
  assume a: "[x * a = y * a] (mod p)"
wenzelm@18369
   118
  assume b: "0 < x"
wenzelm@18369
   119
  assume c: "x \<le> (p - 1) div 2"
wenzelm@18369
   120
  assume d: "0 < y"
wenzelm@18369
   121
  assume e: "y \<le> (p - 1) div 2"
wenzelm@18369
   122
  from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
wenzelm@18369
   123
  have "[x = y](mod p)"
wenzelm@18369
   124
    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
wenzelm@18369
   125
  with zcong_less_eq [of x y p] p_minus_one_l
wenzelm@18369
   126
      order_le_less_trans [of x "(p - 1) div 2" p]
wenzelm@18369
   127
      order_le_less_trans [of y "(p - 1) div 2" p] show "x = y"
wenzelm@41541
   128
    by (simp add: b c d e p_minus_one_l p_g_0)
wenzelm@18369
   129
qed
paulson@13871
   130
wenzelm@21233
   131
lemma SR_B_inj: "inj_on (StandardRes p) B"
wenzelm@41541
   132
  apply (auto simp add: B_def StandardRes_def inj_on_def A_def)
wenzelm@18369
   133
proof -
wenzelm@18369
   134
  fix x fix y
wenzelm@18369
   135
  assume a: "x * a mod p = y * a mod p"
wenzelm@18369
   136
  assume b: "0 < x"
wenzelm@18369
   137
  assume c: "x \<le> (p - 1) div 2"
wenzelm@18369
   138
  assume d: "0 < y"
wenzelm@18369
   139
  assume e: "y \<le> (p - 1) div 2"
wenzelm@18369
   140
  assume f: "x \<noteq> y"
wenzelm@18369
   141
  from a have "[x * a = y * a](mod p)"
wenzelm@18369
   142
    by (simp add: zcong_zmod_eq p_g_0)
wenzelm@18369
   143
  with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
wenzelm@18369
   144
  have "[x = y](mod p)"
wenzelm@18369
   145
    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
wenzelm@18369
   146
  with zcong_less_eq [of x y p] p_minus_one_l
wenzelm@18369
   147
    order_le_less_trans [of x "(p - 1) div 2" p]
wenzelm@18369
   148
    order_le_less_trans [of y "(p - 1) div 2" p] have "x = y"
wenzelm@41541
   149
    by (simp add: b c d e p_minus_one_l p_g_0)
wenzelm@18369
   150
  then have False
wenzelm@18369
   151
    by (simp add: f)
wenzelm@18369
   152
  then show "a = 0"
wenzelm@18369
   153
    by simp
wenzelm@18369
   154
qed
paulson@13871
   155
wenzelm@21233
   156
lemma inj_on_pminusx_E: "inj_on (%x. p - x) E"
paulson@13871
   157
  apply (auto simp add: E_def C_def B_def A_def)
wenzelm@18369
   158
  apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI)
wenzelm@18369
   159
  apply auto
wenzelm@18369
   160
  done
paulson@13871
   161
wenzelm@21233
   162
lemma A_ncong_p: "x \<in> A ==> ~[x = 0](mod p)"
paulson@13871
   163
  apply (auto simp add: A_def)
paulson@13871
   164
  apply (frule_tac m = p in zcong_not_zero)
paulson@13871
   165
  apply (insert p_minus_one_l)
wenzelm@18369
   166
  apply auto
wenzelm@18369
   167
  done
paulson@13871
   168
wenzelm@21233
   169
lemma A_greater_zero: "x \<in> A ==> 0 < x"
paulson@13871
   170
  by (auto simp add: A_def)
paulson@13871
   171
wenzelm@21233
   172
lemma B_ncong_p: "x \<in> B ==> ~[x = 0](mod p)"
paulson@13871
   173
  apply (auto simp add: B_def)
wenzelm@18369
   174
  apply (frule A_ncong_p)
paulson@13871
   175
  apply (insert p_a_relprime p_prime a_nonzero)
paulson@13871
   176
  apply (frule_tac a = x and b = a in zcong_zprime_prod_zero_contra)
wenzelm@18369
   177
  apply (auto simp add: A_greater_zero)
wenzelm@18369
   178
  done
paulson@13871
   179
wenzelm@21233
   180
lemma B_greater_zero: "x \<in> B ==> 0 < x"
wenzelm@18369
   181
  using a_nonzero by (auto simp add: B_def mult_pos_pos A_greater_zero)
paulson@13871
   182
wenzelm@21233
   183
lemma C_ncong_p: "x \<in> C ==>  ~[x = 0](mod p)"
paulson@13871
   184
  apply (auto simp add: C_def)
paulson@13871
   185
  apply (frule B_ncong_p)
wenzelm@18369
   186
  apply (subgoal_tac "[x = StandardRes p x](mod p)")
wenzelm@18369
   187
  defer apply (simp add: StandardRes_prop1)
paulson@13871
   188
  apply (frule_tac a = x and b = "StandardRes p x" and c = 0 in zcong_trans)
wenzelm@18369
   189
  apply auto
wenzelm@18369
   190
  done
paulson@13871
   191
wenzelm@21233
   192
lemma C_greater_zero: "y \<in> C ==> 0 < y"
paulson@13871
   193
  apply (auto simp add: C_def)
wenzelm@18369
   194
proof -
wenzelm@18369
   195
  fix x
wenzelm@18369
   196
  assume a: "x \<in> B"
wenzelm@18369
   197
  from p_g_0 have "0 \<le> StandardRes p x"
wenzelm@18369
   198
    by (simp add: StandardRes_lbound)
wenzelm@18369
   199
  moreover have "~[x = 0] (mod p)"
wenzelm@18369
   200
    by (simp add: a B_ncong_p)
wenzelm@18369
   201
  then have "StandardRes p x \<noteq> 0"
wenzelm@18369
   202
    by (simp add: StandardRes_prop3)
wenzelm@18369
   203
  ultimately show "0 < StandardRes p x"
wenzelm@18369
   204
    by (simp add: order_le_less)
wenzelm@18369
   205
qed
paulson@13871
   206
wenzelm@21233
   207
lemma D_ncong_p: "x \<in> D ==> ~[x = 0](mod p)"
paulson@13871
   208
  by (auto simp add: D_def C_ncong_p)
paulson@13871
   209
wenzelm@21233
   210
lemma E_ncong_p: "x \<in> E ==> ~[x = 0](mod p)"
paulson@13871
   211
  by (auto simp add: E_def C_ncong_p)
paulson@13871
   212
wenzelm@21233
   213
lemma F_ncong_p: "x \<in> F ==> ~[x = 0](mod p)"
wenzelm@18369
   214
  apply (auto simp add: F_def)
wenzelm@18369
   215
proof -
wenzelm@18369
   216
  fix x assume a: "x \<in> E" assume b: "[p - x = 0] (mod p)"
wenzelm@18369
   217
  from E_ncong_p have "~[x = 0] (mod p)"
wenzelm@18369
   218
    by (simp add: a)
wenzelm@18369
   219
  moreover from a have "0 < x"
wenzelm@18369
   220
    by (simp add: a E_def C_greater_zero)
wenzelm@18369
   221
  moreover from a have "x < p"
wenzelm@18369
   222
    by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
wenzelm@18369
   223
  ultimately have "~[p - x = 0] (mod p)"
wenzelm@18369
   224
    by (simp add: zcong_not_zero)
wenzelm@18369
   225
  from this show False by (simp add: b)
wenzelm@18369
   226
qed
paulson@13871
   227
wenzelm@21233
   228
lemma F_subset: "F \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
wenzelm@18369
   229
  apply (auto simp add: F_def E_def)
paulson@13871
   230
  apply (insert p_g_0)
paulson@13871
   231
  apply (frule_tac x = xa in StandardRes_ubound)
paulson@13871
   232
  apply (frule_tac x = x in StandardRes_ubound)
paulson@13871
   233
  apply (subgoal_tac "xa = StandardRes p xa")
paulson@13871
   234
  apply (auto simp add: C_def StandardRes_prop2 StandardRes_prop1)
wenzelm@18369
   235
proof -
wenzelm@18369
   236
  from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have
wenzelm@18369
   237
    "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)"
wenzelm@18369
   238
    by simp
wenzelm@18369
   239
  with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \<in> B |]
wenzelm@18369
   240
      ==> p - StandardRes p x \<le> (p - 1) div 2"
wenzelm@18369
   241
    by simp
wenzelm@18369
   242
qed
paulson@13871
   243
wenzelm@21233
   244
lemma D_subset: "D \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
paulson@13871
   245
  by (auto simp add: D_def C_greater_zero)
paulson@13871
   246
wenzelm@21233
   247
lemma F_eq: "F = {x. \<exists>y \<in> A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}"
paulson@13871
   248
  by (auto simp add: F_def E_def D_def C_def B_def A_def)
paulson@13871
   249
wenzelm@21233
   250
lemma D_eq: "D = {x. \<exists>y \<in> A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \<le> (p - 1) div 2)}"
paulson@13871
   251
  by (auto simp add: D_def C_def B_def A_def)
paulson@13871
   252
wenzelm@21233
   253
lemma D_leq: "x \<in> D ==> x \<le> (p - 1) div 2"
paulson@13871
   254
  by (auto simp add: D_eq)
paulson@13871
   255
wenzelm@21233
   256
lemma F_ge: "x \<in> F ==> x \<le> (p - 1) div 2"
paulson@13871
   257
  apply (auto simp add: F_eq A_def)
wenzelm@18369
   258
proof -
wenzelm@18369
   259
  fix y
wenzelm@18369
   260
  assume "(p - 1) div 2 < StandardRes p (y * a)"
wenzelm@18369
   261
  then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)"
wenzelm@18369
   262
    by arith
wenzelm@18369
   263
  also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)"
wenzelm@18369
   264
    by auto
wenzelm@18369
   265
  also have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1"
wenzelm@18369
   266
    by arith
wenzelm@18369
   267
  finally show "p - StandardRes p (y * a) \<le> (p - 1) div 2"
wenzelm@18369
   268
    using zless_add1_eq [of "p - StandardRes p (y * a)" "(p - 1) div 2"] by auto
wenzelm@18369
   269
qed
paulson@13871
   270
haftmann@27556
   271
lemma all_A_relprime: "\<forall>x \<in> A. zgcd x p = 1"
wenzelm@18369
   272
  using p_prime p_minus_one_l by (auto simp add: A_def zless_zprime_imp_zrelprime)
paulson@13871
   273
haftmann@27556
   274
lemma A_prod_relprime: "zgcd (setprod id A) p = 1"
nipkow@30837
   275
by(rule all_relprime_prod_relprime[OF finite_A all_A_relprime])
paulson@13871
   276
wenzelm@21233
   277
paulson@13871
   278
subsection {* Relationships Between Gauss Sets *}
paulson@13871
   279
wenzelm@21233
   280
lemma B_card_eq_A: "card B = card A"
wenzelm@18369
   281
  using finite_A by (simp add: finite_A B_def inj_on_xa_A card_image)
paulson@13871
   282
wenzelm@21233
   283
lemma B_card_eq: "card B = nat ((p - 1) div 2)"
wenzelm@18369
   284
  by (simp add: B_card_eq_A A_card_eq)
paulson@13871
   285
wenzelm@21233
   286
lemma F_card_eq_E: "card F = card E"
wenzelm@18369
   287
  using finite_E by (simp add: F_def inj_on_pminusx_E card_image)
paulson@13871
   288
wenzelm@21233
   289
lemma C_card_eq_B: "card C = card B"
paulson@13871
   290
  apply (insert finite_B)
wenzelm@18369
   291
  apply (subgoal_tac "inj_on (StandardRes p) B")
paulson@13871
   292
  apply (simp add: B_def C_def card_image)
paulson@13871
   293
  apply (rule StandardRes_inj_on_ResSet)
wenzelm@18369
   294
  apply (simp add: B_res)
wenzelm@18369
   295
  done
paulson@13871
   296
wenzelm@21233
   297
lemma D_E_disj: "D \<inter> E = {}"
paulson@13871
   298
  by (auto simp add: D_def E_def)
paulson@13871
   299
wenzelm@21233
   300
lemma C_card_eq_D_plus_E: "card C = card D + card E"
paulson@13871
   301
  by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E)
paulson@13871
   302
wenzelm@21233
   303
lemma C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C"
paulson@13871
   304
  apply (insert D_E_disj finite_D finite_E C_eq)
nipkow@15392
   305
  apply (frule setprod_Un_disjoint [of D E id])
wenzelm@18369
   306
  apply auto
wenzelm@18369
   307
  done
paulson@13871
   308
wenzelm@21233
   309
lemma C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)"
paulson@13871
   310
  apply (auto simp add: C_def)
wenzelm@18369
   311
  apply (insert finite_B SR_B_inj)
wenzelm@20898
   312
  apply (frule_tac f = "StandardRes p" in setprod_reindex_id [symmetric], auto)
nipkow@15392
   313
  apply (rule setprod_same_function_zcong)
wenzelm@18369
   314
  apply (auto simp add: StandardRes_prop1 zcong_sym p_g_0)
wenzelm@18369
   315
  done
paulson@13871
   316
wenzelm@21233
   317
lemma F_Un_D_subset: "(F \<union> D) \<subseteq> A"
paulson@13871
   318
  apply (rule Un_least)
wenzelm@18369
   319
  apply (auto simp add: A_def F_subset D_subset)
wenzelm@18369
   320
  done
paulson@13871
   321
wenzelm@21233
   322
lemma F_D_disj: "(F \<inter> D) = {}"
paulson@13871
   323
  apply (simp add: F_eq D_eq)
paulson@13871
   324
  apply (auto simp add: F_eq D_eq)
wenzelm@18369
   325
proof -
wenzelm@18369
   326
  fix y fix ya
wenzelm@18369
   327
  assume "p - StandardRes p (y * a) = StandardRes p (ya * a)"
wenzelm@18369
   328
  then have "p = StandardRes p (y * a) + StandardRes p (ya * a)"
wenzelm@18369
   329
    by arith
wenzelm@18369
   330
  moreover have "p dvd p"
wenzelm@18369
   331
    by auto
wenzelm@18369
   332
  ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))"
wenzelm@18369
   333
    by auto
wenzelm@18369
   334
  then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)"
wenzelm@18369
   335
    by (auto simp add: zcong_def)
wenzelm@18369
   336
  have "[y * a = StandardRes p (y * a)] (mod p)"
wenzelm@18369
   337
    by (simp only: zcong_sym StandardRes_prop1)
wenzelm@18369
   338
  moreover have "[ya * a = StandardRes p (ya * a)] (mod p)"
wenzelm@18369
   339
    by (simp only: zcong_sym StandardRes_prop1)
wenzelm@18369
   340
  ultimately have "[y * a + ya * a =
wenzelm@18369
   341
    StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)"
wenzelm@18369
   342
    by (rule zcong_zadd)
wenzelm@18369
   343
  with a have "[y * a + ya * a = 0] (mod p)"
wenzelm@18369
   344
    apply (elim zcong_trans)
wenzelm@18369
   345
    by (simp only: zcong_refl)
wenzelm@18369
   346
  also have "y * a + ya * a = a * (y + ya)"
huffman@44766
   347
    by (simp add: right_distrib mult_commute)
wenzelm@18369
   348
  finally have "[a * (y + ya) = 0] (mod p)" .
wenzelm@18369
   349
  with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
wenzelm@18369
   350
    p_a_relprime
wenzelm@18369
   351
  have a: "[y + ya = 0] (mod p)"
wenzelm@18369
   352
    by auto
wenzelm@18369
   353
  assume b: "y \<in> A" and c: "ya: A"
wenzelm@18369
   354
  with A_def have "0 < y + ya"
wenzelm@18369
   355
    by auto
wenzelm@18369
   356
  moreover from b c A_def have "y + ya \<le> (p - 1) div 2 + (p - 1) div 2"
wenzelm@18369
   357
    by auto
wenzelm@18369
   358
  moreover from b c p_eq2 A_def have "y + ya < p"
wenzelm@18369
   359
    by auto
wenzelm@18369
   360
  ultimately show False
wenzelm@18369
   361
    apply simp
wenzelm@18369
   362
    apply (frule_tac m = p in zcong_not_zero)
wenzelm@18369
   363
    apply (auto simp add: a)
wenzelm@18369
   364
    done
wenzelm@18369
   365
qed
paulson@13871
   366
wenzelm@21233
   367
lemma F_Un_D_card: "card (F \<union> D) = nat ((p - 1) div 2)"
wenzelm@18369
   368
proof -
wenzelm@18369
   369
  have "card (F \<union> D) = card E + card D"
wenzelm@18369
   370
    by (auto simp add: finite_F finite_D F_D_disj
wenzelm@18369
   371
      card_Un_disjoint F_card_eq_E)
wenzelm@18369
   372
  then have "card (F \<union> D) = card C"
wenzelm@18369
   373
    by (simp add: C_card_eq_D_plus_E)
wenzelm@18369
   374
  from this show "card (F \<union> D) = nat ((p - 1) div 2)"
wenzelm@18369
   375
    by (simp add: C_card_eq_B B_card_eq)
wenzelm@18369
   376
qed
paulson@13871
   377
wenzelm@21233
   378
lemma F_Un_D_eq_A: "F \<union> D = A"
wenzelm@18369
   379
  using finite_A F_Un_D_subset A_card_eq F_Un_D_card by (auto simp add: card_seteq)
paulson@13871
   380
wenzelm@21233
   381
lemma prod_D_F_eq_prod_A:
wenzelm@18369
   382
    "(setprod id D) * (setprod id F) = setprod id A"
paulson@13871
   383
  apply (insert F_D_disj finite_D finite_F)
nipkow@15392
   384
  apply (frule setprod_Un_disjoint [of F D id])
wenzelm@18369
   385
  apply (auto simp add: F_Un_D_eq_A)
wenzelm@18369
   386
  done
paulson@13871
   387
wenzelm@21233
   388
lemma prod_F_zcong:
wenzelm@18369
   389
  "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)"
wenzelm@18369
   390
proof -
wenzelm@18369
   391
  have "setprod id F = setprod id (op - p ` E)"
wenzelm@18369
   392
    by (auto simp add: F_def)
wenzelm@18369
   393
  then have "setprod id F = setprod (op - p) E"
wenzelm@18369
   394
    apply simp
wenzelm@18369
   395
    apply (insert finite_E inj_on_pminusx_E)
wenzelm@18369
   396
    apply (frule_tac f = "op - p" in setprod_reindex_id, auto)
wenzelm@18369
   397
    done
wenzelm@18369
   398
  then have one:
wenzelm@18369
   399
    "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)"
wenzelm@18369
   400
    apply simp
nipkow@30837
   401
    apply (insert p_g_0 finite_E StandardRes_prod)
nipkow@30837
   402
    by (auto)
wenzelm@18369
   403
  moreover have a: "\<forall>x \<in> E. [p - x = 0 - x] (mod p)"
wenzelm@18369
   404
    apply clarify
wenzelm@18369
   405
    apply (insert zcong_id [of p])
wenzelm@18369
   406
    apply (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
wenzelm@18369
   407
    done
wenzelm@18369
   408
  moreover have b: "\<forall>x \<in> E. [StandardRes p (p - x) = p - x](mod p)"
wenzelm@18369
   409
    apply clarify
wenzelm@18369
   410
    apply (simp add: StandardRes_prop1 zcong_sym)
wenzelm@18369
   411
    done
wenzelm@18369
   412
  moreover have "\<forall>x \<in> E. [StandardRes p (p - x) = - x](mod p)"
wenzelm@18369
   413
    apply clarify
wenzelm@18369
   414
    apply (insert a b)
wenzelm@18369
   415
    apply (rule_tac b = "p - x" in zcong_trans, auto)
wenzelm@18369
   416
    done
wenzelm@18369
   417
  ultimately have c:
wenzelm@18369
   418
    "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)"
wenzelm@18369
   419
    apply simp
nipkow@30837
   420
    using finite_E p_g_0
nipkow@30837
   421
      setprod_same_function_zcong [of E "StandardRes p o (op - p)" uminus p]
nipkow@30837
   422
    by auto
wenzelm@18369
   423
  then have two: "[setprod id F = setprod (uminus) E](mod p)"
wenzelm@18369
   424
    apply (insert one c)
wenzelm@18369
   425
    apply (rule zcong_trans [of "setprod id F"
nipkow@15392
   426
                               "setprod (StandardRes p o op - p) E" p
wenzelm@18369
   427
                               "setprod uminus E"], auto)
wenzelm@18369
   428
    done
wenzelm@18369
   429
  also have "setprod uminus E = (setprod id E) * (-1)^(card E)"
berghofe@22274
   430
    using finite_E by (induct set: finite) auto
wenzelm@18369
   431
  then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)"
huffman@44766
   432
    by (simp add: mult_commute)
wenzelm@18369
   433
  with two show ?thesis
wenzelm@18369
   434
    by simp
nipkow@15392
   435
qed
paulson@13871
   436
wenzelm@21233
   437
paulson@13871
   438
subsection {* Gauss' Lemma *}
paulson@13871
   439
wenzelm@21233
   440
lemma aux: "setprod id A * -1 ^ card E * a ^ card A * -1 ^ card E = setprod id A * a ^ card A"
paulson@13871
   441
  by (auto simp add: finite_E neg_one_special)
paulson@13871
   442
wenzelm@21233
   443
theorem pre_gauss_lemma:
wenzelm@18369
   444
  "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)"
wenzelm@18369
   445
proof -
wenzelm@18369
   446
  have "[setprod id A = setprod id F * setprod id D](mod p)"
huffman@44766
   447
    by (auto simp add: prod_D_F_eq_prod_A mult_commute cong del:setprod_cong)
wenzelm@18369
   448
  then have "[setprod id A = ((-1)^(card E) * setprod id E) *
wenzelm@18369
   449
      setprod id D] (mod p)"
wenzelm@18369
   450
    apply (rule zcong_trans)
nipkow@30837
   451
    apply (auto simp add: prod_F_zcong zcong_scalar cong del: setprod_cong)
wenzelm@18369
   452
    done
wenzelm@18369
   453
  then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)"
wenzelm@18369
   454
    apply (rule zcong_trans)
wenzelm@18369
   455
    apply (insert C_prod_eq_D_times_E, erule subst)
huffman@44766
   456
    apply (subst mult_assoc, auto)
wenzelm@18369
   457
    done
wenzelm@18369
   458
  then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
wenzelm@18369
   459
    apply (rule zcong_trans)
nipkow@30837
   460
    apply (simp add: C_B_zcong_prod zcong_scalar2 cong del:setprod_cong)
wenzelm@18369
   461
    done
wenzelm@18369
   462
  then have "[setprod id A = ((-1)^(card E) *
wenzelm@18369
   463
    (setprod id ((%x. x * a) ` A)))] (mod p)"
wenzelm@18369
   464
    by (simp add: B_def)
wenzelm@18369
   465
  then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))]
wenzelm@18369
   466
    (mod p)"
nipkow@30837
   467
    by (simp add:finite_A inj_on_xa_A setprod_reindex_id[symmetric] cong del:setprod_cong)
wenzelm@18369
   468
  moreover have "setprod (%x. x * a) A =
wenzelm@18369
   469
    setprod (%x. a) A * setprod id A"
berghofe@22274
   470
    using finite_A by (induct set: finite) auto
wenzelm@18369
   471
  ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A *
wenzelm@18369
   472
    setprod id A))] (mod p)"
wenzelm@18369
   473
    by simp
wenzelm@18369
   474
  then have "[setprod id A = ((-1)^(card E) * a^(card A) *
wenzelm@18369
   475
      setprod id A)](mod p)"
wenzelm@18369
   476
    apply (rule zcong_trans)
huffman@44766
   477
    apply (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant mult_assoc)
wenzelm@18369
   478
    done
wenzelm@18369
   479
  then have a: "[setprod id A * (-1)^(card E) =
wenzelm@18369
   480
      ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)"
wenzelm@18369
   481
    by (rule zcong_scalar)
wenzelm@18369
   482
  then have "[setprod id A * (-1)^(card E) = setprod id A *
wenzelm@18369
   483
      (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
wenzelm@18369
   484
    apply (rule zcong_trans)
wenzelm@18369
   485
    apply (simp add: a mult_commute mult_left_commute)
wenzelm@18369
   486
    done
wenzelm@18369
   487
  then have "[setprod id A * (-1)^(card E) = setprod id A *
wenzelm@18369
   488
      a^(card A)](mod p)"
wenzelm@18369
   489
    apply (rule zcong_trans)
nipkow@30837
   490
    apply (simp add: aux cong del:setprod_cong)
wenzelm@18369
   491
    done
wenzelm@18369
   492
  with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"]
wenzelm@18369
   493
      p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)"
wenzelm@18369
   494
    by (simp add: order_less_imp_le)
wenzelm@18369
   495
  from this show ?thesis
wenzelm@18369
   496
    by (simp add: A_card_eq zcong_sym)
nipkow@15392
   497
qed
paulson@13871
   498
wenzelm@21233
   499
theorem gauss_lemma: "(Legendre a p) = (-1) ^ (card E)"
nipkow@15392
   500
proof -
paulson@13871
   501
  from Euler_Criterion p_prime p_g_2 have
wenzelm@18369
   502
      "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)"
paulson@13871
   503
    by auto
nipkow@15392
   504
  moreover note pre_gauss_lemma
nipkow@15392
   505
  ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)"
paulson@13871
   506
    by (rule zcong_trans)
nipkow@15392
   507
  moreover from p_a_relprime have "(Legendre a p) = 1 | (Legendre a p) = (-1)"
paulson@13871
   508
    by (auto simp add: Legendre_def)
nipkow@15392
   509
  moreover have "(-1::int) ^ (card E) = 1 | (-1::int) ^ (card E) = -1"
paulson@13871
   510
    by (rule neg_one_power)
nipkow@15392
   511
  ultimately show ?thesis
paulson@13871
   512
    by (auto simp add: p_g_2 one_not_neg_one_mod_m zcong_sym)
nipkow@15392
   513
qed
paulson@13871
   514
avigad@16775
   515
end
wenzelm@21233
   516
wenzelm@21233
   517
end