src/HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML
author blanchet
Fri Sep 17 01:22:01 2010 +0200 (2010-09-17)
changeset 39500 d91ef7fbc500
parent 39495 bb4fb9ffe2d1
child 39710 6542245db5c2
permissions -rw-r--r--
move functions around
blanchet@38988
     1
(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML
blanchet@38027
     2
    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
blanchet@38027
     3
    Author:     Claire Quigley, Cambridge University Computer Laboratory
blanchet@36392
     4
    Author:     Jasmin Blanchette, TU Muenchen
paulson@21978
     5
blanchet@39495
     6
Proof reconstruction for Sledgehammer.
wenzelm@33310
     7
*)
wenzelm@33310
     8
blanchet@38988
     9
signature SLEDGEHAMMER_RECONSTRUCT =
paulson@24425
    10
sig
blanchet@38988
    11
  type locality = Sledgehammer_Filter.locality
blanchet@36281
    12
  type minimize_command = string list -> string
blanchet@38818
    13
  type metis_params =
blanchet@39327
    14
    string * bool * minimize_command * string * (string * locality) list vector
blanchet@39327
    15
    * thm * int
blanchet@38818
    16
  type isar_params =
blanchet@38040
    17
    string Symtab.table * bool * int * Proof.context * int list list
blanchet@38818
    18
  type text_result = string * (string * locality) list
blanchet@38818
    19
blanchet@39493
    20
  val repair_conjecture_shape_and_axiom_names :
blanchet@39493
    21
    string -> int list list -> (string * locality) list vector
blanchet@39493
    22
    -> int list list * (string * locality) list vector
blanchet@38818
    23
  val metis_proof_text : metis_params -> text_result
blanchet@38818
    24
  val isar_proof_text : isar_params -> metis_params -> text_result
blanchet@38818
    25
  val proof_text : bool -> isar_params -> metis_params -> text_result
paulson@24425
    26
end;
paulson@21978
    27
blanchet@38988
    28
structure Sledgehammer_Reconstruct : SLEDGEHAMMER_RECONSTRUCT =
paulson@21978
    29
struct
paulson@21978
    30
blanchet@38028
    31
open ATP_Problem
blanchet@39452
    32
open ATP_Proof
blanchet@39494
    33
open Metis_Translate
blanchet@36478
    34
open Sledgehammer_Util
blanchet@38988
    35
open Sledgehammer_Filter
blanchet@38282
    36
open Sledgehammer_Translate
paulson@21978
    37
blanchet@36281
    38
type minimize_command = string list -> string
blanchet@38818
    39
type metis_params =
blanchet@39327
    40
  string * bool * minimize_command * string * (string * locality) list vector
blanchet@39327
    41
  * thm * int
blanchet@38818
    42
type isar_params =
blanchet@38818
    43
  string Symtab.table * bool * int * Proof.context * int list list
blanchet@38818
    44
type text_result = string * (string * locality) list
blanchet@36281
    45
blanchet@39500
    46
fun is_head_digit s = Char.isDigit (String.sub (s, 0))
blanchet@39500
    47
val scan_integer = Scan.many1 is_head_digit >> (the o Int.fromString o implode)
blanchet@39500
    48
blanchet@39500
    49
fun find_first_in_list_vector vec key =
blanchet@39500
    50
  Vector.foldl (fn (ps, NONE) => AList.lookup (op =) ps key
blanchet@39500
    51
                 | (_, value) => value) NONE vec
blanchet@39500
    52
blanchet@39453
    53
blanchet@39493
    54
(** SPASS's Flotter hack **)
blanchet@39493
    55
blanchet@39493
    56
(* This is a hack required for keeping track of axioms after they have been
blanchet@39493
    57
   clausified by SPASS's Flotter tool. The "ATP/scripts/spass" script is also
blanchet@39493
    58
   part of this hack. *)
blanchet@39493
    59
blanchet@39493
    60
val set_ClauseFormulaRelationN = "set_ClauseFormulaRelation"
blanchet@39493
    61
blanchet@39493
    62
fun extract_clause_sequence output =
blanchet@39493
    63
  let
blanchet@39493
    64
    val tokens_of = String.tokens (not o Char.isAlphaNum)
blanchet@39493
    65
    fun extract_num ("clause" :: (ss as _ :: _)) =
blanchet@39493
    66
    Int.fromString (List.last ss)
blanchet@39493
    67
      | extract_num _ = NONE
blanchet@39493
    68
  in output |> split_lines |> map_filter (extract_num o tokens_of) end
blanchet@39493
    69
blanchet@39493
    70
val parse_clause_formula_pair =
blanchet@39493
    71
  $$ "(" |-- scan_integer --| $$ ","
blanchet@39493
    72
  -- (Symbol.scan_id ::: Scan.repeat ($$ "," |-- Symbol.scan_id)) --| $$ ")"
blanchet@39493
    73
  --| Scan.option ($$ ",")
blanchet@39493
    74
val parse_clause_formula_relation =
blanchet@39493
    75
  Scan.this_string set_ClauseFormulaRelationN |-- $$ "("
blanchet@39493
    76
  |-- Scan.repeat parse_clause_formula_pair
blanchet@39493
    77
val extract_clause_formula_relation =
blanchet@39493
    78
  Substring.full #> Substring.position set_ClauseFormulaRelationN
blanchet@39493
    79
  #> snd #> Substring.position "." #> fst #> Substring.string
blanchet@39493
    80
  #> explode #> filter_out Symbol.is_blank #> parse_clause_formula_relation
blanchet@39493
    81
  #> fst
blanchet@39493
    82
blanchet@39493
    83
fun repair_conjecture_shape_and_axiom_names output conjecture_shape
blanchet@39493
    84
                                            axiom_names =
blanchet@39493
    85
  if String.isSubstring set_ClauseFormulaRelationN output then
blanchet@39493
    86
    let
blanchet@39493
    87
      val j0 = hd (hd conjecture_shape)
blanchet@39493
    88
      val seq = extract_clause_sequence output
blanchet@39493
    89
      val name_map = extract_clause_formula_relation output
blanchet@39493
    90
      fun renumber_conjecture j =
blanchet@39493
    91
        conjecture_prefix ^ string_of_int (j - j0)
blanchet@39493
    92
        |> AList.find (fn (s, ss) => member (op =) ss s) name_map
blanchet@39493
    93
        |> map (fn s => find_index (curry (op =) s) seq + 1)
blanchet@39493
    94
      fun names_for_number j =
blanchet@39493
    95
        j |> AList.lookup (op =) name_map |> these
blanchet@39493
    96
          |> map_filter (try (unprefix axiom_prefix)) |> map unascii_of
blanchet@39493
    97
          |> map (fn name =>
blanchet@39493
    98
                     (name, name |> find_first_in_list_vector axiom_names
blanchet@39493
    99
                                 |> the)
blanchet@39493
   100
                     handle Option.Option =>
blanchet@39493
   101
                            error ("No such fact: " ^ quote name ^ "."))
blanchet@39493
   102
    in
blanchet@39493
   103
      (conjecture_shape |> map (maps renumber_conjecture),
blanchet@39493
   104
       seq |> map names_for_number |> Vector.fromList)
blanchet@39493
   105
    end
blanchet@39493
   106
  else
blanchet@39493
   107
    (conjecture_shape, axiom_names)
blanchet@39493
   108
blanchet@39493
   109
blanchet@39453
   110
(** Soft-core proof reconstruction: Metis one-liner **)
blanchet@39453
   111
blanchet@39453
   112
fun string_for_label (s, num) = s ^ string_of_int num
blanchet@39453
   113
blanchet@39453
   114
fun metis_using [] = ""
blanchet@39453
   115
  | metis_using ls =
blanchet@39453
   116
    "using " ^ space_implode " " (map string_for_label ls) ^ " "
blanchet@39453
   117
fun metis_apply _ 1 = "by "
blanchet@39453
   118
  | metis_apply 1 _ = "apply "
blanchet@39453
   119
  | metis_apply i _ = "prefer " ^ string_of_int i ^ " apply "
blanchet@39453
   120
fun metis_name full_types = if full_types then "metisFT" else "metis"
blanchet@39453
   121
fun metis_call full_types [] = metis_name full_types
blanchet@39453
   122
  | metis_call full_types ss =
blanchet@39453
   123
    "(" ^ metis_name full_types ^ " " ^ space_implode " " ss ^ ")"
blanchet@39453
   124
fun metis_command full_types i n (ls, ss) =
blanchet@39453
   125
  metis_using ls ^ metis_apply i n ^ metis_call full_types ss
blanchet@39453
   126
fun metis_line banner full_types i n ss =
blanchet@39453
   127
  banner ^ ": " ^
blanchet@39453
   128
  Markup.markup Markup.sendback (metis_command full_types i n ([], ss)) ^ "."
blanchet@39453
   129
fun minimize_line _ [] = ""
blanchet@39453
   130
  | minimize_line minimize_command ss =
blanchet@39453
   131
    case minimize_command ss of
blanchet@39453
   132
      "" => ""
blanchet@39453
   133
    | command =>
blanchet@39453
   134
      "\nTo minimize the number of lemmas, try this: " ^
blanchet@39453
   135
      Markup.markup Markup.sendback command ^ "."
blanchet@39453
   136
blanchet@39455
   137
fun resolve_axiom axiom_names ((_, SOME s)) =
blanchet@39453
   138
    (case strip_prefix_and_unascii axiom_prefix s of
blanchet@39453
   139
       SOME s' => (case find_first_in_list_vector axiom_names s' of
blanchet@39453
   140
                     SOME x => [(s', x)]
blanchet@39453
   141
                   | NONE => [])
blanchet@39453
   142
     | NONE => [])
blanchet@39455
   143
  | resolve_axiom axiom_names (num, NONE) =
blanchet@39453
   144
    case Int.fromString num of
blanchet@39453
   145
      SOME j =>
blanchet@39453
   146
      if j > 0 andalso j <= Vector.length axiom_names then
blanchet@39453
   147
        Vector.sub (axiom_names, j - 1)
blanchet@39453
   148
      else
blanchet@39453
   149
        []
blanchet@39453
   150
    | NONE => []
blanchet@39453
   151
blanchet@39453
   152
fun add_fact axiom_names (Inference (name, _, [])) =
blanchet@39453
   153
    append (resolve_axiom axiom_names name)
blanchet@39453
   154
  | add_fact _ _ = I
blanchet@39453
   155
blanchet@39453
   156
fun used_facts_in_tstplike_proof axiom_names =
blanchet@39454
   157
  atp_proof_from_tstplike_string #> rpair [] #-> fold (add_fact axiom_names)
blanchet@39453
   158
blanchet@39453
   159
fun used_facts axiom_names =
blanchet@39453
   160
  used_facts_in_tstplike_proof axiom_names
blanchet@39453
   161
  #> List.partition (curry (op =) Chained o snd)
blanchet@39453
   162
  #> pairself (sort_distinct (string_ord o pairself fst))
blanchet@39453
   163
blanchet@39453
   164
fun metis_proof_text (banner, full_types, minimize_command,
blanchet@39453
   165
                      tstplike_proof, axiom_names, goal, i) =
blanchet@39453
   166
  let
blanchet@39453
   167
    val (chained_lemmas, other_lemmas) =
blanchet@39453
   168
      used_facts axiom_names tstplike_proof
blanchet@39453
   169
    val n = Logic.count_prems (prop_of goal)
blanchet@39453
   170
  in
blanchet@39453
   171
    (metis_line banner full_types i n (map fst other_lemmas) ^
blanchet@39453
   172
     minimize_line minimize_command (map fst (other_lemmas @ chained_lemmas)),
blanchet@39453
   173
     other_lemmas @ chained_lemmas)
blanchet@39453
   174
  end
blanchet@39453
   175
blanchet@39453
   176
blanchet@39453
   177
(** Hard-core proof reconstruction: structured Isar proofs **)
blanchet@39453
   178
blanchet@38014
   179
(* Simple simplifications to ensure that sort annotations don't leave a trail of
blanchet@38014
   180
   spurious "True"s. *)
blanchet@38014
   181
fun s_not @{const False} = @{const True}
blanchet@38014
   182
  | s_not @{const True} = @{const False}
blanchet@38014
   183
  | s_not (@{const Not} $ t) = t
blanchet@38014
   184
  | s_not t = @{const Not} $ t
blanchet@38014
   185
fun s_conj (@{const True}, t2) = t2
blanchet@38014
   186
  | s_conj (t1, @{const True}) = t1
blanchet@38014
   187
  | s_conj p = HOLogic.mk_conj p
blanchet@38014
   188
fun s_disj (@{const False}, t2) = t2
blanchet@38014
   189
  | s_disj (t1, @{const False}) = t1
blanchet@38014
   190
  | s_disj p = HOLogic.mk_disj p
blanchet@38014
   191
fun s_imp (@{const True}, t2) = t2
blanchet@38014
   192
  | s_imp (t1, @{const False}) = s_not t1
blanchet@38014
   193
  | s_imp p = HOLogic.mk_imp p
blanchet@38014
   194
fun s_iff (@{const True}, t2) = t2
blanchet@38014
   195
  | s_iff (t1, @{const True}) = t1
blanchet@38014
   196
  | s_iff (t1, t2) = HOLogic.eq_const HOLogic.boolT $ t1 $ t2
blanchet@38014
   197
blanchet@39425
   198
fun forall_of v t = HOLogic.all_const (fastype_of v) $ lambda v t
blanchet@39425
   199
fun exists_of v t = HOLogic.exists_const (fastype_of v) $ lambda v t
blanchet@39425
   200
blanchet@39452
   201
fun negate_term (Const (@{const_name All}, T) $ Abs (s, T', t')) =
blanchet@39452
   202
    Const (@{const_name Ex}, T) $ Abs (s, T', negate_term t')
blanchet@39452
   203
  | negate_term (Const (@{const_name Ex}, T) $ Abs (s, T', t')) =
blanchet@39452
   204
    Const (@{const_name All}, T) $ Abs (s, T', negate_term t')
blanchet@39452
   205
  | negate_term (@{const HOL.implies} $ t1 $ t2) =
blanchet@39452
   206
    @{const HOL.conj} $ t1 $ negate_term t2
blanchet@39452
   207
  | negate_term (@{const HOL.conj} $ t1 $ t2) =
blanchet@39452
   208
    @{const HOL.disj} $ negate_term t1 $ negate_term t2
blanchet@39452
   209
  | negate_term (@{const HOL.disj} $ t1 $ t2) =
blanchet@39452
   210
    @{const HOL.conj} $ negate_term t1 $ negate_term t2
blanchet@39452
   211
  | negate_term (@{const Not} $ t) = t
blanchet@39452
   212
  | negate_term t = @{const Not} $ t
blanchet@39368
   213
blanchet@39453
   214
val indent_size = 2
blanchet@39453
   215
val no_label = ("", ~1)
blanchet@39453
   216
blanchet@39453
   217
val raw_prefix = "X"
blanchet@39453
   218
val assum_prefix = "A"
blanchet@39453
   219
val fact_prefix = "F"
blanchet@39370
   220
blanchet@39455
   221
fun resolve_conjecture conjecture_shape (num, s_opt) =
blanchet@39455
   222
  let
blanchet@39455
   223
    val k = case try (unprefix conjecture_prefix) (the_default "" s_opt) of
blanchet@39455
   224
              SOME s => Int.fromString s |> the_default ~1
blanchet@39455
   225
            | NONE => case Int.fromString num of
blanchet@39455
   226
                        SOME j => find_index (exists (curry (op =) j))
blanchet@39455
   227
                                             conjecture_shape
blanchet@39455
   228
                      | NONE => ~1
blanchet@39455
   229
  in if k >= 0 then [k] else [] end
blanchet@39453
   230
blanchet@39453
   231
val is_axiom = not o null oo resolve_axiom
blanchet@39370
   232
val is_conjecture = not o null oo resolve_conjecture
blanchet@36291
   233
blanchet@39453
   234
fun raw_label_for_name conjecture_shape name =
blanchet@39453
   235
  case resolve_conjecture conjecture_shape name of
blanchet@39453
   236
    [j] => (conjecture_prefix, j)
blanchet@39455
   237
  | _ => case Int.fromString (fst name) of
blanchet@39453
   238
           SOME j => (raw_prefix, j)
blanchet@39455
   239
         | NONE => (raw_prefix ^ fst name, 0)
blanchet@39453
   240
paulson@21978
   241
(**** INTERPRETATION OF TSTP SYNTAX TREES ****)
paulson@21978
   242
blanchet@37991
   243
exception FO_TERM of string fo_term list
blanchet@37994
   244
exception FORMULA of (string, string fo_term) formula list
blanchet@37991
   245
exception SAME of unit
paulson@21978
   246
blanchet@36909
   247
(* Type variables are given the basic sort "HOL.type". Some will later be
blanchet@37991
   248
   constrained by information from type literals, or by type inference. *)
blanchet@37991
   249
fun type_from_fo_term tfrees (u as ATerm (a, us)) =
blanchet@37991
   250
  let val Ts = map (type_from_fo_term tfrees) us in
blanchet@38748
   251
    case strip_prefix_and_unascii type_const_prefix a of
blanchet@37991
   252
      SOME b => Type (invert_const b, Ts)
blanchet@37991
   253
    | NONE =>
blanchet@37991
   254
      if not (null us) then
blanchet@37991
   255
        raise FO_TERM [u]  (* only "tconst"s have type arguments *)
blanchet@38748
   256
      else case strip_prefix_and_unascii tfree_prefix a of
blanchet@37991
   257
        SOME b =>
blanchet@37991
   258
        let val s = "'" ^ b in
blanchet@37991
   259
          TFree (s, AList.lookup (op =) tfrees s |> the_default HOLogic.typeS)
blanchet@37991
   260
        end
blanchet@36486
   261
      | NONE =>
blanchet@38748
   262
        case strip_prefix_and_unascii tvar_prefix a of
blanchet@37991
   263
          SOME b => TVar (("'" ^ b, 0), HOLogic.typeS)
blanchet@36486
   264
        | NONE =>
blanchet@37991
   265
          (* Variable from the ATP, say "X1" *)
blanchet@37991
   266
          Type_Infer.param 0 (a, HOLogic.typeS)
blanchet@37991
   267
  end
paulson@21978
   268
blanchet@38014
   269
(* Type class literal applied to a type. Returns triple of polarity, class,
blanchet@38014
   270
   type. *)
blanchet@38014
   271
fun type_constraint_from_term pos tfrees (u as ATerm (a, us)) =
blanchet@38748
   272
  case (strip_prefix_and_unascii class_prefix a,
blanchet@38014
   273
        map (type_from_fo_term tfrees) us) of
blanchet@38014
   274
    (SOME b, [T]) => (pos, b, T)
blanchet@38014
   275
  | _ => raise FO_TERM [u]
blanchet@38014
   276
blanchet@38085
   277
(** Accumulate type constraints in a formula: negative type literals **)
blanchet@38014
   278
fun add_var (key, z)  = Vartab.map_default (key, []) (cons z)
blanchet@38014
   279
fun add_type_constraint (false, cl, TFree (a ,_)) = add_var ((a, ~1), cl)
blanchet@38014
   280
  | add_type_constraint (false, cl, TVar (ix, _)) = add_var (ix, cl)
blanchet@38014
   281
  | add_type_constraint _ = I
blanchet@38014
   282
blanchet@38490
   283
fun repair_atp_variable_name f s =
blanchet@36486
   284
  let
blanchet@36486
   285
    fun subscript_name s n = s ^ nat_subscript n
blanchet@38488
   286
    val s = String.map f s
blanchet@36486
   287
  in
blanchet@36486
   288
    case space_explode "_" s of
blanchet@36486
   289
      [_] => (case take_suffix Char.isDigit (String.explode s) of
blanchet@36486
   290
                (cs1 as _ :: _, cs2 as _ :: _) =>
blanchet@36486
   291
                subscript_name (String.implode cs1)
blanchet@36486
   292
                               (the (Int.fromString (String.implode cs2)))
blanchet@36486
   293
              | (_, _) => s)
blanchet@36486
   294
    | [s1, s2] => (case Int.fromString s2 of
blanchet@36486
   295
                     SOME n => subscript_name s1 n
blanchet@36486
   296
                   | NONE => s)
blanchet@36486
   297
    | _ => s
blanchet@36486
   298
  end
blanchet@36486
   299
blanchet@36909
   300
(* First-order translation. No types are known for variables. "HOLogic.typeT"
blanchet@38014
   301
   should allow them to be inferred. *)
blanchet@38014
   302
fun raw_term_from_pred thy full_types tfrees =
blanchet@36909
   303
  let
blanchet@37643
   304
    fun aux opt_T extra_us u =
blanchet@36909
   305
      case u of
blanchet@37991
   306
        ATerm ("hBOOL", [u1]) => aux (SOME @{typ bool}) [] u1
blanchet@37991
   307
      | ATerm ("hAPP", [u1, u2]) => aux opt_T (u2 :: extra_us) u1
blanchet@37991
   308
      | ATerm (a, us) =>
blanchet@36909
   309
        if a = type_wrapper_name then
blanchet@36909
   310
          case us of
blanchet@37643
   311
            [typ_u, term_u] =>
blanchet@37991
   312
            aux (SOME (type_from_fo_term tfrees typ_u)) extra_us term_u
blanchet@37991
   313
          | _ => raise FO_TERM us
blanchet@38748
   314
        else case strip_prefix_and_unascii const_prefix a of
blanchet@36909
   315
          SOME "equal" =>
blanchet@39106
   316
          let val ts = map (aux NONE []) us in
blanchet@39106
   317
            if length ts = 2 andalso hd ts aconv List.last ts then
blanchet@39106
   318
              (* Vampire is keen on producing these. *)
blanchet@39106
   319
              @{const True}
blanchet@39106
   320
            else
blanchet@39106
   321
              list_comb (Const (@{const_name HOL.eq}, HOLogic.typeT), ts)
blanchet@39106
   322
          end
blanchet@36909
   323
        | SOME b =>
blanchet@36909
   324
          let
blanchet@36909
   325
            val c = invert_const b
blanchet@36909
   326
            val num_type_args = num_type_args thy c
blanchet@37643
   327
            val (type_us, term_us) =
blanchet@37643
   328
              chop (if full_types then 0 else num_type_args) us
blanchet@37643
   329
            (* Extra args from "hAPP" come after any arguments given directly to
blanchet@37643
   330
               the constant. *)
blanchet@37643
   331
            val term_ts = map (aux NONE []) term_us
blanchet@37643
   332
            val extra_ts = map (aux NONE []) extra_us
blanchet@36909
   333
            val t =
blanchet@36909
   334
              Const (c, if full_types then
blanchet@36909
   335
                          case opt_T of
blanchet@37643
   336
                            SOME T => map fastype_of term_ts ---> T
blanchet@36909
   337
                          | NONE =>
blanchet@36909
   338
                            if num_type_args = 0 then
blanchet@36909
   339
                              Sign.const_instance thy (c, [])
blanchet@36909
   340
                            else
blanchet@36909
   341
                              raise Fail ("no type information for " ^ quote c)
blanchet@36909
   342
                        else
blanchet@37998
   343
                          Sign.const_instance thy (c,
blanchet@37998
   344
                              map (type_from_fo_term tfrees) type_us))
blanchet@37643
   345
          in list_comb (t, term_ts @ extra_ts) end
blanchet@36909
   346
        | NONE => (* a free or schematic variable *)
blanchet@36909
   347
          let
blanchet@37643
   348
            val ts = map (aux NONE []) (us @ extra_us)
blanchet@36909
   349
            val T = map fastype_of ts ---> HOLogic.typeT
blanchet@36909
   350
            val t =
blanchet@38748
   351
              case strip_prefix_and_unascii fixed_var_prefix a of
blanchet@36909
   352
                SOME b => Free (b, T)
blanchet@36909
   353
              | NONE =>
blanchet@38748
   354
                case strip_prefix_and_unascii schematic_var_prefix a of
blanchet@36967
   355
                  SOME b => Var ((b, 0), T)
blanchet@36909
   356
                | NONE =>
blanchet@39452
   357
                  if is_atp_variable a then
blanchet@38490
   358
                    Var ((repair_atp_variable_name Char.toLower a, 0), T)
blanchet@38017
   359
                  else
blanchet@38488
   360
                    (* Skolem constants? *)
blanchet@38490
   361
                    Var ((repair_atp_variable_name Char.toUpper a, 0), T)
blanchet@36909
   362
          in list_comb (t, ts) end
blanchet@38014
   363
  in aux (SOME HOLogic.boolT) [] end
paulson@21978
   364
blanchet@38014
   365
fun term_from_pred thy full_types tfrees pos (u as ATerm (s, _)) =
blanchet@38014
   366
  if String.isPrefix class_prefix s then
blanchet@38014
   367
    add_type_constraint (type_constraint_from_term pos tfrees u)
blanchet@38014
   368
    #> pair @{const True}
blanchet@38014
   369
  else
blanchet@38014
   370
    pair (raw_term_from_pred thy full_types tfrees u)
blanchet@36402
   371
blanchet@36555
   372
val combinator_table =
blanchet@36555
   373
  [(@{const_name COMBI}, @{thm COMBI_def_raw}),
blanchet@36555
   374
   (@{const_name COMBK}, @{thm COMBK_def_raw}),
blanchet@36555
   375
   (@{const_name COMBB}, @{thm COMBB_def_raw}),
blanchet@36555
   376
   (@{const_name COMBC}, @{thm COMBC_def_raw}),
blanchet@36555
   377
   (@{const_name COMBS}, @{thm COMBS_def_raw})]
blanchet@36555
   378
blanchet@36555
   379
fun uncombine_term (t1 $ t2) = betapply (pairself uncombine_term (t1, t2))
blanchet@36555
   380
  | uncombine_term (Abs (s, T, t')) = Abs (s, T, uncombine_term t')
blanchet@36555
   381
  | uncombine_term (t as Const (x as (s, _))) =
blanchet@36555
   382
    (case AList.lookup (op =) combinator_table s of
blanchet@36555
   383
       SOME thm => thm |> prop_of |> specialize_type @{theory} x |> Logic.dest_equals |> snd
blanchet@36555
   384
     | NONE => t)
blanchet@36555
   385
  | uncombine_term t = t
blanchet@36555
   386
blanchet@37991
   387
(* Update schematic type variables with detected sort constraints. It's not
blanchet@37991
   388
   totally clear when this code is necessary. *)
blanchet@38014
   389
fun repair_tvar_sorts (t, tvar_tab) =
blanchet@36909
   390
  let
blanchet@37991
   391
    fun do_type (Type (a, Ts)) = Type (a, map do_type Ts)
blanchet@37991
   392
      | do_type (TVar (xi, s)) =
blanchet@37991
   393
        TVar (xi, the_default s (Vartab.lookup tvar_tab xi))
blanchet@37991
   394
      | do_type (TFree z) = TFree z
blanchet@37991
   395
    fun do_term (Const (a, T)) = Const (a, do_type T)
blanchet@37991
   396
      | do_term (Free (a, T)) = Free (a, do_type T)
blanchet@37991
   397
      | do_term (Var (xi, T)) = Var (xi, do_type T)
blanchet@37991
   398
      | do_term (t as Bound _) = t
blanchet@37991
   399
      | do_term (Abs (a, T, t)) = Abs (a, do_type T, do_term t)
blanchet@37991
   400
      | do_term (t1 $ t2) = do_term t1 $ do_term t2
blanchet@37991
   401
  in t |> not (Vartab.is_empty tvar_tab) ? do_term end
blanchet@37991
   402
blanchet@39425
   403
fun quantify_over_var quant_of var_s t =
blanchet@39425
   404
  let
blanchet@39425
   405
    val vars = [] |> Term.add_vars t |> filter (fn ((s, _), _) => s = var_s)
blanchet@39425
   406
                  |> map Var
blanchet@39425
   407
  in fold_rev quant_of vars t end
blanchet@37991
   408
blanchet@38085
   409
(* Interpret an ATP formula as a HOL term, extracting sort constraints as they
blanchet@38085
   410
   appear in the formula. *)
blanchet@38014
   411
fun prop_from_formula thy full_types tfrees phi =
blanchet@38014
   412
  let
blanchet@38014
   413
    fun do_formula pos phi =
blanchet@37991
   414
      case phi of
blanchet@38014
   415
        AQuant (_, [], phi) => do_formula pos phi
blanchet@37991
   416
      | AQuant (q, x :: xs, phi') =>
blanchet@38014
   417
        do_formula pos (AQuant (q, xs, phi'))
blanchet@39425
   418
        #>> quantify_over_var (case q of
blanchet@39425
   419
                                 AForall => forall_of
blanchet@39425
   420
                               | AExists => exists_of)
blanchet@39425
   421
                              (repair_atp_variable_name Char.toLower x)
blanchet@38014
   422
      | AConn (ANot, [phi']) => do_formula (not pos) phi' #>> s_not
blanchet@37991
   423
      | AConn (c, [phi1, phi2]) =>
blanchet@38014
   424
        do_formula (pos |> c = AImplies ? not) phi1
blanchet@38014
   425
        ##>> do_formula pos phi2
blanchet@38014
   426
        #>> (case c of
blanchet@38014
   427
               AAnd => s_conj
blanchet@38014
   428
             | AOr => s_disj
blanchet@38014
   429
             | AImplies => s_imp
blanchet@38038
   430
             | AIf => s_imp o swap
blanchet@38038
   431
             | AIff => s_iff
blanchet@38038
   432
             | ANotIff => s_not o s_iff)
blanchet@38034
   433
      | AAtom tm => term_from_pred thy full_types tfrees pos tm
blanchet@37991
   434
      | _ => raise FORMULA [phi]
blanchet@38014
   435
  in repair_tvar_sorts (do_formula true phi Vartab.empty) end
blanchet@37991
   436
blanchet@36556
   437
fun check_formula ctxt =
wenzelm@39288
   438
  Type.constraint HOLogic.boolT
blanchet@36486
   439
  #> Syntax.check_term (ProofContext.set_mode ProofContext.mode_schematic ctxt)
paulson@21978
   440
paulson@21978
   441
paulson@21978
   442
(**** Translation of TSTP files to Isar Proofs ****)
paulson@21978
   443
blanchet@36486
   444
fun unvarify_term (Var ((s, 0), T)) = Free (s, T)
blanchet@36486
   445
  | unvarify_term t = raise TERM ("unvarify_term: non-Var", [t])
paulson@21978
   446
blanchet@39368
   447
fun decode_line full_types tfrees (Definition (name, phi1, phi2)) ctxt =
blanchet@36486
   448
    let
blanchet@37991
   449
      val thy = ProofContext.theory_of ctxt
blanchet@37991
   450
      val t1 = prop_from_formula thy full_types tfrees phi1
blanchet@36551
   451
      val vars = snd (strip_comb t1)
blanchet@36486
   452
      val frees = map unvarify_term vars
blanchet@36486
   453
      val unvarify_args = subst_atomic (vars ~~ frees)
blanchet@37991
   454
      val t2 = prop_from_formula thy full_types tfrees phi2
blanchet@36551
   455
      val (t1, t2) =
blanchet@36551
   456
        HOLogic.eq_const HOLogic.typeT $ t1 $ t2
blanchet@36556
   457
        |> unvarify_args |> uncombine_term |> check_formula ctxt
blanchet@36555
   458
        |> HOLogic.dest_eq
blanchet@36486
   459
    in
blanchet@39368
   460
      (Definition (name, t1, t2),
blanchet@36551
   461
       fold Variable.declare_term (maps OldTerm.term_frees [t1, t2]) ctxt)
blanchet@36486
   462
    end
blanchet@39368
   463
  | decode_line full_types tfrees (Inference (name, u, deps)) ctxt =
blanchet@36551
   464
    let
blanchet@37991
   465
      val thy = ProofContext.theory_of ctxt
blanchet@37991
   466
      val t = u |> prop_from_formula thy full_types tfrees
blanchet@37998
   467
                |> uncombine_term |> check_formula ctxt
blanchet@36551
   468
    in
blanchet@39368
   469
      (Inference (name, t, deps),
blanchet@36551
   470
       fold Variable.declare_term (OldTerm.term_frees t) ctxt)
blanchet@36486
   471
    end
blanchet@36967
   472
fun decode_lines ctxt full_types tfrees lines =
blanchet@36967
   473
  fst (fold_map (decode_line full_types tfrees) lines ctxt)
paulson@21978
   474
blanchet@38035
   475
fun is_same_inference _ (Definition _) = false
blanchet@38035
   476
  | is_same_inference t (Inference (_, t', _)) = t aconv t'
blanchet@36486
   477
blanchet@36486
   478
(* No "real" literals means only type information (tfree_tcs, clsrel, or
blanchet@36486
   479
   clsarity). *)
blanchet@36486
   480
val is_only_type_information = curry (op aconv) HOLogic.true_const
blanchet@36486
   481
blanchet@39373
   482
fun replace_one_dependency (old, new) dep =
blanchet@39452
   483
  if is_same_step (dep, old) then new else [dep]
blanchet@39373
   484
fun replace_dependencies_in_line _ (line as Definition _) = line
blanchet@39373
   485
  | replace_dependencies_in_line p (Inference (name, t, deps)) =
blanchet@39373
   486
    Inference (name, t, fold (union (op =) o replace_one_dependency p) deps [])
paulson@21978
   487
blanchet@38085
   488
(* Discard axioms; consolidate adjacent lines that prove the same formula, since
blanchet@38085
   489
   they differ only in type information.*)
blanchet@36551
   490
fun add_line _ _ (line as Definition _) lines = line :: lines
blanchet@39368
   491
  | add_line conjecture_shape axiom_names (Inference (name, t, [])) lines =
blanchet@38085
   492
    (* No dependencies: axiom, conjecture, or (for Vampire) internal axioms or
blanchet@38085
   493
       definitions. *)
blanchet@39370
   494
    if is_axiom axiom_names name then
blanchet@36486
   495
      (* Axioms are not proof lines. *)
blanchet@36486
   496
      if is_only_type_information t then
blanchet@39373
   497
        map (replace_dependencies_in_line (name, [])) lines
blanchet@36486
   498
      (* Is there a repetition? If so, replace later line by earlier one. *)
blanchet@38035
   499
      else case take_prefix (not o is_same_inference t) lines of
blanchet@39373
   500
        (_, []) => lines (* no repetition of proof line *)
blanchet@39368
   501
      | (pre, Inference (name', _, _) :: post) =>
blanchet@39373
   502
        pre @ map (replace_dependencies_in_line (name', [name])) post
blanchet@39370
   503
    else if is_conjecture conjecture_shape name then
blanchet@39368
   504
      Inference (name, negate_term t, []) :: lines
blanchet@36551
   505
    else
blanchet@39373
   506
      map (replace_dependencies_in_line (name, [])) lines
blanchet@39368
   507
  | add_line _ _ (Inference (name, t, deps)) lines =
blanchet@36486
   508
    (* Type information will be deleted later; skip repetition test. *)
blanchet@36486
   509
    if is_only_type_information t then
blanchet@39368
   510
      Inference (name, t, deps) :: lines
blanchet@36486
   511
    (* Is there a repetition? If so, replace later line by earlier one. *)
blanchet@38035
   512
    else case take_prefix (not o is_same_inference t) lines of
blanchet@36486
   513
      (* FIXME: Doesn't this code risk conflating proofs involving different
blanchet@38035
   514
         types? *)
blanchet@39368
   515
       (_, []) => Inference (name, t, deps) :: lines
blanchet@39368
   516
     | (pre, Inference (name', t', _) :: post) =>
blanchet@39368
   517
       Inference (name, t', deps) ::
blanchet@39373
   518
       pre @ map (replace_dependencies_in_line (name', [name])) post
paulson@22044
   519
blanchet@36486
   520
(* Recursively delete empty lines (type information) from the proof. *)
blanchet@39368
   521
fun add_nontrivial_line (Inference (name, t, [])) lines =
blanchet@39373
   522
    if is_only_type_information t then delete_dependency name lines
blanchet@39368
   523
    else Inference (name, t, []) :: lines
blanchet@36486
   524
  | add_nontrivial_line line lines = line :: lines
blanchet@39373
   525
and delete_dependency name lines =
blanchet@39373
   526
  fold_rev add_nontrivial_line
blanchet@39373
   527
           (map (replace_dependencies_in_line (name, [])) lines) []
blanchet@36486
   528
blanchet@37323
   529
(* ATPs sometimes reuse free variable names in the strangest ways. Removing
blanchet@37323
   530
   offending lines often does the trick. *)
blanchet@36560
   531
fun is_bad_free frees (Free x) = not (member (op =) frees x)
blanchet@36560
   532
  | is_bad_free _ _ = false
paulson@22470
   533
blanchet@39368
   534
fun add_desired_line _ _ _ _ (line as Definition (name, _, _)) (j, lines) =
blanchet@39373
   535
    (j, line :: map (replace_dependencies_in_line (name, [])) lines)
blanchet@38282
   536
  | add_desired_line isar_shrink_factor conjecture_shape axiom_names frees
blanchet@39368
   537
                     (Inference (name, t, deps)) (j, lines) =
blanchet@36402
   538
    (j + 1,
blanchet@39370
   539
     if is_axiom axiom_names name orelse
blanchet@39370
   540
        is_conjecture conjecture_shape name orelse
blanchet@39373
   541
        (* the last line must be kept *)
blanchet@39373
   542
        j = 0 orelse
blanchet@36570
   543
        (not (is_only_type_information t) andalso
blanchet@36570
   544
         null (Term.add_tvars t []) andalso
blanchet@36570
   545
         not (exists_subterm (is_bad_free frees) t) andalso
blanchet@39373
   546
         length deps >= 2 andalso j mod isar_shrink_factor = 0 andalso
blanchet@39373
   547
         (* kill next to last line, which usually results in a trivial step *)
blanchet@39373
   548
         j <> 1) then
blanchet@39368
   549
       Inference (name, t, deps) :: lines  (* keep line *)
blanchet@36402
   550
     else
blanchet@39373
   551
       map (replace_dependencies_in_line (name, deps)) lines)  (* drop line *)
paulson@21978
   552
blanchet@36486
   553
(** Isar proof construction and manipulation **)
blanchet@36486
   554
blanchet@36486
   555
fun merge_fact_sets (ls1, ss1) (ls2, ss2) =
blanchet@36486
   556
  (union (op =) ls1 ls2, union (op =) ss1 ss2)
blanchet@36402
   557
blanchet@36402
   558
type label = string * int
blanchet@36402
   559
type facts = label list * string list
blanchet@36402
   560
blanchet@39452
   561
datatype isar_qualifier = Show | Then | Moreover | Ultimately
blanchet@36291
   562
blanchet@39452
   563
datatype isar_step =
blanchet@36478
   564
  Fix of (string * typ) list |
blanchet@36486
   565
  Let of term * term |
blanchet@36402
   566
  Assume of label * term |
blanchet@39452
   567
  Have of isar_qualifier list * label * term * byline
blanchet@36402
   568
and byline =
blanchet@36564
   569
  ByMetis of facts |
blanchet@39452
   570
  CaseSplit of isar_step list list * facts
blanchet@36402
   571
blanchet@36574
   572
fun smart_case_split [] facts = ByMetis facts
blanchet@36574
   573
  | smart_case_split proofs facts = CaseSplit (proofs, facts)
blanchet@36574
   574
blanchet@39373
   575
fun add_fact_from_dependency conjecture_shape axiom_names name =
blanchet@39370
   576
  if is_axiom axiom_names name then
blanchet@39368
   577
    apsnd (union (op =) (map fst (resolve_axiom axiom_names name)))
blanchet@36475
   578
  else
blanchet@39370
   579
    apfst (insert (op =) (raw_label_for_name conjecture_shape name))
blanchet@36402
   580
blanchet@39370
   581
fun step_for_line _ _ _ (Definition (_, t1, t2)) = Let (t1, t2)
blanchet@39370
   582
  | step_for_line conjecture_shape _ _ (Inference (name, t, [])) =
blanchet@39370
   583
    Assume (raw_label_for_name conjecture_shape name, t)
blanchet@39370
   584
  | step_for_line conjecture_shape axiom_names j (Inference (name, t, deps)) =
blanchet@39370
   585
    Have (if j = 1 then [Show] else [],
blanchet@39425
   586
          raw_label_for_name conjecture_shape name,
blanchet@39425
   587
          fold_rev forall_of (map Var (Term.add_vars t [])) t,
blanchet@39373
   588
          ByMetis (fold (add_fact_from_dependency conjecture_shape axiom_names)
blanchet@39373
   589
                        deps ([], [])))
blanchet@36291
   590
blanchet@39454
   591
fun repair_name "$true" = "c_True"
blanchet@39454
   592
  | repair_name "$false" = "c_False"
blanchet@39454
   593
  | repair_name "$$e" = "c_equal" (* seen in Vampire proofs *)
blanchet@39454
   594
  | repair_name "equal" = "c_equal" (* needed by SPASS? *)
blanchet@39454
   595
  | repair_name s =
blanchet@39454
   596
    if String.isPrefix "sQ" s andalso String.isSuffix "_eqProxy" s then
blanchet@39454
   597
      "c_equal" (* seen in Vampire proofs *)
blanchet@39454
   598
    else
blanchet@39454
   599
      s
blanchet@39454
   600
blanchet@39452
   601
fun isar_proof_from_tstplike_proof pool ctxt full_types tfrees isar_shrink_factor
blanchet@39452
   602
        tstplike_proof conjecture_shape axiom_names params frees =
blanchet@36402
   603
  let
blanchet@36486
   604
    val lines =
blanchet@39452
   605
      tstplike_proof
blanchet@39454
   606
      |> atp_proof_from_tstplike_string
blanchet@39454
   607
      |> nasty_atp_proof pool
blanchet@39454
   608
      |> map_term_names_in_atp_proof repair_name
blanchet@36967
   609
      |> decode_lines ctxt full_types tfrees
blanchet@38282
   610
      |> rpair [] |-> fold_rev (add_line conjecture_shape axiom_names)
blanchet@36486
   611
      |> rpair [] |-> fold_rev add_nontrivial_line
blanchet@37498
   612
      |> rpair (0, []) |-> fold_rev (add_desired_line isar_shrink_factor
blanchet@38282
   613
                                             conjecture_shape axiom_names frees)
blanchet@36486
   614
      |> snd
blanchet@36402
   615
  in
blanchet@36909
   616
    (if null params then [] else [Fix params]) @
blanchet@39370
   617
    map2 (step_for_line conjecture_shape axiom_names) (length lines downto 1)
blanchet@39370
   618
         lines
blanchet@36402
   619
  end
blanchet@36402
   620
blanchet@36402
   621
(* When redirecting proofs, we keep information about the labels seen so far in
blanchet@36402
   622
   the "backpatches" data structure. The first component indicates which facts
blanchet@36402
   623
   should be associated with forthcoming proof steps. The second component is a
blanchet@37322
   624
   pair ("assum_ls", "drop_ls"), where "assum_ls" are the labels that should
blanchet@37322
   625
   become assumptions and "drop_ls" are the labels that should be dropped in a
blanchet@37322
   626
   case split. *)
blanchet@36402
   627
type backpatches = (label * facts) list * (label list * label list)
blanchet@36402
   628
blanchet@36556
   629
fun used_labels_of_step (Have (_, _, _, by)) =
blanchet@36402
   630
    (case by of
blanchet@36564
   631
       ByMetis (ls, _) => ls
blanchet@36556
   632
     | CaseSplit (proofs, (ls, _)) =>
blanchet@36556
   633
       fold (union (op =) o used_labels_of) proofs ls)
blanchet@36556
   634
  | used_labels_of_step _ = []
blanchet@36556
   635
and used_labels_of proof = fold (union (op =) o used_labels_of_step) proof []
blanchet@36402
   636
blanchet@36402
   637
fun new_labels_of_step (Fix _) = []
blanchet@36486
   638
  | new_labels_of_step (Let _) = []
blanchet@36402
   639
  | new_labels_of_step (Assume (l, _)) = [l]
blanchet@36402
   640
  | new_labels_of_step (Have (_, l, _, _)) = [l]
blanchet@36402
   641
val new_labels_of = maps new_labels_of_step
blanchet@36402
   642
blanchet@36402
   643
val join_proofs =
blanchet@36402
   644
  let
blanchet@36402
   645
    fun aux _ [] = NONE
blanchet@36402
   646
      | aux proof_tail (proofs as (proof1 :: _)) =
blanchet@36402
   647
        if exists null proofs then
blanchet@36402
   648
          NONE
blanchet@36402
   649
        else if forall (curry (op =) (hd proof1) o hd) (tl proofs) then
blanchet@36402
   650
          aux (hd proof1 :: proof_tail) (map tl proofs)
blanchet@36402
   651
        else case hd proof1 of
blanchet@37498
   652
          Have ([], l, t, _) => (* FIXME: should we really ignore the "by"? *)
blanchet@36402
   653
          if forall (fn Have ([], l', t', _) :: _ => (l, t) = (l', t')
blanchet@36402
   654
                      | _ => false) (tl proofs) andalso
blanchet@36402
   655
             not (exists (member (op =) (maps new_labels_of proofs))
blanchet@36556
   656
                         (used_labels_of proof_tail)) then
blanchet@36402
   657
            SOME (l, t, map rev proofs, proof_tail)
blanchet@36402
   658
          else
blanchet@36402
   659
            NONE
blanchet@36402
   660
        | _ => NONE
blanchet@36402
   661
  in aux [] o map rev end
blanchet@36402
   662
blanchet@36402
   663
fun case_split_qualifiers proofs =
blanchet@36402
   664
  case length proofs of
blanchet@36402
   665
    0 => []
blanchet@36402
   666
  | 1 => [Then]
blanchet@36402
   667
  | _ => [Ultimately]
blanchet@36402
   668
blanchet@39372
   669
fun redirect_proof hyp_ts concl_t proof =
wenzelm@33310
   670
  let
blanchet@37324
   671
    (* The first pass outputs those steps that are independent of the negated
blanchet@37324
   672
       conjecture. The second pass flips the proof by contradiction to obtain a
blanchet@37324
   673
       direct proof, introducing case splits when an inference depends on
blanchet@37324
   674
       several facts that depend on the negated conjecture. *)
blanchet@39372
   675
     val concl_l = (conjecture_prefix, length hyp_ts)
blanchet@38040
   676
     fun first_pass ([], contra) = ([], contra)
blanchet@38040
   677
       | first_pass ((step as Fix _) :: proof, contra) =
blanchet@38040
   678
         first_pass (proof, contra) |>> cons step
blanchet@38040
   679
       | first_pass ((step as Let _) :: proof, contra) =
blanchet@38040
   680
         first_pass (proof, contra) |>> cons step
blanchet@39370
   681
       | first_pass ((step as Assume (l as (_, j), _)) :: proof, contra) =
blanchet@39372
   682
         if l = concl_l then first_pass (proof, contra ||> cons step)
blanchet@39372
   683
         else first_pass (proof, contra) |>> cons (Assume (l, nth hyp_ts j))
blanchet@38040
   684
       | first_pass (Have (qs, l, t, ByMetis (ls, ss)) :: proof, contra) =
blanchet@39372
   685
         let val step = Have (qs, l, t, ByMetis (ls, ss)) in
blanchet@38040
   686
           if exists (member (op =) (fst contra)) ls then
blanchet@38040
   687
             first_pass (proof, contra |>> cons l ||> cons step)
blanchet@38040
   688
           else
blanchet@38040
   689
             first_pass (proof, contra) |>> cons step
blanchet@38040
   690
         end
blanchet@38040
   691
       | first_pass _ = raise Fail "malformed proof"
blanchet@36402
   692
    val (proof_top, (contra_ls, contra_proof)) =
blanchet@39372
   693
      first_pass (proof, ([concl_l], []))
blanchet@36402
   694
    val backpatch_label = the_default ([], []) oo AList.lookup (op =) o fst
blanchet@36402
   695
    fun backpatch_labels patches ls =
blanchet@36402
   696
      fold merge_fact_sets (map (backpatch_label patches) ls) ([], [])
blanchet@36402
   697
    fun second_pass end_qs ([], assums, patches) =
blanchet@37324
   698
        ([Have (end_qs, no_label, concl_t,
blanchet@36564
   699
                ByMetis (backpatch_labels patches (map snd assums)))], patches)
blanchet@36402
   700
      | second_pass end_qs (Assume (l, t) :: proof, assums, patches) =
blanchet@36402
   701
        second_pass end_qs (proof, (t, l) :: assums, patches)
blanchet@36564
   702
      | second_pass end_qs (Have (qs, l, t, ByMetis (ls, ss)) :: proof, assums,
blanchet@36402
   703
                            patches) =
blanchet@39373
   704
        (if member (op =) (snd (snd patches)) l andalso
blanchet@39373
   705
            not (member (op =) (fst (snd patches)) l) andalso
blanchet@39373
   706
            not (AList.defined (op =) (fst patches) l) then
blanchet@39373
   707
           second_pass end_qs (proof, assums, patches ||> apsnd (append ls))
blanchet@39373
   708
         else case List.partition (member (op =) contra_ls) ls of
blanchet@39373
   709
           ([contra_l], co_ls) =>
blanchet@39373
   710
           if member (op =) qs Show then
blanchet@39373
   711
             second_pass end_qs (proof, assums,
blanchet@39373
   712
                                 patches |>> cons (contra_l, (co_ls, ss)))
blanchet@39373
   713
           else
blanchet@39373
   714
             second_pass end_qs
blanchet@39373
   715
                         (proof, assums,
blanchet@39373
   716
                          patches |>> cons (contra_l, (l :: co_ls, ss)))
blanchet@39373
   717
             |>> cons (if member (op =) (fst (snd patches)) l then
blanchet@39373
   718
                         Assume (l, negate_term t)
blanchet@39373
   719
                       else
blanchet@39373
   720
                         Have (qs, l, negate_term t,
blanchet@39373
   721
                               ByMetis (backpatch_label patches l)))
blanchet@39373
   722
         | (contra_ls as _ :: _, co_ls) =>
blanchet@39373
   723
           let
blanchet@39373
   724
             val proofs =
blanchet@39373
   725
               map_filter
blanchet@39373
   726
                   (fn l =>
blanchet@39373
   727
                       if l = concl_l then
blanchet@39373
   728
                         NONE
blanchet@39373
   729
                       else
blanchet@39373
   730
                         let
blanchet@39373
   731
                           val drop_ls = filter (curry (op <>) l) contra_ls
blanchet@39373
   732
                         in
blanchet@39373
   733
                           second_pass []
blanchet@39373
   734
                               (proof, assums,
blanchet@39373
   735
                                patches ||> apfst (insert (op =) l)
blanchet@39373
   736
                                        ||> apsnd (union (op =) drop_ls))
blanchet@39373
   737
                           |> fst |> SOME
blanchet@39373
   738
                         end) contra_ls
blanchet@39373
   739
             val (assumes, facts) =
blanchet@39373
   740
               if member (op =) (fst (snd patches)) l then
blanchet@39373
   741
                 ([Assume (l, negate_term t)], (l :: co_ls, ss))
blanchet@39373
   742
               else
blanchet@39373
   743
                 ([], (co_ls, ss))
blanchet@39373
   744
           in
blanchet@39373
   745
             (case join_proofs proofs of
blanchet@39373
   746
                SOME (l, t, proofs, proof_tail) =>
blanchet@39373
   747
                Have (case_split_qualifiers proofs @
blanchet@39373
   748
                      (if null proof_tail then end_qs else []), l, t,
blanchet@39373
   749
                      smart_case_split proofs facts) :: proof_tail
blanchet@39373
   750
              | NONE =>
blanchet@39373
   751
                [Have (case_split_qualifiers proofs @ end_qs, no_label,
blanchet@39373
   752
                       concl_t, smart_case_split proofs facts)],
blanchet@39373
   753
              patches)
blanchet@39373
   754
             |>> append assumes
blanchet@39373
   755
           end
blanchet@39373
   756
         | _ => raise Fail "malformed proof")
blanchet@36402
   757
       | second_pass _ _ = raise Fail "malformed proof"
blanchet@36486
   758
    val proof_bottom =
blanchet@36486
   759
      second_pass [Show] (contra_proof, [], ([], ([], []))) |> fst
blanchet@36402
   760
  in proof_top @ proof_bottom end
blanchet@36402
   761
blanchet@38490
   762
(* FIXME: Still needed? Probably not. *)
blanchet@36402
   763
val kill_duplicate_assumptions_in_proof =
blanchet@36402
   764
  let
blanchet@36402
   765
    fun relabel_facts subst =
blanchet@36402
   766
      apfst (map (fn l => AList.lookup (op =) subst l |> the_default l))
blanchet@36491
   767
    fun do_step (step as Assume (l, t)) (proof, subst, assums) =
blanchet@36402
   768
        (case AList.lookup (op aconv) assums t of
blanchet@36967
   769
           SOME l' => (proof, (l, l') :: subst, assums)
blanchet@36491
   770
         | NONE => (step :: proof, subst, (t, l) :: assums))
blanchet@36402
   771
      | do_step (Have (qs, l, t, by)) (proof, subst, assums) =
blanchet@36402
   772
        (Have (qs, l, t,
blanchet@36402
   773
               case by of
blanchet@36564
   774
                 ByMetis facts => ByMetis (relabel_facts subst facts)
blanchet@36402
   775
               | CaseSplit (proofs, facts) =>
blanchet@36402
   776
                 CaseSplit (map do_proof proofs, relabel_facts subst facts)) ::
blanchet@36402
   777
         proof, subst, assums)
blanchet@36491
   778
      | do_step step (proof, subst, assums) = (step :: proof, subst, assums)
blanchet@36402
   779
    and do_proof proof = fold do_step proof ([], [], []) |> #1 |> rev
blanchet@36402
   780
  in do_proof end
blanchet@36402
   781
blanchet@36402
   782
val then_chain_proof =
blanchet@36402
   783
  let
blanchet@36402
   784
    fun aux _ [] = []
blanchet@36491
   785
      | aux _ ((step as Assume (l, _)) :: proof) = step :: aux l proof
blanchet@36402
   786
      | aux l' (Have (qs, l, t, by) :: proof) =
blanchet@36402
   787
        (case by of
blanchet@36564
   788
           ByMetis (ls, ss) =>
blanchet@36402
   789
           Have (if member (op =) ls l' then
blanchet@36402
   790
                   (Then :: qs, l, t,
blanchet@36564
   791
                    ByMetis (filter_out (curry (op =) l') ls, ss))
blanchet@36402
   792
                 else
blanchet@36564
   793
                   (qs, l, t, ByMetis (ls, ss)))
blanchet@36402
   794
         | CaseSplit (proofs, facts) =>
blanchet@36402
   795
           Have (qs, l, t, CaseSplit (map (aux no_label) proofs, facts))) ::
blanchet@36402
   796
        aux l proof
blanchet@36491
   797
      | aux _ (step :: proof) = step :: aux no_label proof
blanchet@36402
   798
  in aux no_label end
blanchet@36402
   799
blanchet@36402
   800
fun kill_useless_labels_in_proof proof =
blanchet@36402
   801
  let
blanchet@36556
   802
    val used_ls = used_labels_of proof
blanchet@36402
   803
    fun do_label l = if member (op =) used_ls l then l else no_label
blanchet@36556
   804
    fun do_step (Assume (l, t)) = Assume (do_label l, t)
blanchet@36556
   805
      | do_step (Have (qs, l, t, by)) =
blanchet@36402
   806
        Have (qs, do_label l, t,
blanchet@36402
   807
              case by of
blanchet@36402
   808
                CaseSplit (proofs, facts) =>
blanchet@36556
   809
                CaseSplit (map (map do_step) proofs, facts)
blanchet@36402
   810
              | _ => by)
blanchet@36556
   811
      | do_step step = step
blanchet@36556
   812
  in map do_step proof end
blanchet@36402
   813
blanchet@36402
   814
fun prefix_for_depth n = replicate_string (n + 1)
blanchet@36402
   815
blanchet@36402
   816
val relabel_proof =
blanchet@36402
   817
  let
blanchet@36402
   818
    fun aux _ _ _ [] = []
blanchet@36402
   819
      | aux subst depth (next_assum, next_fact) (Assume (l, t) :: proof) =
blanchet@36402
   820
        if l = no_label then
blanchet@36402
   821
          Assume (l, t) :: aux subst depth (next_assum, next_fact) proof
blanchet@36402
   822
        else
blanchet@36402
   823
          let val l' = (prefix_for_depth depth assum_prefix, next_assum) in
blanchet@36402
   824
            Assume (l', t) ::
blanchet@36402
   825
            aux ((l, l') :: subst) depth (next_assum + 1, next_fact) proof
blanchet@36402
   826
          end
blanchet@36402
   827
      | aux subst depth (next_assum, next_fact) (Have (qs, l, t, by) :: proof) =
blanchet@36402
   828
        let
blanchet@36402
   829
          val (l', subst, next_fact) =
blanchet@36402
   830
            if l = no_label then
blanchet@36402
   831
              (l, subst, next_fact)
blanchet@36402
   832
            else
blanchet@36402
   833
              let
blanchet@36402
   834
                val l' = (prefix_for_depth depth fact_prefix, next_fact)
blanchet@36402
   835
              in (l', (l, l') :: subst, next_fact + 1) end
blanchet@36570
   836
          val relabel_facts =
blanchet@39370
   837
            apfst (maps (the_list o AList.lookup (op =) subst))
blanchet@36402
   838
          val by =
blanchet@36402
   839
            case by of
blanchet@36564
   840
              ByMetis facts => ByMetis (relabel_facts facts)
blanchet@36402
   841
            | CaseSplit (proofs, facts) =>
blanchet@36402
   842
              CaseSplit (map (aux subst (depth + 1) (1, 1)) proofs,
blanchet@36402
   843
                         relabel_facts facts)
blanchet@36402
   844
        in
blanchet@36402
   845
          Have (qs, l', t, by) ::
blanchet@36402
   846
          aux subst depth (next_assum, next_fact) proof
blanchet@36402
   847
        end
blanchet@36491
   848
      | aux subst depth nextp (step :: proof) =
blanchet@36491
   849
        step :: aux subst depth nextp proof
blanchet@36402
   850
  in aux [] 0 (1, 1) end
blanchet@36402
   851
wenzelm@39115
   852
fun string_for_proof ctxt0 full_types i n =
blanchet@36402
   853
  let
wenzelm@39134
   854
    val ctxt = ctxt0
wenzelm@39134
   855
      |> Config.put show_free_types false
wenzelm@39134
   856
      |> Config.put show_types true
blanchet@37319
   857
    fun fix_print_mode f x =
wenzelm@39134
   858
      Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
wenzelm@39134
   859
                               (print_mode_value ())) f x
blanchet@36402
   860
    fun do_indent ind = replicate_string (ind * indent_size) " "
blanchet@36478
   861
    fun do_free (s, T) =
blanchet@36478
   862
      maybe_quote s ^ " :: " ^
blanchet@36478
   863
      maybe_quote (fix_print_mode (Syntax.string_of_typ ctxt) T)
blanchet@36570
   864
    fun do_label l = if l = no_label then "" else string_for_label l ^ ": "
blanchet@36402
   865
    fun do_have qs =
blanchet@36402
   866
      (if member (op =) qs Moreover then "moreover " else "") ^
blanchet@36402
   867
      (if member (op =) qs Ultimately then "ultimately " else "") ^
blanchet@36402
   868
      (if member (op =) qs Then then
blanchet@36402
   869
         if member (op =) qs Show then "thus" else "hence"
blanchet@36402
   870
       else
blanchet@36402
   871
         if member (op =) qs Show then "show" else "have")
blanchet@36478
   872
    val do_term = maybe_quote o fix_print_mode (Syntax.string_of_term ctxt)
blanchet@36570
   873
    fun do_facts (ls, ss) =
blanchet@38698
   874
      metis_command full_types 1 1
blanchet@38698
   875
                    (ls |> sort_distinct (prod_ord string_ord int_ord),
blanchet@38698
   876
                     ss |> sort_distinct string_ord)
blanchet@36478
   877
    and do_step ind (Fix xs) =
blanchet@36478
   878
        do_indent ind ^ "fix " ^ space_implode " and " (map do_free xs) ^ "\n"
blanchet@36486
   879
      | do_step ind (Let (t1, t2)) =
blanchet@36486
   880
        do_indent ind ^ "let " ^ do_term t1 ^ " = " ^ do_term t2 ^ "\n"
blanchet@36402
   881
      | do_step ind (Assume (l, t)) =
blanchet@36402
   882
        do_indent ind ^ "assume " ^ do_label l ^ do_term t ^ "\n"
blanchet@36564
   883
      | do_step ind (Have (qs, l, t, ByMetis facts)) =
blanchet@36402
   884
        do_indent ind ^ do_have qs ^ " " ^
blanchet@36479
   885
        do_label l ^ do_term t ^ " " ^ do_facts facts ^ "\n"
blanchet@36402
   886
      | do_step ind (Have (qs, l, t, CaseSplit (proofs, facts))) =
blanchet@36402
   887
        space_implode (do_indent ind ^ "moreover\n")
blanchet@36402
   888
                      (map (do_block ind) proofs) ^
blanchet@36479
   889
        do_indent ind ^ do_have qs ^ " " ^ do_label l ^ do_term t ^ " " ^
blanchet@36478
   890
        do_facts facts ^ "\n"
blanchet@36402
   891
    and do_steps prefix suffix ind steps =
blanchet@36402
   892
      let val s = implode (map (do_step ind) steps) in
blanchet@36402
   893
        replicate_string (ind * indent_size - size prefix) " " ^ prefix ^
blanchet@36402
   894
        String.extract (s, ind * indent_size,
blanchet@36402
   895
                        SOME (size s - ind * indent_size - 1)) ^
blanchet@36402
   896
        suffix ^ "\n"
blanchet@36402
   897
      end
blanchet@36402
   898
    and do_block ind proof = do_steps "{ " " }" (ind + 1) proof
blanchet@36564
   899
    (* One-step proofs are pointless; better use the Metis one-liner
blanchet@36564
   900
       directly. *)
blanchet@36564
   901
    and do_proof [Have (_, _, _, ByMetis _)] = ""
blanchet@36564
   902
      | do_proof proof =
blanchet@36480
   903
        (if i <> 1 then "prefer " ^ string_of_int i ^ "\n" else "") ^
blanchet@39452
   904
        do_indent 0 ^ "proof -\n" ^ do_steps "" "" 1 proof ^ do_indent 0 ^
blanchet@39452
   905
        (if n <> 1 then "next" else "qed")
blanchet@36488
   906
  in do_proof end
blanchet@36402
   907
blanchet@37479
   908
fun isar_proof_text (pool, debug, isar_shrink_factor, ctxt, conjecture_shape)
blanchet@39452
   909
                    (other_params as (_, full_types, _, tstplike_proof,
blanchet@39452
   910
                                      axiom_names, goal, i)) =
blanchet@36402
   911
  let
blanchet@36909
   912
    val (params, hyp_ts, concl_t) = strip_subgoal goal i
blanchet@36909
   913
    val frees = fold Term.add_frees (concl_t :: hyp_ts) []
blanchet@36967
   914
    val tfrees = fold Term.add_tfrees (concl_t :: hyp_ts) []
blanchet@36402
   915
    val n = Logic.count_prems (prop_of goal)
blanchet@37479
   916
    val (one_line_proof, lemma_names) = metis_proof_text other_params
blanchet@36283
   917
    fun isar_proof_for () =
blanchet@39452
   918
      case isar_proof_from_tstplike_proof pool ctxt full_types tfrees
blanchet@39452
   919
               isar_shrink_factor tstplike_proof conjecture_shape axiom_names
blanchet@39452
   920
               params frees
blanchet@39372
   921
           |> redirect_proof hyp_ts concl_t
blanchet@36402
   922
           |> kill_duplicate_assumptions_in_proof
blanchet@36402
   923
           |> then_chain_proof
blanchet@36402
   924
           |> kill_useless_labels_in_proof
blanchet@36402
   925
           |> relabel_proof
blanchet@37479
   926
           |> string_for_proof ctxt full_types i n of
blanchet@38599
   927
        "" => "\nNo structured proof available."
blanchet@38599
   928
      | proof => "\n\nStructured proof:\n" ^ Markup.markup Markup.sendback proof
blanchet@35868
   929
    val isar_proof =
blanchet@36402
   930
      if debug then
blanchet@36283
   931
        isar_proof_for ()
blanchet@36283
   932
      else
blanchet@36283
   933
        try isar_proof_for ()
blanchet@38599
   934
        |> the_default "\nWarning: The Isar proof construction failed."
blanchet@36283
   935
  in (one_line_proof ^ isar_proof, lemma_names) end
paulson@21978
   936
blanchet@36557
   937
fun proof_text isar_proof isar_params other_params =
blanchet@36557
   938
  (if isar_proof then isar_proof_text isar_params else metis_proof_text)
blanchet@36557
   939
      other_params
blanchet@36223
   940
immler@31038
   941
end;