hoelzl@37489
|
1 |
header {* Kurzweil-Henstock Gauge Integration in many dimensions. *}
|
himmelma@35172
|
2 |
(* Author: John Harrison
|
himmelma@35172
|
3 |
Translation from HOL light: Robert Himmelmann, TU Muenchen *)
|
himmelma@35172
|
4 |
|
hoelzl@35292
|
5 |
theory Integration
|
wenzelm@41413
|
6 |
imports
|
wenzelm@41413
|
7 |
Derivative
|
wenzelm@41413
|
8 |
"~~/src/HOL/Library/Indicator_Function"
|
himmelma@35172
|
9 |
begin
|
himmelma@35172
|
10 |
|
blanchet@47152
|
11 |
declare [[smt_certificates = "Integration.certs"]]
|
blanchet@47152
|
12 |
declare [[smt_read_only_certificates = true]]
|
blanchet@47152
|
13 |
declare [[smt_oracle = false]]
|
himmelma@35172
|
14 |
|
hoelzl@37489
|
15 |
(*declare not_less[simp] not_le[simp]*)
|
hoelzl@37489
|
16 |
|
hoelzl@37489
|
17 |
lemmas scaleR_simps = scaleR_zero_left scaleR_minus_left scaleR_left_diff_distrib
|
hoelzl@37489
|
18 |
scaleR_zero_right scaleR_minus_right scaleR_right_diff_distrib scaleR_eq_0_iff
|
huffman@44282
|
19 |
scaleR_cancel_left scaleR_cancel_right scaleR_add_right scaleR_add_left real_vector_class.scaleR_one
|
hoelzl@37489
|
20 |
|
hoelzl@37489
|
21 |
lemma real_arch_invD:
|
hoelzl@37489
|
22 |
"0 < (e::real) \<Longrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)"
|
wenzelm@49675
|
23 |
by (subst(asm) real_arch_inv)
|
wenzelm@49675
|
24 |
|
wenzelm@49675
|
25 |
|
himmelma@36243
|
26 |
subsection {* Sundries *}
|
himmelma@36243
|
27 |
|
himmelma@35172
|
28 |
lemma conjunctD2: assumes "a \<and> b" shows a b using assms by auto
|
himmelma@35172
|
29 |
lemma conjunctD3: assumes "a \<and> b \<and> c" shows a b c using assms by auto
|
himmelma@35172
|
30 |
lemma conjunctD4: assumes "a \<and> b \<and> c \<and> d" shows a b c d using assms by auto
|
himmelma@35172
|
31 |
lemma conjunctD5: assumes "a \<and> b \<and> c \<and> d \<and> e" shows a b c d e using assms by auto
|
himmelma@35172
|
32 |
|
hoelzl@37489
|
33 |
declare norm_triangle_ineq4[intro]
|
himmelma@35172
|
34 |
|
himmelma@36243
|
35 |
lemma simple_image: "{f x |x . x \<in> s} = f ` s" by blast
|
himmelma@36243
|
36 |
|
himmelma@36243
|
37 |
lemma linear_simps: assumes "bounded_linear f"
|
himmelma@36243
|
38 |
shows "f (a + b) = f a + f b" "f (a - b) = f a - f b" "f 0 = 0" "f (- a) = - f a" "f (s *\<^sub>R v) = s *\<^sub>R (f v)"
|
himmelma@36243
|
39 |
apply(rule_tac[!] additive.add additive.minus additive.diff additive.zero bounded_linear.scaleR)
|
wenzelm@49675
|
40 |
using assms unfolding bounded_linear_def additive_def
|
wenzelm@49675
|
41 |
apply auto
|
wenzelm@49675
|
42 |
done
|
wenzelm@49675
|
43 |
|
wenzelm@49675
|
44 |
lemma bounded_linearI:
|
wenzelm@49675
|
45 |
assumes "\<And>x y. f (x + y) = f x + f y"
|
wenzelm@49675
|
46 |
and "\<And>r x. f (r *\<^sub>R x) = r *\<^sub>R f x" "\<And>x. norm (f x) \<le> norm x * K"
|
himmelma@36243
|
47 |
shows "bounded_linear f"
|
himmelma@36243
|
48 |
unfolding bounded_linear_def additive_def bounded_linear_axioms_def using assms by auto
|
himmelma@36243
|
49 |
|
himmelma@36243
|
50 |
lemma real_le_inf_subset:
|
wenzelm@49675
|
51 |
assumes "t \<noteq> {}" "t \<subseteq> s" "\<exists>b. b <=* s"
|
wenzelm@49675
|
52 |
shows "Inf s <= Inf (t::real set)"
|
wenzelm@49675
|
53 |
apply (rule isGlb_le_isLb)
|
wenzelm@49675
|
54 |
apply (rule Inf[OF assms(1)])
|
wenzelm@49675
|
55 |
using assms apply -
|
wenzelm@49675
|
56 |
apply (erule exE)
|
wenzelm@49675
|
57 |
apply (rule_tac x=b in exI)
|
wenzelm@49675
|
58 |
unfolding isLb_def setge_def
|
wenzelm@49675
|
59 |
apply auto
|
wenzelm@49675
|
60 |
done
|
himmelma@36243
|
61 |
|
himmelma@36243
|
62 |
lemma real_ge_sup_subset:
|
wenzelm@49675
|
63 |
assumes "t \<noteq> {}" "t \<subseteq> s" "\<exists>b. s *<= b"
|
wenzelm@49675
|
64 |
shows "Sup s >= Sup (t::real set)"
|
wenzelm@49675
|
65 |
apply (rule isLub_le_isUb)
|
wenzelm@49675
|
66 |
apply (rule Sup[OF assms(1)])
|
wenzelm@49675
|
67 |
using assms apply -
|
wenzelm@49675
|
68 |
apply (erule exE)
|
wenzelm@49675
|
69 |
apply (rule_tac x=b in exI)
|
wenzelm@49675
|
70 |
unfolding isUb_def setle_def
|
wenzelm@49675
|
71 |
apply auto
|
wenzelm@49675
|
72 |
done
|
himmelma@36243
|
73 |
|
hoelzl@37489
|
74 |
lemma bounded_linear_component[intro]: "bounded_linear (\<lambda>x::'a::euclidean_space. x $$ k)"
|
wenzelm@49675
|
75 |
apply (rule bounded_linearI[where K=1])
|
wenzelm@49675
|
76 |
using component_le_norm[of _ k]
|
wenzelm@49675
|
77 |
unfolding real_norm_def
|
wenzelm@49675
|
78 |
apply auto
|
wenzelm@49675
|
79 |
done
|
himmelma@36243
|
80 |
|
himmelma@36243
|
81 |
lemma transitive_stepwise_lt_eq:
|
himmelma@36243
|
82 |
assumes "(\<And>x y z::nat. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z)"
|
himmelma@36243
|
83 |
shows "((\<forall>m. \<forall>n>m. R m n) \<longleftrightarrow> (\<forall>n. R n (Suc n)))" (is "?l = ?r")
|
wenzelm@49675
|
84 |
proof (safe)
|
wenzelm@49675
|
85 |
assume ?r
|
wenzelm@49675
|
86 |
fix n m :: nat
|
wenzelm@49675
|
87 |
assume "m < n"
|
wenzelm@49675
|
88 |
then show "R m n"
|
wenzelm@49675
|
89 |
proof (induct n arbitrary: m)
|
wenzelm@49675
|
90 |
case (Suc n)
|
wenzelm@49675
|
91 |
show ?case
|
wenzelm@49675
|
92 |
proof (cases "m < n")
|
wenzelm@49675
|
93 |
case True
|
wenzelm@49675
|
94 |
show ?thesis
|
wenzelm@49675
|
95 |
apply (rule assms[OF Suc(1)[OF True]])
|
wenzelm@49675
|
96 |
using `?r` apply auto
|
wenzelm@49675
|
97 |
done
|
wenzelm@49675
|
98 |
next
|
wenzelm@49675
|
99 |
case False
|
wenzelm@49675
|
100 |
hence "m = n" using Suc(2) by auto
|
himmelma@36243
|
101 |
thus ?thesis using `?r` by auto
|
wenzelm@49675
|
102 |
qed
|
wenzelm@49675
|
103 |
qed auto
|
wenzelm@49675
|
104 |
qed auto
|
himmelma@36243
|
105 |
|
himmelma@36243
|
106 |
lemma transitive_stepwise_gt:
|
himmelma@36243
|
107 |
assumes "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" "\<And>n. R n (Suc n) "
|
himmelma@36243
|
108 |
shows "\<forall>n>m. R m n"
|
wenzelm@49675
|
109 |
proof -
|
wenzelm@49675
|
110 |
have "\<forall>m. \<forall>n>m. R m n"
|
wenzelm@49675
|
111 |
apply (subst transitive_stepwise_lt_eq)
|
wenzelm@49675
|
112 |
apply (rule assms)
|
wenzelm@49675
|
113 |
apply assumption
|
wenzelm@49675
|
114 |
apply assumption
|
wenzelm@49675
|
115 |
using assms(2) apply auto
|
wenzelm@49675
|
116 |
done
|
wenzelm@49675
|
117 |
thus ?thesis by auto
|
wenzelm@49675
|
118 |
qed
|
himmelma@36243
|
119 |
|
himmelma@36243
|
120 |
lemma transitive_stepwise_le_eq:
|
himmelma@36243
|
121 |
assumes "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z"
|
himmelma@36243
|
122 |
shows "(\<forall>m. \<forall>n\<ge>m. R m n) \<longleftrightarrow> (\<forall>n. R n (Suc n))" (is "?l = ?r")
|
wenzelm@49675
|
123 |
proof safe
|
wenzelm@49675
|
124 |
assume ?r
|
wenzelm@49675
|
125 |
fix m n :: nat
|
wenzelm@49675
|
126 |
assume "m \<le> n"
|
wenzelm@49675
|
127 |
thus "R m n"
|
wenzelm@49675
|
128 |
proof (induct n arbitrary: m)
|
wenzelm@49675
|
129 |
case (Suc n)
|
wenzelm@49675
|
130 |
show ?case
|
wenzelm@49675
|
131 |
proof (cases "m \<le> n")
|
wenzelm@49675
|
132 |
case True
|
wenzelm@49675
|
133 |
show ?thesis
|
wenzelm@49675
|
134 |
apply (rule assms(2))
|
wenzelm@49675
|
135 |
apply (rule Suc(1)[OF True])
|
wenzelm@49675
|
136 |
using `?r` apply auto
|
wenzelm@49675
|
137 |
done
|
wenzelm@49675
|
138 |
next
|
wenzelm@49675
|
139 |
case False
|
wenzelm@49675
|
140 |
hence "m = Suc n" using Suc(2) by auto
|
himmelma@36243
|
141 |
thus ?thesis using assms(1) by auto
|
wenzelm@49675
|
142 |
qed
|
wenzelm@49675
|
143 |
qed (insert assms(1), auto)
|
wenzelm@49675
|
144 |
qed auto
|
himmelma@36243
|
145 |
|
himmelma@36243
|
146 |
lemma transitive_stepwise_le:
|
himmelma@36243
|
147 |
assumes "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" "\<And>n. R n (Suc n) "
|
himmelma@36243
|
148 |
shows "\<forall>n\<ge>m. R m n"
|
wenzelm@49675
|
149 |
proof -
|
wenzelm@49675
|
150 |
have "\<forall>m. \<forall>n\<ge>m. R m n"
|
wenzelm@49675
|
151 |
apply (subst transitive_stepwise_le_eq)
|
wenzelm@49675
|
152 |
apply (rule assms)
|
wenzelm@49675
|
153 |
apply (rule assms,assumption,assumption)
|
wenzelm@49675
|
154 |
using assms(3) apply auto
|
wenzelm@49675
|
155 |
done
|
wenzelm@49675
|
156 |
thus ?thesis by auto
|
wenzelm@49675
|
157 |
qed
|
wenzelm@49675
|
158 |
|
himmelma@36243
|
159 |
|
himmelma@35172
|
160 |
subsection {* Some useful lemmas about intervals. *}
|
himmelma@35172
|
161 |
|
hoelzl@37489
|
162 |
abbreviation One where "One \<equiv> ((\<chi>\<chi> i. 1)::_::ordered_euclidean_space)"
|
hoelzl@37489
|
163 |
|
hoelzl@37489
|
164 |
lemma empty_as_interval: "{} = {One..0}"
|
wenzelm@49675
|
165 |
apply (rule set_eqI,rule)
|
wenzelm@49675
|
166 |
defer
|
wenzelm@49675
|
167 |
unfolding mem_interval
|
wenzelm@49675
|
168 |
using UNIV_witness[where 'a='n]
|
wenzelm@49675
|
169 |
apply (erule_tac exE, rule_tac x=x in allE)
|
wenzelm@49675
|
170 |
apply auto
|
wenzelm@49675
|
171 |
done
|
himmelma@35172
|
172 |
|
himmelma@35172
|
173 |
lemma interior_subset_union_intervals:
|
wenzelm@49675
|
174 |
assumes "i = {a..b::'a::ordered_euclidean_space}" "j = {c..d}"
|
wenzelm@49675
|
175 |
"interior j \<noteq> {}" "i \<subseteq> j \<union> s" "interior(i) \<inter> interior(j) = {}"
|
wenzelm@49675
|
176 |
shows "interior i \<subseteq> interior s"
|
wenzelm@49675
|
177 |
proof -
|
wenzelm@49675
|
178 |
have "{a<..<b} \<inter> {c..d} = {}"
|
wenzelm@49675
|
179 |
using inter_interval_mixed_eq_empty[of c d a b] and assms(3,5)
|
himmelma@35172
|
180 |
unfolding assms(1,2) interior_closed_interval by auto
|
wenzelm@49675
|
181 |
moreover
|
wenzelm@49675
|
182 |
have "{a<..<b} \<subseteq> {c..d} \<union> s"
|
wenzelm@49675
|
183 |
apply (rule order_trans,rule interval_open_subset_closed)
|
wenzelm@49675
|
184 |
using assms(4) unfolding assms(1,2)
|
wenzelm@49675
|
185 |
apply auto
|
wenzelm@49675
|
186 |
done
|
wenzelm@49675
|
187 |
ultimately
|
wenzelm@49675
|
188 |
show ?thesis
|
wenzelm@49675
|
189 |
apply -
|
wenzelm@49675
|
190 |
apply (rule interior_maximal) defer
|
wenzelm@49675
|
191 |
apply (rule open_interior)
|
wenzelm@49675
|
192 |
unfolding assms(1,2) interior_closed_interval apply auto
|
wenzelm@49675
|
193 |
done
|
wenzelm@49675
|
194 |
qed
|
wenzelm@49675
|
195 |
|
wenzelm@49675
|
196 |
lemma inter_interior_unions_intervals:
|
wenzelm@49675
|
197 |
fixes f::"('a::ordered_euclidean_space) set set"
|
himmelma@35172
|
198 |
assumes "finite f" "open s" "\<forall>t\<in>f. \<exists>a b. t = {a..b}" "\<forall>t\<in>f. s \<inter> (interior t) = {}"
|
wenzelm@49675
|
199 |
shows "s \<inter> interior(\<Union>f) = {}"
|
wenzelm@49675
|
200 |
proof (rule ccontr,unfold ex_in_conv[THEN sym]) case goal1
|
himmelma@35172
|
201 |
have lem1:"\<And>x e s U. ball x e \<subseteq> s \<inter> interior U \<longleftrightarrow> ball x e \<subseteq> s \<inter> U" apply rule defer apply(rule_tac Int_greatest)
|
himmelma@35172
|
202 |
unfolding open_subset_interior[OF open_ball] using interior_subset by auto
|
himmelma@35172
|
203 |
have lem2:"\<And>x s P. \<exists>x\<in>s. P x \<Longrightarrow> \<exists>x\<in>insert x s. P x" by auto
|
himmelma@35172
|
204 |
have "\<And>f. finite f \<Longrightarrow> (\<forall>t\<in>f. \<exists>a b. t = {a..b}) \<Longrightarrow> (\<exists>x. x \<in> s \<inter> interior (\<Union>f)) \<Longrightarrow> (\<exists>t\<in>f. \<exists>x. \<exists>e>0. ball x e \<subseteq> s \<inter> t)" proof- case goal1
|
himmelma@35172
|
205 |
thus ?case proof(induct rule:finite_induct)
|
himmelma@35172
|
206 |
case empty from this(2) guess x .. hence False unfolding Union_empty interior_empty by auto thus ?case by auto next
|
himmelma@35172
|
207 |
case (insert i f) guess x using insert(5) .. note x = this
|
himmelma@35172
|
208 |
then guess e unfolding open_contains_ball_eq[OF open_Int[OF assms(2) open_interior],rule_format] .. note e=this
|
himmelma@35172
|
209 |
guess a using insert(4)[rule_format,OF insertI1] .. then guess b .. note ab = this
|
himmelma@35172
|
210 |
show ?case proof(cases "x\<in>i") case False hence "x \<in> UNIV - {a..b}" unfolding ab by auto
|
himmelma@35172
|
211 |
then guess d unfolding open_contains_ball_eq[OF open_Diff[OF open_UNIV closed_interval],rule_format] ..
|
hoelzl@37489
|
212 |
hence "0 < d" "ball x (min d e) \<subseteq> UNIV - i" unfolding ab ball_min_Int by auto
|
hoelzl@37489
|
213 |
hence "ball x (min d e) \<subseteq> s \<inter> interior (\<Union>f)" using e unfolding lem1 unfolding ball_min_Int by auto
|
hoelzl@37489
|
214 |
hence "x \<in> s \<inter> interior (\<Union>f)" using `d>0` e by auto
|
himmelma@35172
|
215 |
hence "\<exists>t\<in>f. \<exists>x e. 0 < e \<and> ball x e \<subseteq> s \<inter> t" apply-apply(rule insert(3)) using insert(4) by auto thus ?thesis by auto next
|
himmelma@35172
|
216 |
case True show ?thesis proof(cases "x\<in>{a<..<b}")
|
himmelma@35172
|
217 |
case True then guess d unfolding open_contains_ball_eq[OF open_interval,rule_format] ..
|
himmelma@35172
|
218 |
thus ?thesis apply(rule_tac x=i in bexI,rule_tac x=x in exI,rule_tac x="min d e" in exI)
|
nipkow@44890
|
219 |
unfolding ab using interval_open_subset_closed[of a b] and e by fastforce+ next
|
hoelzl@37489
|
220 |
case False then obtain k where "x$$k \<le> a$$k \<or> x$$k \<ge> b$$k" and k:"k<DIM('a)" unfolding mem_interval by(auto simp add:not_less)
|
hoelzl@37489
|
221 |
hence "x$$k = a$$k \<or> x$$k = b$$k" using True unfolding ab and mem_interval apply(erule_tac x=k in allE) by auto
|
himmelma@35172
|
222 |
hence "\<exists>x. ball x (e/2) \<subseteq> s \<inter> (\<Union>f)" proof(erule_tac disjE)
|
hoelzl@37489
|
223 |
let ?z = "x - (e/2) *\<^sub>R basis k" assume as:"x$$k = a$$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
|
wenzelm@41958
|
224 |
fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto
|
wenzelm@41958
|
225 |
hence "\<bar>(?z - y) $$ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto
|
huffman@44167
|
226 |
hence "y$$k < a$$k" using e[THEN conjunct1] k by(auto simp add:field_simps as)
|
wenzelm@41958
|
227 |
hence "y \<notin> i" unfolding ab mem_interval not_all apply(rule_tac x=k in exI) using k by auto thus False using yi by auto qed
|
himmelma@35172
|
228 |
moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof
|
wenzelm@41958
|
229 |
fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y - (e / 2) *\<^sub>R basis k)"
|
wenzelm@41958
|
230 |
apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "(e/2) *\<^sub>R basis k"])
|
wenzelm@41958
|
231 |
unfolding norm_scaleR norm_basis by auto
|
wenzelm@41958
|
232 |
also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball dist_norm using e by(auto simp add:field_simps)
|
wenzelm@41958
|
233 |
finally show "y\<in>ball x e" unfolding mem_ball dist_norm using e by(auto simp add:field_simps) qed
|
himmelma@35172
|
234 |
ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto
|
hoelzl@37489
|
235 |
next let ?z = "x + (e/2) *\<^sub>R basis k" assume as:"x$$k = b$$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
|
wenzelm@41958
|
236 |
fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto
|
wenzelm@41958
|
237 |
hence "\<bar>(?z - y) $$ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto
|
wenzelm@41958
|
238 |
hence "y$$k > b$$k" using e[THEN conjunct1] k by(auto simp add:field_simps as)
|
wenzelm@41958
|
239 |
hence "y \<notin> i" unfolding ab mem_interval not_all using k by(rule_tac x=k in exI,auto) thus False using yi by auto qed
|
himmelma@35172
|
240 |
moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof
|
wenzelm@41958
|
241 |
fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y + (e / 2) *\<^sub>R basis k)"
|
wenzelm@41958
|
242 |
apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "- (e/2) *\<^sub>R basis k"])
|
wenzelm@41958
|
243 |
unfolding norm_scaleR by auto
|
wenzelm@41958
|
244 |
also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball dist_norm using e by(auto simp add:field_simps)
|
wenzelm@41958
|
245 |
finally show "y\<in>ball x e" unfolding mem_ball dist_norm using e by(auto simp add:field_simps) qed
|
himmelma@35172
|
246 |
ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto qed
|
himmelma@35172
|
247 |
then guess x .. hence "x \<in> s \<inter> interior (\<Union>f)" unfolding lem1[where U="\<Union>f",THEN sym] using centre_in_ball e[THEN conjunct1] by auto
|
himmelma@35172
|
248 |
thus ?thesis apply-apply(rule lem2,rule insert(3)) using insert(4) by auto qed qed qed qed note * = this
|
himmelma@35172
|
249 |
guess t using *[OF assms(1,3) goal1] .. from this(2) guess x .. then guess e ..
|
himmelma@35172
|
250 |
hence "x \<in> s" "x\<in>interior t" defer using open_subset_interior[OF open_ball, of x e t] by auto
|
himmelma@35172
|
251 |
thus False using `t\<in>f` assms(4) by auto qed
|
hoelzl@37489
|
252 |
|
himmelma@35172
|
253 |
subsection {* Bounds on intervals where they exist. *}
|
himmelma@35172
|
254 |
|
hoelzl@37489
|
255 |
definition "interval_upperbound (s::('a::ordered_euclidean_space) set) = ((\<chi>\<chi> i. Sup {a. \<exists>x\<in>s. x$$i = a})::'a)"
|
hoelzl@37489
|
256 |
|
hoelzl@37489
|
257 |
definition "interval_lowerbound (s::('a::ordered_euclidean_space) set) = ((\<chi>\<chi> i. Inf {a. \<exists>x\<in>s. x$$i = a})::'a)"
|
hoelzl@37489
|
258 |
|
hoelzl@37489
|
259 |
lemma interval_upperbound[simp]: assumes "\<forall>i<DIM('a::ordered_euclidean_space). a$$i \<le> (b::'a)$$i" shows "interval_upperbound {a..b} = b"
|
hoelzl@37489
|
260 |
using assms unfolding interval_upperbound_def apply(subst euclidean_eq[where 'a='a]) apply safe
|
hoelzl@37489
|
261 |
unfolding euclidean_lambda_beta' apply(erule_tac x=i in allE)
|
himmelma@35172
|
262 |
apply(rule Sup_unique) unfolding setle_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer
|
hoelzl@37489
|
263 |
apply(rule,rule) apply(rule_tac x="b$$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=b in bexI)
|
himmelma@35172
|
264 |
unfolding mem_interval using assms by auto
|
himmelma@35172
|
265 |
|
hoelzl@37489
|
266 |
lemma interval_lowerbound[simp]: assumes "\<forall>i<DIM('a::ordered_euclidean_space). a$$i \<le> (b::'a)$$i" shows "interval_lowerbound {a..b} = a"
|
hoelzl@37489
|
267 |
using assms unfolding interval_lowerbound_def apply(subst euclidean_eq[where 'a='a]) apply safe
|
hoelzl@37489
|
268 |
unfolding euclidean_lambda_beta' apply(erule_tac x=i in allE)
|
himmelma@35172
|
269 |
apply(rule Inf_unique) unfolding setge_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer
|
hoelzl@37489
|
270 |
apply(rule,rule) apply(rule_tac x="a$$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=a in bexI)
|
hoelzl@37489
|
271 |
unfolding mem_interval using assms by auto
|
himmelma@35172
|
272 |
|
himmelma@35172
|
273 |
lemmas interval_bounds = interval_upperbound interval_lowerbound
|
himmelma@35172
|
274 |
|
himmelma@35172
|
275 |
lemma interval_bounds'[simp]: assumes "{a..b}\<noteq>{}" shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
|
himmelma@35172
|
276 |
using assms unfolding interval_ne_empty by auto
|
himmelma@35172
|
277 |
|
himmelma@35172
|
278 |
subsection {* Content (length, area, volume...) of an interval. *}
|
himmelma@35172
|
279 |
|
hoelzl@37489
|
280 |
definition "content (s::('a::ordered_euclidean_space) set) =
|
hoelzl@37489
|
281 |
(if s = {} then 0 else (\<Prod>i<DIM('a). (interval_upperbound s)$$i - (interval_lowerbound s)$$i))"
|
hoelzl@37489
|
282 |
|
hoelzl@37489
|
283 |
lemma interval_not_empty:"\<forall>i<DIM('a). a$$i \<le> b$$i \<Longrightarrow> {a..b::'a::ordered_euclidean_space} \<noteq> {}"
|
hoelzl@37489
|
284 |
unfolding interval_eq_empty unfolding not_ex not_less by auto
|
hoelzl@37489
|
285 |
|
hoelzl@37489
|
286 |
lemma content_closed_interval: fixes a::"'a::ordered_euclidean_space" assumes "\<forall>i<DIM('a). a$$i \<le> b$$i"
|
hoelzl@37489
|
287 |
shows "content {a..b} = (\<Prod>i<DIM('a). b$$i - a$$i)"
|
himmelma@35172
|
288 |
using interval_not_empty[OF assms] unfolding content_def interval_upperbound[OF assms] interval_lowerbound[OF assms] by auto
|
himmelma@35172
|
289 |
|
hoelzl@37489
|
290 |
lemma content_closed_interval': fixes a::"'a::ordered_euclidean_space" assumes "{a..b}\<noteq>{}" shows "content {a..b} = (\<Prod>i<DIM('a). b$$i - a$$i)"
|
himmelma@35172
|
291 |
apply(rule content_closed_interval) using assms unfolding interval_ne_empty .
|
himmelma@35172
|
292 |
|
hoelzl@37489
|
293 |
lemma content_real:assumes "a\<le>b" shows "content {a..b} = b-a"
|
hoelzl@37489
|
294 |
proof- have *:"{..<Suc 0} = {0}" by auto
|
hoelzl@37489
|
295 |
show ?thesis unfolding content_def using assms by(auto simp: *)
|
hoelzl@37489
|
296 |
qed
|
hoelzl@37489
|
297 |
|
hoelzl@37489
|
298 |
lemma content_unit[intro]: "content{0..One::'a::ordered_euclidean_space} = 1" proof-
|
hoelzl@37489
|
299 |
have *:"\<forall>i<DIM('a). (0::'a)$$i \<le> (One::'a)$$i" by auto
|
hoelzl@37489
|
300 |
have "0 \<in> {0..One::'a}" unfolding mem_interval by auto
|
himmelma@35172
|
301 |
thus ?thesis unfolding content_def interval_bounds[OF *] using setprod_1 by auto qed
|
himmelma@35172
|
302 |
|
hoelzl@37489
|
303 |
lemma content_pos_le[intro]: fixes a::"'a::ordered_euclidean_space" shows "0 \<le> content {a..b}" proof(cases "{a..b}={}")
|
hoelzl@37489
|
304 |
case False hence *:"\<forall>i<DIM('a). a $$ i \<le> b $$ i" unfolding interval_ne_empty by assumption
|
hoelzl@37489
|
305 |
have "(\<Prod>i<DIM('a). interval_upperbound {a..b} $$ i - interval_lowerbound {a..b} $$ i) \<ge> 0"
|
himmelma@35172
|
306 |
apply(rule setprod_nonneg) unfolding interval_bounds[OF *] using * apply(erule_tac x=x in allE) by auto
|
himmelma@35172
|
307 |
thus ?thesis unfolding content_def by(auto simp del:interval_bounds') qed(unfold content_def, auto)
|
himmelma@35172
|
308 |
|
hoelzl@37489
|
309 |
lemma content_pos_lt: fixes a::"'a::ordered_euclidean_space" assumes "\<forall>i<DIM('a). a$$i < b$$i" shows "0 < content {a..b}"
|
hoelzl@37489
|
310 |
proof- have help_lemma1: "\<forall>i<DIM('a). a$$i < b$$i \<Longrightarrow> \<forall>i<DIM('a). a$$i \<le> ((b$$i)::real)" apply(rule,erule_tac x=i in allE) by auto
|
himmelma@35172
|
311 |
show ?thesis unfolding content_closed_interval[OF help_lemma1[OF assms]] apply(rule setprod_pos)
|
himmelma@35172
|
312 |
using assms apply(erule_tac x=x in allE) by auto qed
|
himmelma@35172
|
313 |
|
hoelzl@37489
|
314 |
lemma content_eq_0: "content{a..b::'a::ordered_euclidean_space} = 0 \<longleftrightarrow> (\<exists>i<DIM('a). b$$i \<le> a$$i)" proof(cases "{a..b} = {}")
|
himmelma@35172
|
315 |
case True thus ?thesis unfolding content_def if_P[OF True] unfolding interval_eq_empty apply-
|
himmelma@35172
|
316 |
apply(rule,erule exE) apply(rule_tac x=i in exI) by auto next
|
hoelzl@37489
|
317 |
case False note this[unfolded interval_eq_empty not_ex not_less]
|
nipkow@44890
|
318 |
hence as:"\<forall>i<DIM('a). b $$ i \<ge> a $$ i" by fastforce
|
hoelzl@37489
|
319 |
show ?thesis unfolding content_def if_not_P[OF False] setprod_zero_iff[OF finite_lessThan]
|
himmelma@35172
|
320 |
apply(rule) apply(erule_tac[!] exE bexE) unfolding interval_bounds[OF as] apply(rule_tac x=x in exI) defer
|
himmelma@35172
|
321 |
apply(rule_tac x=i in bexI) using as apply(erule_tac x=i in allE) by auto qed
|
himmelma@35172
|
322 |
|
himmelma@35172
|
323 |
lemma cond_cases:"(P \<Longrightarrow> Q x) \<Longrightarrow> (\<not> P \<Longrightarrow> Q y) \<Longrightarrow> Q (if P then x else y)" by auto
|
himmelma@35172
|
324 |
|
himmelma@35172
|
325 |
lemma content_closed_interval_cases:
|
hoelzl@37489
|
326 |
"content {a..b::'a::ordered_euclidean_space} = (if \<forall>i<DIM('a). a$$i \<le> b$$i then setprod (\<lambda>i. b$$i - a$$i) {..<DIM('a)} else 0)" apply(rule cond_cases)
|
himmelma@35172
|
327 |
apply(rule content_closed_interval) unfolding content_eq_0 not_all not_le defer apply(erule exE,rule_tac x=x in exI) by auto
|
himmelma@35172
|
328 |
|
himmelma@35172
|
329 |
lemma content_eq_0_interior: "content {a..b} = 0 \<longleftrightarrow> interior({a..b}) = {}"
|
himmelma@35172
|
330 |
unfolding content_eq_0 interior_closed_interval interval_eq_empty by auto
|
himmelma@35172
|
331 |
|
hoelzl@37489
|
332 |
(*lemma content_eq_0_1: "content {a..b::real^1} = 0 \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
|
hoelzl@37489
|
333 |
unfolding content_eq_0 by auto*)
|
hoelzl@37489
|
334 |
|
hoelzl@37489
|
335 |
lemma content_pos_lt_eq: "0 < content {a..b::'a::ordered_euclidean_space} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i < b$$i)"
|
himmelma@35172
|
336 |
apply(rule) defer apply(rule content_pos_lt,assumption) proof- assume "0 < content {a..b}"
|
nipkow@44890
|
337 |
hence "content {a..b} \<noteq> 0" by auto thus "\<forall>i<DIM('a). a$$i < b$$i" unfolding content_eq_0 not_ex not_le by fastforce qed
|
himmelma@35172
|
338 |
|
himmelma@35172
|
339 |
lemma content_empty[simp]: "content {} = 0" unfolding content_def by auto
|
himmelma@35172
|
340 |
|
hoelzl@37489
|
341 |
lemma content_subset: assumes "{a..b} \<subseteq> {c..d}" shows "content {a..b::'a::ordered_euclidean_space} \<le> content {c..d}" proof(cases "{a..b}={}")
|
himmelma@35172
|
342 |
case True thus ?thesis using content_pos_le[of c d] by auto next
|
hoelzl@37489
|
343 |
case False hence ab_ne:"\<forall>i<DIM('a). a $$ i \<le> b $$ i" unfolding interval_ne_empty by auto
|
himmelma@35172
|
344 |
hence ab_ab:"a\<in>{a..b}" "b\<in>{a..b}" unfolding mem_interval by auto
|
himmelma@35172
|
345 |
have "{c..d} \<noteq> {}" using assms False by auto
|
hoelzl@37489
|
346 |
hence cd_ne:"\<forall>i<DIM('a). c $$ i \<le> d $$ i" using assms unfolding interval_ne_empty by auto
|
himmelma@35172
|
347 |
show ?thesis unfolding content_def unfolding interval_bounds[OF ab_ne] interval_bounds[OF cd_ne]
|
hoelzl@37489
|
348 |
unfolding if_not_P[OF False] if_not_P[OF `{c..d} \<noteq> {}`] apply(rule setprod_mono,rule) proof
|
hoelzl@37489
|
349 |
fix i assume i:"i\<in>{..<DIM('a)}"
|
hoelzl@37489
|
350 |
show "0 \<le> b $$ i - a $$ i" using ab_ne[THEN spec[where x=i]] i by auto
|
hoelzl@37489
|
351 |
show "b $$ i - a $$ i \<le> d $$ i - c $$ i"
|
himmelma@35172
|
352 |
using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(2),of i]
|
hoelzl@37489
|
353 |
using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(1),of i] using i by auto qed qed
|
himmelma@35172
|
354 |
|
himmelma@35172
|
355 |
lemma content_lt_nz: "0 < content {a..b} \<longleftrightarrow> content {a..b} \<noteq> 0"
|
nipkow@44890
|
356 |
unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by fastforce
|
himmelma@35172
|
357 |
|
himmelma@35172
|
358 |
subsection {* The notion of a gauge --- simply an open set containing the point. *}
|
himmelma@35172
|
359 |
|
himmelma@35172
|
360 |
definition gauge where "gauge d \<longleftrightarrow> (\<forall>x. x\<in>(d x) \<and> open(d x))"
|
himmelma@35172
|
361 |
|
himmelma@35172
|
362 |
lemma gaugeI:assumes "\<And>x. x\<in>g x" "\<And>x. open (g x)" shows "gauge g"
|
himmelma@35172
|
363 |
using assms unfolding gauge_def by auto
|
himmelma@35172
|
364 |
|
himmelma@35172
|
365 |
lemma gaugeD[dest]: assumes "gauge d" shows "x\<in>d x" "open (d x)" using assms unfolding gauge_def by auto
|
himmelma@35172
|
366 |
|
himmelma@35172
|
367 |
lemma gauge_ball_dependent: "\<forall>x. 0 < e x \<Longrightarrow> gauge (\<lambda>x. ball x (e x))"
|
himmelma@35172
|
368 |
unfolding gauge_def by auto
|
himmelma@35172
|
369 |
|
himmelma@35751
|
370 |
lemma gauge_ball[intro]: "0 < e \<Longrightarrow> gauge (\<lambda>x. ball x e)" unfolding gauge_def by auto
|
himmelma@35172
|
371 |
|
himmelma@35172
|
372 |
lemma gauge_trivial[intro]: "gauge (\<lambda>x. ball x 1)" apply(rule gauge_ball) by auto
|
himmelma@35172
|
373 |
|
himmelma@35751
|
374 |
lemma gauge_inter[intro]: "gauge d1 \<Longrightarrow> gauge d2 \<Longrightarrow> gauge (\<lambda>x. (d1 x) \<inter> (d2 x))"
|
himmelma@35172
|
375 |
unfolding gauge_def by auto
|
himmelma@35172
|
376 |
|
himmelma@35172
|
377 |
lemma gauge_inters: assumes "finite s" "\<forall>d\<in>s. gauge (f d)" shows "gauge(\<lambda>x. \<Inter> {f d x | d. d \<in> s})" proof-
|
himmelma@35172
|
378 |
have *:"\<And>x. {f d x |d. d \<in> s} = (\<lambda>d. f d x) ` s" by auto show ?thesis
|
himmelma@35172
|
379 |
unfolding gauge_def unfolding *
|
himmelma@35172
|
380 |
using assms unfolding Ball_def Inter_iff mem_Collect_eq gauge_def by auto qed
|
himmelma@35172
|
381 |
|
himmelma@35172
|
382 |
lemma gauge_existence_lemma: "(\<forall>x. \<exists>d::real. p x \<longrightarrow> 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. p x \<longrightarrow> q d x)" by(meson zero_less_one)
|
himmelma@35172
|
383 |
|
himmelma@35172
|
384 |
subsection {* Divisions. *}
|
himmelma@35172
|
385 |
|
himmelma@35172
|
386 |
definition division_of (infixl "division'_of" 40) where
|
himmelma@35172
|
387 |
"s division_of i \<equiv>
|
himmelma@35172
|
388 |
finite s \<and>
|
himmelma@35172
|
389 |
(\<forall>k\<in>s. k \<subseteq> i \<and> k \<noteq> {} \<and> (\<exists>a b. k = {a..b})) \<and>
|
himmelma@35172
|
390 |
(\<forall>k1\<in>s. \<forall>k2\<in>s. k1 \<noteq> k2 \<longrightarrow> interior(k1) \<inter> interior(k2) = {}) \<and>
|
himmelma@35172
|
391 |
(\<Union>s = i)"
|
himmelma@35172
|
392 |
|
himmelma@35172
|
393 |
lemma division_ofD[dest]: assumes "s division_of i"
|
himmelma@35172
|
394 |
shows"finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow> k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
|
himmelma@35172
|
395 |
"\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i" using assms unfolding division_of_def by auto
|
himmelma@35172
|
396 |
|
himmelma@35172
|
397 |
lemma division_ofI:
|
himmelma@35172
|
398 |
assumes "finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow> k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
|
himmelma@35172
|
399 |
"\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i"
|
himmelma@35172
|
400 |
shows "s division_of i" using assms unfolding division_of_def by auto
|
himmelma@35172
|
401 |
|
himmelma@35172
|
402 |
lemma division_of_finite: "s division_of i \<Longrightarrow> finite s"
|
himmelma@35172
|
403 |
unfolding division_of_def by auto
|
himmelma@35172
|
404 |
|
himmelma@35172
|
405 |
lemma division_of_self[intro]: "{a..b} \<noteq> {} \<Longrightarrow> {{a..b}} division_of {a..b}"
|
himmelma@35172
|
406 |
unfolding division_of_def by auto
|
himmelma@35172
|
407 |
|
himmelma@35172
|
408 |
lemma division_of_trivial[simp]: "s division_of {} \<longleftrightarrow> s = {}" unfolding division_of_def by auto
|
himmelma@35172
|
409 |
|
hoelzl@37489
|
410 |
lemma division_of_sing[simp]: "s division_of {a..a::'a::ordered_euclidean_space} \<longleftrightarrow> s = {{a..a}}" (is "?l = ?r") proof
|
himmelma@35172
|
411 |
assume ?r moreover { assume "s = {{a}}" moreover fix k assume "k\<in>s"
|
hoelzl@37489
|
412 |
ultimately have"\<exists>x y. k = {x..y}" apply(rule_tac x=a in exI)+ unfolding interval_sing by auto }
|
hoelzl@37489
|
413 |
ultimately show ?l unfolding division_of_def interval_sing by auto next
|
hoelzl@37489
|
414 |
assume ?l note as=conjunctD4[OF this[unfolded division_of_def interval_sing]]
|
himmelma@35172
|
415 |
{ fix x assume x:"x\<in>s" have "x={a}" using as(2)[rule_format,OF x] by auto }
|
hoelzl@37489
|
416 |
moreover have "s \<noteq> {}" using as(4) by auto ultimately show ?r unfolding interval_sing by auto qed
|
himmelma@35172
|
417 |
|
himmelma@35172
|
418 |
lemma elementary_empty: obtains p where "p division_of {}"
|
himmelma@35172
|
419 |
unfolding division_of_trivial by auto
|
himmelma@35172
|
420 |
|
himmelma@35172
|
421 |
lemma elementary_interval: obtains p where "p division_of {a..b}"
|
himmelma@35172
|
422 |
by(metis division_of_trivial division_of_self)
|
himmelma@35172
|
423 |
|
himmelma@35172
|
424 |
lemma division_contains: "s division_of i \<Longrightarrow> \<forall>x\<in>i. \<exists>k\<in>s. x \<in> k"
|
himmelma@35172
|
425 |
unfolding division_of_def by auto
|
himmelma@35172
|
426 |
|
himmelma@35172
|
427 |
lemma forall_in_division:
|
himmelma@35172
|
428 |
"d division_of i \<Longrightarrow> ((\<forall>x\<in>d. P x) \<longleftrightarrow> (\<forall>a b. {a..b} \<in> d \<longrightarrow> P {a..b}))"
|
nipkow@44890
|
429 |
unfolding division_of_def by fastforce
|
himmelma@35172
|
430 |
|
himmelma@35172
|
431 |
lemma division_of_subset: assumes "p division_of (\<Union>p)" "q \<subseteq> p" shows "q division_of (\<Union>q)"
|
himmelma@35172
|
432 |
apply(rule division_ofI) proof- note as=division_ofD[OF assms(1)]
|
himmelma@35172
|
433 |
show "finite q" apply(rule finite_subset) using as(1) assms(2) by auto
|
himmelma@35172
|
434 |
{ fix k assume "k \<in> q" hence kp:"k\<in>p" using assms(2) by auto show "k\<subseteq>\<Union>q" using `k \<in> q` by auto
|
himmelma@35172
|
435 |
show "\<exists>a b. k = {a..b}" using as(4)[OF kp] by auto show "k \<noteq> {}" using as(3)[OF kp] by auto }
|
himmelma@35172
|
436 |
fix k1 k2 assume "k1 \<in> q" "k2 \<in> q" "k1 \<noteq> k2" hence *:"k1\<in>p" "k2\<in>p" "k1\<noteq>k2" using assms(2) by auto
|
himmelma@35172
|
437 |
show "interior k1 \<inter> interior k2 = {}" using as(5)[OF *] by auto qed auto
|
himmelma@35172
|
438 |
|
himmelma@35172
|
439 |
lemma division_of_union_self[intro]: "p division_of s \<Longrightarrow> p division_of (\<Union>p)" unfolding division_of_def by auto
|
himmelma@35172
|
440 |
|
himmelma@35172
|
441 |
lemma division_of_content_0: assumes "content {a..b} = 0" "d division_of {a..b}" shows "\<forall>k\<in>d. content k = 0"
|
himmelma@35172
|
442 |
unfolding forall_in_division[OF assms(2)] apply(rule,rule,rule) apply(drule division_ofD(2)[OF assms(2)])
|
himmelma@35172
|
443 |
apply(drule content_subset) unfolding assms(1) proof- case goal1 thus ?case using content_pos_le[of a b] by auto qed
|
himmelma@35172
|
444 |
|
hoelzl@37489
|
445 |
lemma division_inter: assumes "p1 division_of s1" "p2 division_of (s2::('a::ordered_euclidean_space) set)"
|
himmelma@35172
|
446 |
shows "{k1 \<inter> k2 | k1 k2 .k1 \<in> p1 \<and> k2 \<in> p2 \<and> k1 \<inter> k2 \<noteq> {}} division_of (s1 \<inter> s2)" (is "?A' division_of _") proof-
|
himmelma@35172
|
447 |
let ?A = "{s. s \<in> (\<lambda>(k1,k2). k1 \<inter> k2) ` (p1 \<times> p2) \<and> s \<noteq> {}}" have *:"?A' = ?A" by auto
|
himmelma@35172
|
448 |
show ?thesis unfolding * proof(rule division_ofI) have "?A \<subseteq> (\<lambda>(x, y). x \<inter> y) ` (p1 \<times> p2)" by auto
|
himmelma@35172
|
449 |
moreover have "finite (p1 \<times> p2)" using assms unfolding division_of_def by auto ultimately show "finite ?A" by auto
|
nipkow@39302
|
450 |
have *:"\<And>s. \<Union>{x\<in>s. x \<noteq> {}} = \<Union>s" by auto show "\<Union>?A = s1 \<inter> s2" apply(rule set_eqI) unfolding * and Union_image_eq UN_iff
|
himmelma@35172
|
451 |
using division_ofD(6)[OF assms(1)] and division_ofD(6)[OF assms(2)] by auto
|
himmelma@35172
|
452 |
{ fix k assume "k\<in>?A" then obtain k1 k2 where k:"k = k1 \<inter> k2" "k1\<in>p1" "k2\<in>p2" "k\<noteq>{}" by auto thus "k \<noteq> {}" by auto
|
himmelma@35172
|
453 |
show "k \<subseteq> s1 \<inter> s2" using division_ofD(2)[OF assms(1) k(2)] and division_ofD(2)[OF assms(2) k(3)] unfolding k by auto
|
himmelma@35172
|
454 |
guess a1 using division_ofD(4)[OF assms(1) k(2)] .. then guess b1 .. note ab1=this
|
himmelma@35172
|
455 |
guess a2 using division_ofD(4)[OF assms(2) k(3)] .. then guess b2 .. note ab2=this
|
himmelma@35172
|
456 |
show "\<exists>a b. k = {a..b}" unfolding k ab1 ab2 unfolding inter_interval by auto } fix k1 k2
|
himmelma@35172
|
457 |
assume "k1\<in>?A" then obtain x1 y1 where k1:"k1 = x1 \<inter> y1" "x1\<in>p1" "y1\<in>p2" "k1\<noteq>{}" by auto
|
himmelma@35172
|
458 |
assume "k2\<in>?A" then obtain x2 y2 where k2:"k2 = x2 \<inter> y2" "x2\<in>p1" "y2\<in>p2" "k2\<noteq>{}" by auto
|
himmelma@35172
|
459 |
assume "k1 \<noteq> k2" hence th:"x1\<noteq>x2 \<or> y1\<noteq>y2" unfolding k1 k2 by auto
|
himmelma@35172
|
460 |
have *:"(interior x1 \<inter> interior x2 = {} \<or> interior y1 \<inter> interior y2 = {}) \<Longrightarrow>
|
himmelma@35172
|
461 |
interior(x1 \<inter> y1) \<subseteq> interior(x1) \<Longrightarrow> interior(x1 \<inter> y1) \<subseteq> interior(y1) \<Longrightarrow>
|
himmelma@35172
|
462 |
interior(x2 \<inter> y2) \<subseteq> interior(x2) \<Longrightarrow> interior(x2 \<inter> y2) \<subseteq> interior(y2)
|
himmelma@35172
|
463 |
\<Longrightarrow> interior(x1 \<inter> y1) \<inter> interior(x2 \<inter> y2) = {}" by auto
|
huffman@44522
|
464 |
show "interior k1 \<inter> interior k2 = {}" unfolding k1 k2 apply(rule *) defer apply(rule_tac[1-4] interior_mono)
|
himmelma@35172
|
465 |
using division_ofD(5)[OF assms(1) k1(2) k2(2)]
|
himmelma@35172
|
466 |
using division_ofD(5)[OF assms(2) k1(3) k2(3)] using th by auto qed qed
|
himmelma@35172
|
467 |
|
hoelzl@37489
|
468 |
lemma division_inter_1: assumes "d division_of i" "{a..b::'a::ordered_euclidean_space} \<subseteq> i"
|
himmelma@35172
|
469 |
shows "{ {a..b} \<inter> k |k. k \<in> d \<and> {a..b} \<inter> k \<noteq> {} } division_of {a..b}" proof(cases "{a..b} = {}")
|
himmelma@35172
|
470 |
case True show ?thesis unfolding True and division_of_trivial by auto next
|
himmelma@35172
|
471 |
have *:"{a..b} \<inter> i = {a..b}" using assms(2) by auto
|
himmelma@35172
|
472 |
case False show ?thesis using division_inter[OF division_of_self[OF False] assms(1)] unfolding * by auto qed
|
himmelma@35172
|
473 |
|
hoelzl@37489
|
474 |
lemma elementary_inter: assumes "p1 division_of s" "p2 division_of (t::('a::ordered_euclidean_space) set)"
|
himmelma@35172
|
475 |
shows "\<exists>p. p division_of (s \<inter> t)"
|
himmelma@35172
|
476 |
by(rule,rule division_inter[OF assms])
|
himmelma@35172
|
477 |
|
hoelzl@37489
|
478 |
lemma elementary_inters: assumes "finite f" "f\<noteq>{}" "\<forall>s\<in>f. \<exists>p. p division_of (s::('a::ordered_euclidean_space) set)"
|
himmelma@35172
|
479 |
shows "\<exists>p. p division_of (\<Inter> f)" using assms apply-proof(induct f rule:finite_induct)
|
himmelma@35172
|
480 |
case (insert x f) show ?case proof(cases "f={}")
|
himmelma@35172
|
481 |
case True thus ?thesis unfolding True using insert by auto next
|
himmelma@35172
|
482 |
case False guess p using insert(3)[OF False insert(5)[unfolded ball_simps,THEN conjunct2]] ..
|
himmelma@35172
|
483 |
moreover guess px using insert(5)[rule_format,OF insertI1] .. ultimately
|
himmelma@35172
|
484 |
show ?thesis unfolding Inter_insert apply(rule_tac elementary_inter) by assumption+ qed qed auto
|
himmelma@35172
|
485 |
|
himmelma@35172
|
486 |
lemma division_disjoint_union:
|
himmelma@35172
|
487 |
assumes "p1 division_of s1" "p2 division_of s2" "interior s1 \<inter> interior s2 = {}"
|
himmelma@35172
|
488 |
shows "(p1 \<union> p2) division_of (s1 \<union> s2)" proof(rule division_ofI)
|
himmelma@35172
|
489 |
note d1 = division_ofD[OF assms(1)] and d2 = division_ofD[OF assms(2)]
|
himmelma@35172
|
490 |
show "finite (p1 \<union> p2)" using d1(1) d2(1) by auto
|
himmelma@35172
|
491 |
show "\<Union>(p1 \<union> p2) = s1 \<union> s2" using d1(6) d2(6) by auto
|
himmelma@35172
|
492 |
{ fix k1 k2 assume as:"k1 \<in> p1 \<union> p2" "k2 \<in> p1 \<union> p2" "k1 \<noteq> k2" moreover let ?g="interior k1 \<inter> interior k2 = {}"
|
huffman@44522
|
493 |
{ assume as:"k1\<in>p1" "k2\<in>p2" have ?g using interior_mono[OF d1(2)[OF as(1)]] interior_mono[OF d2(2)[OF as(2)]]
|
himmelma@35172
|
494 |
using assms(3) by blast } moreover
|
huffman@44522
|
495 |
{ assume as:"k1\<in>p2" "k2\<in>p1" have ?g using interior_mono[OF d1(2)[OF as(2)]] interior_mono[OF d2(2)[OF as(1)]]
|
himmelma@35172
|
496 |
using assms(3) by blast} ultimately
|
himmelma@35172
|
497 |
show ?g using d1(5)[OF _ _ as(3)] and d2(5)[OF _ _ as(3)] by auto }
|
himmelma@35172
|
498 |
fix k assume k:"k \<in> p1 \<union> p2" show "k \<subseteq> s1 \<union> s2" using k d1(2) d2(2) by auto
|
himmelma@35172
|
499 |
show "k \<noteq> {}" using k d1(3) d2(3) by auto show "\<exists>a b. k = {a..b}" using k d1(4) d2(4) by auto qed
|
himmelma@35172
|
500 |
|
himmelma@35172
|
501 |
lemma partial_division_extend_1:
|
hoelzl@37489
|
502 |
assumes "{c..d} \<subseteq> {a..b::'a::ordered_euclidean_space}" "{c..d} \<noteq> {}"
|
himmelma@35172
|
503 |
obtains p where "p division_of {a..b}" "{c..d} \<in> p"
|
hoelzl@37489
|
504 |
proof- def n \<equiv> "DIM('a)" have n:"1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def using DIM_positive[where 'a='a] by auto
|
hoelzl@37489
|
505 |
guess \<pi> using ex_bij_betw_nat_finite_1[OF finite_lessThan[of "DIM('a)"]] .. note \<pi>=this
|
himmelma@35172
|
506 |
def \<pi>' \<equiv> "inv_into {1..n} \<pi>"
|
hoelzl@37489
|
507 |
have \<pi>':"bij_betw \<pi>' {..<DIM('a)} {1..n}" using bij_betw_inv_into[OF \<pi>] unfolding \<pi>'_def n_def by auto
|
hoelzl@37489
|
508 |
hence \<pi>'i:"\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i \<in> {1..n}" unfolding bij_betw_def by auto
|
hoelzl@37489
|
509 |
have \<pi>i:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi> i <DIM('a)" using \<pi> unfolding bij_betw_def n_def by auto
|
hoelzl@37489
|
510 |
have \<pi>\<pi>'[simp]:"\<And>i. i<DIM('a) \<Longrightarrow> \<pi> (\<pi>' i) = i" unfolding \<pi>'_def
|
hoelzl@37489
|
511 |
apply(rule f_inv_into_f) unfolding n_def using \<pi> unfolding bij_betw_def by auto
|
hoelzl@37489
|
512 |
have \<pi>'\<pi>[simp]:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi>' (\<pi> i) = i" unfolding \<pi>'_def apply(rule inv_into_f_eq)
|
hoelzl@37489
|
513 |
using \<pi> unfolding n_def bij_betw_def by auto
|
himmelma@35172
|
514 |
have "{c..d} \<noteq> {}" using assms by auto
|
hoelzl@37489
|
515 |
let ?p1 = "\<lambda>l. {(\<chi>\<chi> i. if \<pi>' i < l then c$$i else a$$i)::'a .. (\<chi>\<chi> i. if \<pi>' i < l then d$$i else if \<pi>' i = l then c$$\<pi> l else b$$i)}"
|
hoelzl@37489
|
516 |
let ?p2 = "\<lambda>l. {(\<chi>\<chi> i. if \<pi>' i < l then c$$i else if \<pi>' i = l then d$$\<pi> l else a$$i)::'a .. (\<chi>\<chi> i. if \<pi>' i < l then d$$i else b$$i)}"
|
himmelma@35172
|
517 |
let ?p = "{?p1 l |l. l \<in> {1..n+1}} \<union> {?p2 l |l. l \<in> {1..n+1}}"
|
hoelzl@37489
|
518 |
have abcd:"\<And>i. i<DIM('a) \<Longrightarrow> a $$ i \<le> c $$ i \<and> c$$i \<le> d$$i \<and> d $$ i \<le> b $$ i" using assms
|
hoelzl@37489
|
519 |
unfolding subset_interval interval_eq_empty by auto
|
himmelma@35172
|
520 |
show ?thesis apply(rule that[of ?p]) apply(rule division_ofI)
|
hoelzl@37489
|
521 |
proof- have "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < Suc n"
|
hoelzl@37489
|
522 |
proof(rule ccontr,unfold not_less) fix i assume i:"i<DIM('a)" and "Suc n \<le> \<pi>' i"
|
hoelzl@37489
|
523 |
hence "\<pi>' i \<notin> {1..n}" by auto thus False using \<pi>' i unfolding bij_betw_def by auto
|
hoelzl@37489
|
524 |
qed hence "c = (\<chi>\<chi> i. if \<pi>' i < Suc n then c $$ i else a $$ i)"
|
hoelzl@37489
|
525 |
"d = (\<chi>\<chi> i. if \<pi>' i < Suc n then d $$ i else if \<pi>' i = n + 1 then c $$ \<pi> (n + 1) else b $$ i)"
|
hoelzl@37489
|
526 |
unfolding euclidean_eq[where 'a='a] using \<pi>' unfolding bij_betw_def by auto
|
himmelma@35172
|
527 |
thus cdp:"{c..d} \<in> ?p" apply-apply(rule UnI1) unfolding mem_Collect_eq apply(rule_tac x="n + 1" in exI) by auto
|
himmelma@35172
|
528 |
have "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p1 l \<subseteq> {a..b}" "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p2 l \<subseteq> {a..b}"
|
himmelma@35172
|
529 |
unfolding subset_eq apply(rule_tac[!] ballI,rule_tac[!] ccontr)
|
himmelma@35172
|
530 |
proof- fix l assume l:"l\<in>{1..n+1}" fix x assume "x\<notin>{a..b}"
|
hoelzl@37489
|
531 |
then guess i unfolding mem_interval not_all not_imp .. note i=conjunctD2[OF this]
|
himmelma@35172
|
532 |
show "x \<in> ?p1 l \<Longrightarrow> False" "x \<in> ?p2 l \<Longrightarrow> False" unfolding mem_interval apply(erule_tac[!] x=i in allE)
|
himmelma@35172
|
533 |
apply(case_tac[!] "\<pi>' i < l", case_tac[!] "\<pi>' i = l") using abcd[of i] i by auto
|
himmelma@35172
|
534 |
qed moreover have "\<And>x. x \<in> {a..b} \<Longrightarrow> x \<in> \<Union>?p"
|
himmelma@35172
|
535 |
proof- fix x assume x:"x\<in>{a..b}"
|
himmelma@35172
|
536 |
{ presume "x\<notin>{c..d} \<Longrightarrow> x \<in> \<Union>?p" thus "x \<in> \<Union>?p" using cdp by blast }
|
hoelzl@37489
|
537 |
let ?M = "{i. i\<in>{1..n+1} \<and> \<not> (c $$ \<pi> i \<le> x $$ \<pi> i \<and> x $$ \<pi> i \<le> d $$ \<pi> i)}"
|
hoelzl@37489
|
538 |
assume "x\<notin>{c..d}" then guess i0 unfolding mem_interval not_all not_imp ..
|
himmelma@35172
|
539 |
hence "\<pi>' i0 \<in> ?M" using \<pi>' unfolding bij_betw_def by(auto intro!:le_SucI)
|
himmelma@35172
|
540 |
hence M:"finite ?M" "?M \<noteq> {}" by auto
|
himmelma@35172
|
541 |
def l \<equiv> "Min ?M" note l = Min_less_iff[OF M,unfolded l_def[symmetric]] Min_in[OF M,unfolded mem_Collect_eq l_def[symmetric]]
|
himmelma@35172
|
542 |
Min_gr_iff[OF M,unfolded l_def[symmetric]]
|
himmelma@35172
|
543 |
have "x\<in>?p1 l \<or> x\<in>?p2 l" using l(2)[THEN conjunct2] unfolding de_Morgan_conj not_le
|
himmelma@35172
|
544 |
apply- apply(erule disjE) apply(rule disjI1) defer apply(rule disjI2)
|
hoelzl@37489
|
545 |
proof- assume as:"x $$ \<pi> l < c $$ \<pi> l"
|
hoelzl@37489
|
546 |
show "x \<in> ?p1 l" unfolding mem_interval apply safe unfolding euclidean_lambda_beta'
|
hoelzl@37489
|
547 |
proof- case goal1 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using goal1 by auto
|
himmelma@35172
|
548 |
thus ?case using as x[unfolded mem_interval,rule_format,of i]
|
hoelzl@37489
|
549 |
apply auto using l(3)[of "\<pi>' i"] using goal1 by(auto elim!:ballE[where x="\<pi>' i"])
|
hoelzl@37489
|
550 |
next case goal2 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using goal2 by auto
|
hoelzl@37489
|
551 |
thus ?case using as x[unfolded mem_interval,rule_format,of i]
|
hoelzl@37489
|
552 |
apply auto using l(3)[of "\<pi>' i"] using goal2 by(auto elim!:ballE[where x="\<pi>' i"])
|
himmelma@35172
|
553 |
qed
|
hoelzl@37489
|
554 |
next assume as:"x $$ \<pi> l > d $$ \<pi> l"
|
hoelzl@37489
|
555 |
show "x \<in> ?p2 l" unfolding mem_interval apply safe unfolding euclidean_lambda_beta'
|
hoelzl@37489
|
556 |
proof- fix i assume i:"i<DIM('a)"
|
hoelzl@37489
|
557 |
have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using i by auto
|
hoelzl@37489
|
558 |
thus "(if \<pi>' i < l then c $$ i else if \<pi>' i = l then d $$ \<pi> l else a $$ i) \<le> x $$ i"
|
hoelzl@37489
|
559 |
"x $$ i \<le> (if \<pi>' i < l then d $$ i else b $$ i)"
|
hoelzl@37489
|
560 |
using as x[unfolded mem_interval,rule_format,of i]
|
hoelzl@37489
|
561 |
apply auto using l(3)[of "\<pi>' i"] i by(auto elim!:ballE[where x="\<pi>' i"])
|
himmelma@35172
|
562 |
qed qed
|
himmelma@35172
|
563 |
thus "x \<in> \<Union>?p" using l(2) by blast
|
himmelma@35172
|
564 |
qed ultimately show "\<Union>?p = {a..b}" apply-apply(rule) defer apply(rule) by(assumption,blast)
|
himmelma@35172
|
565 |
|
himmelma@35172
|
566 |
show "finite ?p" by auto
|
himmelma@35172
|
567 |
fix k assume k:"k\<in>?p" then obtain l where l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" by auto
|
himmelma@35172
|
568 |
show "k\<subseteq>{a..b}" apply(rule,unfold mem_interval,rule,rule)
|
hoelzl@37489
|
569 |
proof fix i x assume i:"i<DIM('a)" assume "x \<in> k" moreover have "\<pi>' i < l \<or> \<pi>' i = l \<or> \<pi>' i > l" by auto
|
hoelzl@37489
|
570 |
ultimately show "a$$i \<le> x$$i" "x$$i \<le> b$$i" using abcd[of i] using l using i
|
huffman@44457
|
571 |
by(auto elim!:allE[where x=i] simp add:eucl_le[where 'a='a]) (* FIXME: SLOW *)
|
himmelma@35172
|
572 |
qed have "\<And>l. ?p1 l \<noteq> {}" "\<And>l. ?p2 l \<noteq> {}" unfolding interval_eq_empty not_ex apply(rule_tac[!] allI)
|
himmelma@35172
|
573 |
proof- case goal1 thus ?case using abcd[of x] by auto
|
himmelma@35172
|
574 |
next case goal2 thus ?case using abcd[of x] by auto
|
himmelma@35172
|
575 |
qed thus "k \<noteq> {}" using k by auto
|
himmelma@35172
|
576 |
show "\<exists>a b. k = {a..b}" using k by auto
|
himmelma@35172
|
577 |
fix k' assume k':"k' \<in> ?p" "k \<noteq> k'" then obtain l' where l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" by auto
|
himmelma@35172
|
578 |
{ fix k k' l l'
|
himmelma@35172
|
579 |
assume k:"k\<in>?p" and l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}"
|
himmelma@35172
|
580 |
assume k':"k' \<in> ?p" "k \<noteq> k'" and l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}"
|
himmelma@35172
|
581 |
assume "l \<le> l'" fix x
|
himmelma@35172
|
582 |
have "x \<notin> interior k \<inter> interior k'"
|
himmelma@35172
|
583 |
proof(rule,cases "l' = n+1") assume x:"x \<in> interior k \<inter> interior k'"
|
hoelzl@37489
|
584 |
case True hence "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < l'" using \<pi>'i using l' by(auto simp add:less_Suc_eq_le)
|
hoelzl@37489
|
585 |
hence *:"\<And> P Q. (\<chi>\<chi> i. if \<pi>' i < l' then P i else Q i) = ((\<chi>\<chi> i. P i)::'a)" apply-apply(subst euclidean_eq) by auto
|
hoelzl@37489
|
586 |
hence k':"k' = {c..d}" using l'(1) unfolding * by auto
|
himmelma@35172
|
587 |
have ln:"l < n + 1"
|
himmelma@35172
|
588 |
proof(rule ccontr) case goal1 hence l2:"l = n+1" using l by auto
|
hoelzl@37489
|
589 |
hence "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < l" using \<pi>'i by(auto simp add:less_Suc_eq_le)
|
hoelzl@37489
|
590 |
hence *:"\<And> P Q. (\<chi>\<chi> i. if \<pi>' i < l then P i else Q i) = ((\<chi>\<chi> i. P i)::'a)" apply-apply(subst euclidean_eq) by auto
|
hoelzl@37489
|
591 |
hence "k = {c..d}" using l(1) \<pi>'i unfolding * by(auto)
|
himmelma@35172
|
592 |
thus False using `k\<noteq>k'` k' by auto
|
himmelma@35172
|
593 |
qed have **:"\<pi>' (\<pi> l) = l" using \<pi>'\<pi>[of l] using l ln by auto
|
hoelzl@37489
|
594 |
have "x $$ \<pi> l < c $$ \<pi> l \<or> d $$ \<pi> l < x $$ \<pi> l" using l(1) apply-
|
himmelma@35172
|
595 |
proof(erule disjE)
|
himmelma@35172
|
596 |
assume as:"k = ?p1 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
|
hoelzl@37489
|
597 |
show ?thesis using *[of "\<pi> l"] using ln l(2) using \<pi>i[of l] by(auto simp add:** not_less)
|
himmelma@35172
|
598 |
next assume as:"k = ?p2 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
|
hoelzl@37489
|
599 |
show ?thesis using *[of "\<pi> l"] using ln l(2) using \<pi>i[of l] unfolding ** by auto
|
himmelma@35172
|
600 |
qed thus False using x unfolding k' unfolding Int_iff interior_closed_interval mem_interval
|
himmelma@35172
|
601 |
by(auto elim!:allE[where x="\<pi> l"])
|
himmelma@35172
|
602 |
next case False hence "l < n + 1" using l'(2) using `l\<le>l'` by auto
|
himmelma@35172
|
603 |
hence ln:"l \<in> {1..n}" "l' \<in> {1..n}" using l l' False by auto
|
himmelma@35172
|
604 |
note \<pi>l = \<pi>'\<pi>[OF ln(1)] \<pi>'\<pi>[OF ln(2)]
|
himmelma@35172
|
605 |
assume x:"x \<in> interior k \<inter> interior k'"
|
himmelma@35172
|
606 |
show False using l(1) l'(1) apply-
|
himmelma@35172
|
607 |
proof(erule_tac[!] disjE)+
|
himmelma@35172
|
608 |
assume as:"k = ?p1 l" "k' = ?p1 l'"
|
hoelzl@37489
|
609 |
note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
|
himmelma@35172
|
610 |
have "l \<noteq> l'" using k'(2)[unfolded as] by auto
|
hoelzl@37489
|
611 |
thus False using *[of "\<pi> l'"] *[of "\<pi> l"] ln using \<pi>i[OF ln(1)] \<pi>i[OF ln(2)] apply(cases "l<l'")
|
hoelzl@37489
|
612 |
by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)
|
himmelma@35172
|
613 |
next assume as:"k = ?p2 l" "k' = ?p2 l'"
|
himmelma@35172
|
614 |
note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
|
himmelma@35172
|
615 |
have "l \<noteq> l'" apply(rule) using k'(2)[unfolded as] by auto
|
hoelzl@37489
|
616 |
thus False using *[of "\<pi> l"] *[of "\<pi> l'"] `l \<le> l'` ln by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)
|
himmelma@35172
|
617 |
next assume as:"k = ?p1 l" "k' = ?p2 l'"
|
himmelma@35172
|
618 |
note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
|
hoelzl@37489
|
619 |
show False using abcd[of "\<pi> l'"] using *[of "\<pi> l"] *[of "\<pi> l'"] `l \<le> l'` ln apply(cases "l=l'")
|
hoelzl@37489
|
620 |
by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)
|
himmelma@35172
|
621 |
next assume as:"k = ?p2 l" "k' = ?p1 l'"
|
himmelma@35172
|
622 |
note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
|
hoelzl@37489
|
623 |
show False using *[of "\<pi> l"] *[of "\<pi> l'"] ln `l \<le> l'` apply(cases "l=l'") using abcd[of "\<pi> l'"]
|
hoelzl@37489
|
624 |
by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)
|
himmelma@35172
|
625 |
qed qed }
|
himmelma@35172
|
626 |
from this[OF k l k' l'] this[OF k'(1) l' k _ l] have "\<And>x. x \<notin> interior k \<inter> interior k'"
|
himmelma@35172
|
627 |
apply - apply(cases "l' \<le> l") using k'(2) by auto
|
himmelma@35172
|
628 |
thus "interior k \<inter> interior k' = {}" by auto
|
himmelma@35172
|
629 |
qed qed
|
himmelma@35172
|
630 |
|
himmelma@35172
|
631 |
lemma partial_division_extend_interval: assumes "p division_of (\<Union>p)" "(\<Union>p) \<subseteq> {a..b}"
|
hoelzl@37489
|
632 |
obtains q where "p \<subseteq> q" "q division_of {a..b::'a::ordered_euclidean_space}" proof(cases "p = {}")
|
himmelma@35172
|
633 |
case True guess q apply(rule elementary_interval[of a b]) .
|
himmelma@35172
|
634 |
thus ?thesis apply- apply(rule that[of q]) unfolding True by auto next
|
himmelma@35172
|
635 |
case False note p = division_ofD[OF assms(1)]
|
himmelma@35172
|
636 |
have *:"\<forall>k\<in>p. \<exists>q. q division_of {a..b} \<and> k\<in>q" proof case goal1
|
himmelma@35172
|
637 |
guess c using p(4)[OF goal1] .. then guess d .. note cd_ = this
|
himmelma@35172
|
638 |
have *:"{c..d} \<subseteq> {a..b}" "{c..d} \<noteq> {}" using p(2,3)[OF goal1, unfolded cd_] using assms(2) by auto
|
himmelma@35172
|
639 |
guess q apply(rule partial_division_extend_1[OF *]) . thus ?case unfolding cd_ by auto qed
|
himmelma@35172
|
640 |
guess q using bchoice[OF *] .. note q = conjunctD2[OF this[rule_format]]
|
himmelma@35172
|
641 |
have "\<And>x. x\<in>p \<Longrightarrow> \<exists>d. d division_of \<Union>(q x - {x})" apply(rule,rule_tac p="q x" in division_of_subset) proof-
|
himmelma@35172
|
642 |
fix x assume x:"x\<in>p" show "q x division_of \<Union>q x" apply-apply(rule division_ofI)
|
himmelma@35172
|
643 |
using division_ofD[OF q(1)[OF x]] by auto show "q x - {x} \<subseteq> q x" by auto qed
|
himmelma@35172
|
644 |
hence "\<exists>d. d division_of \<Inter> ((\<lambda>i. \<Union>(q i - {i})) ` p)" apply- apply(rule elementary_inters)
|
himmelma@35172
|
645 |
apply(rule finite_imageI[OF p(1)]) unfolding image_is_empty apply(rule False) by auto
|
himmelma@35172
|
646 |
then guess d .. note d = this
|
himmelma@35172
|
647 |
show ?thesis apply(rule that[of "d \<union> p"]) proof-
|
himmelma@35172
|
648 |
have *:"\<And>s f t. s \<noteq> {} \<Longrightarrow> (\<forall>i\<in>s. f i \<union> i = t) \<Longrightarrow> t = \<Inter> (f ` s) \<union> (\<Union>s)" by auto
|
himmelma@35172
|
649 |
have *:"{a..b} = \<Inter> (\<lambda>i. \<Union>(q i - {i})) ` p \<union> \<Union>p" apply(rule *[OF False]) proof fix i assume i:"i\<in>p"
|
himmelma@35172
|
650 |
show "\<Union>(q i - {i}) \<union> i = {a..b}" using division_ofD(6)[OF q(1)[OF i]] using q(2)[OF i] by auto qed
|
himmelma@35172
|
651 |
show "d \<union> p division_of {a..b}" unfolding * apply(rule division_disjoint_union[OF d assms(1)])
|
himmelma@35172
|
652 |
apply(rule inter_interior_unions_intervals) apply(rule p open_interior ballI)+ proof(assumption,rule)
|
himmelma@35172
|
653 |
fix k assume k:"k\<in>p" have *:"\<And>u t s. u \<subseteq> s \<Longrightarrow> s \<inter> t = {} \<Longrightarrow> u \<inter> t = {}" by auto
|
himmelma@35172
|
654 |
show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<inter> interior k = {}" apply(rule *[of _ "interior (\<Union>(q k - {k}))"])
|
wenzelm@41958
|
655 |
defer apply(subst Int_commute) apply(rule inter_interior_unions_intervals) proof- note qk=division_ofD[OF q(1)[OF k]]
|
wenzelm@41958
|
656 |
show "finite (q k - {k})" "open (interior k)" "\<forall>t\<in>q k - {k}. \<exists>a b. t = {a..b}" using qk by auto
|
wenzelm@41958
|
657 |
show "\<forall>t\<in>q k - {k}. interior k \<inter> interior t = {}" using qk(5) using q(2)[OF k] by auto
|
wenzelm@41958
|
658 |
have *:"\<And>x s. x \<in> s \<Longrightarrow> \<Inter>s \<subseteq> x" by auto show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<subseteq> interior (\<Union>(q k - {k}))"
|
huffman@44522
|
659 |
apply(rule interior_mono *)+ using k by auto qed qed qed auto qed
|
himmelma@35172
|
660 |
|
hoelzl@37489
|
661 |
lemma elementary_bounded[dest]: "p division_of s \<Longrightarrow> bounded (s::('a::ordered_euclidean_space) set)"
|
himmelma@35172
|
662 |
unfolding division_of_def by(metis bounded_Union bounded_interval)
|
himmelma@35172
|
663 |
|
hoelzl@37489
|
664 |
lemma elementary_subset_interval: "p division_of s \<Longrightarrow> \<exists>a b. s \<subseteq> {a..b::'a::ordered_euclidean_space}"
|
himmelma@35172
|
665 |
by(meson elementary_bounded bounded_subset_closed_interval)
|
himmelma@35172
|
666 |
|
hoelzl@37489
|
667 |
lemma division_union_intervals_exists: assumes "{a..b::'a::ordered_euclidean_space} \<noteq> {}"
|
himmelma@35172
|
668 |
obtains p where "(insert {a..b} p) division_of ({a..b} \<union> {c..d})" proof(cases "{c..d} = {}")
|
himmelma@35172
|
669 |
case True show ?thesis apply(rule that[of "{}"]) unfolding True using assms by auto next
|
himmelma@35172
|
670 |
case False note false=this show ?thesis proof(cases "{a..b} \<inter> {c..d} = {}")
|
himmelma@35172
|
671 |
have *:"\<And>a b. {a,b} = {a} \<union> {b}" by auto
|
himmelma@35172
|
672 |
case True show ?thesis apply(rule that[of "{{c..d}}"]) unfolding * apply(rule division_disjoint_union)
|
himmelma@35172
|
673 |
using false True assms using interior_subset by auto next
|
himmelma@35172
|
674 |
case False obtain u v where uv:"{a..b} \<inter> {c..d} = {u..v}" unfolding inter_interval by auto
|
himmelma@35172
|
675 |
have *:"{u..v} \<subseteq> {c..d}" using uv by auto
|
himmelma@35172
|
676 |
guess p apply(rule partial_division_extend_1[OF * False[unfolded uv]]) . note p=this division_ofD[OF this(1)]
|
himmelma@35172
|
677 |
have *:"{a..b} \<union> {c..d} = {a..b} \<union> \<Union>(p - {{u..v}})" "\<And>x s. insert x s = {x} \<union> s" using p(8) unfolding uv[THEN sym] by auto
|
himmelma@35172
|
678 |
show thesis apply(rule that[of "p - {{u..v}}"]) unfolding *(1) apply(subst *(2)) apply(rule division_disjoint_union)
|
himmelma@35172
|
679 |
apply(rule,rule assms) apply(rule division_of_subset[of p]) apply(rule division_of_union_self[OF p(1)]) defer
|
himmelma@35172
|
680 |
unfolding interior_inter[THEN sym] proof-
|
himmelma@35172
|
681 |
have *:"\<And>cd p uv ab. p \<subseteq> cd \<Longrightarrow> ab \<inter> cd = uv \<Longrightarrow> ab \<inter> p = uv \<inter> p" by auto
|
himmelma@35172
|
682 |
have "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = interior({u..v} \<inter> \<Union>(p - {{u..v}}))"
|
himmelma@35172
|
683 |
apply(rule arg_cong[of _ _ interior]) apply(rule *[OF _ uv]) using p(8) by auto
|
himmelma@35172
|
684 |
also have "\<dots> = {}" unfolding interior_inter apply(rule inter_interior_unions_intervals) using p(6) p(7)[OF p(2)] p(3) by auto
|
himmelma@35172
|
685 |
finally show "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = {}" by assumption qed auto qed qed
|
himmelma@35172
|
686 |
|
himmelma@35172
|
687 |
lemma division_of_unions: assumes "finite f" "\<And>p. p\<in>f \<Longrightarrow> p division_of (\<Union>p)"
|
himmelma@35172
|
688 |
"\<And>k1 k2. \<lbrakk>k1 \<in> \<Union>f; k2 \<in> \<Union>f; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior k1 \<inter> interior k2 = {}"
|
himmelma@35172
|
689 |
shows "\<Union>f division_of \<Union>\<Union>f" apply(rule division_ofI) prefer 5 apply(rule assms(3)|assumption)+
|
himmelma@35172
|
690 |
apply(rule finite_Union assms(1))+ prefer 3 apply(erule UnionE) apply(rule_tac s=X in division_ofD(3)[OF assms(2)])
|
himmelma@35172
|
691 |
using division_ofD[OF assms(2)] by auto
|
himmelma@35172
|
692 |
|
himmelma@35172
|
693 |
lemma elementary_union_interval: assumes "p division_of \<Union>p"
|
hoelzl@37489
|
694 |
obtains q where "q division_of ({a..b::'a::ordered_euclidean_space} \<union> \<Union>p)" proof-
|
himmelma@35172
|
695 |
note assm=division_ofD[OF assms]
|
himmelma@35172
|
696 |
have lem1:"\<And>f s. \<Union>\<Union> (f ` s) = \<Union>(\<lambda>x.\<Union>(f x)) ` s" by auto
|
himmelma@35172
|
697 |
have lem2:"\<And>f s. f \<noteq> {} \<Longrightarrow> \<Union>{s \<union> t |t. t \<in> f} = s \<union> \<Union>f" by auto
|
himmelma@35172
|
698 |
{ presume "p={} \<Longrightarrow> thesis" "{a..b} = {} \<Longrightarrow> thesis" "{a..b} \<noteq> {} \<Longrightarrow> interior {a..b} = {} \<Longrightarrow> thesis"
|
himmelma@35172
|
699 |
"p\<noteq>{} \<Longrightarrow> interior {a..b}\<noteq>{} \<Longrightarrow> {a..b} \<noteq> {} \<Longrightarrow> thesis"
|
himmelma@35172
|
700 |
thus thesis by auto
|
himmelma@35172
|
701 |
next assume as:"p={}" guess p apply(rule elementary_interval[of a b]) .
|
himmelma@35172
|
702 |
thus thesis apply(rule_tac that[of p]) unfolding as by auto
|
himmelma@35172
|
703 |
next assume as:"{a..b}={}" show thesis apply(rule that) unfolding as using assms by auto
|
himmelma@35172
|
704 |
next assume as:"interior {a..b} = {}" "{a..b} \<noteq> {}"
|
himmelma@35172
|
705 |
show thesis apply(rule that[of "insert {a..b} p"],rule division_ofI)
|
himmelma@35172
|
706 |
unfolding finite_insert apply(rule assm(1)) unfolding Union_insert
|
nipkow@44890
|
707 |
using assm(2-4) as apply- by(fastforce dest: assm(5))+
|
himmelma@35172
|
708 |
next assume as:"p \<noteq> {}" "interior {a..b} \<noteq> {}" "{a..b}\<noteq>{}"
|
himmelma@35172
|
709 |
have "\<forall>k\<in>p. \<exists>q. (insert {a..b} q) division_of ({a..b} \<union> k)" proof case goal1
|
himmelma@35172
|
710 |
from assm(4)[OF this] guess c .. then guess d ..
|
himmelma@35172
|
711 |
thus ?case apply-apply(rule division_union_intervals_exists[OF as(3),of c d]) by auto
|
himmelma@35172
|
712 |
qed from bchoice[OF this] guess q .. note q=division_ofD[OF this[rule_format]]
|
himmelma@35172
|
713 |
let ?D = "\<Union>{insert {a..b} (q k) | k. k \<in> p}"
|
himmelma@35172
|
714 |
show thesis apply(rule that[of "?D"]) proof(rule division_ofI)
|
himmelma@35172
|
715 |
have *:"{insert {a..b} (q k) |k. k \<in> p} = (\<lambda>k. insert {a..b} (q k)) ` p" by auto
|
himmelma@35172
|
716 |
show "finite ?D" apply(rule finite_Union) unfolding * apply(rule finite_imageI) using assm(1) q(1) by auto
|
himmelma@35172
|
717 |
show "\<Union>?D = {a..b} \<union> \<Union>p" unfolding * lem1 unfolding lem2[OF as(1), of "{a..b}",THEN sym]
|
himmelma@35172
|
718 |
using q(6) by auto
|
himmelma@35172
|
719 |
fix k assume k:"k\<in>?D" thus " k \<subseteq> {a..b} \<union> \<Union>p" using q(2) by auto
|
himmelma@35172
|
720 |
show "k \<noteq> {}" using q(3) k by auto show "\<exists>a b. k = {a..b}" using q(4) k by auto
|
himmelma@35172
|
721 |
fix k' assume k':"k'\<in>?D" "k\<noteq>k'"
|
himmelma@35172
|
722 |
obtain x where x: "k \<in>insert {a..b} (q x)" "x\<in>p" using k by auto
|
himmelma@35172
|
723 |
obtain x' where x':"k'\<in>insert {a..b} (q x')" "x'\<in>p" using k' by auto
|
himmelma@35172
|
724 |
show "interior k \<inter> interior k' = {}" proof(cases "x=x'")
|
himmelma@35172
|
725 |
case True show ?thesis apply(rule q(5)) using x x' k' unfolding True by auto
|
himmelma@35172
|
726 |
next case False
|
himmelma@35172
|
727 |
{ presume "k = {a..b} \<Longrightarrow> ?thesis" "k' = {a..b} \<Longrightarrow> ?thesis"
|
himmelma@35172
|
728 |
"k \<noteq> {a..b} \<Longrightarrow> k' \<noteq> {a..b} \<Longrightarrow> ?thesis"
|
himmelma@35172
|
729 |
thus ?thesis by auto }
|
himmelma@35172
|
730 |
{ assume as':"k = {a..b}" show ?thesis apply(rule q(5)) using x' k'(2) unfolding as' by auto }
|
himmelma@35172
|
731 |
{ assume as':"k' = {a..b}" show ?thesis apply(rule q(5)) using x k'(2) unfolding as' by auto }
|
himmelma@35172
|
732 |
assume as':"k \<noteq> {a..b}" "k' \<noteq> {a..b}"
|
himmelma@35172
|
733 |
guess c using q(4)[OF x(2,1)] .. then guess d .. note c_d=this
|
himmelma@35172
|
734 |
have "interior k \<inter> interior {a..b} = {}" apply(rule q(5)) using x k'(2) using as' by auto
|
himmelma@35172
|
735 |
hence "interior k \<subseteq> interior x" apply-
|
himmelma@35172
|
736 |
apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x(2,1)]]) by auto moreover
|
himmelma@35172
|
737 |
guess c using q(4)[OF x'(2,1)] .. then guess d .. note c_d=this
|
himmelma@35172
|
738 |
have "interior k' \<inter> interior {a..b} = {}" apply(rule q(5)) using x' k'(2) using as' by auto
|
himmelma@35172
|
739 |
hence "interior k' \<subseteq> interior x'" apply-
|
himmelma@35172
|
740 |
apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x'(2,1)]]) by auto
|
himmelma@35172
|
741 |
ultimately show ?thesis using assm(5)[OF x(2) x'(2) False] by auto
|
himmelma@35172
|
742 |
qed qed } qed
|
himmelma@35172
|
743 |
|
himmelma@35172
|
744 |
lemma elementary_unions_intervals:
|
hoelzl@37489
|
745 |
assumes "finite f" "\<And>s. s \<in> f \<Longrightarrow> \<exists>a b. s = {a..b::'a::ordered_euclidean_space}"
|
himmelma@35172
|
746 |
obtains p where "p division_of (\<Union>f)" proof-
|
himmelma@35172
|
747 |
have "\<exists>p. p division_of (\<Union>f)" proof(induct_tac f rule:finite_subset_induct)
|
himmelma@35172
|
748 |
show "\<exists>p. p division_of \<Union>{}" using elementary_empty by auto
|
himmelma@35172
|
749 |
fix x F assume as:"finite F" "x \<notin> F" "\<exists>p. p division_of \<Union>F" "x\<in>f"
|
himmelma@35172
|
750 |
from this(3) guess p .. note p=this
|
himmelma@35172
|
751 |
from assms(2)[OF as(4)] guess a .. then guess b .. note ab=this
|
himmelma@35172
|
752 |
have *:"\<Union>F = \<Union>p" using division_ofD[OF p] by auto
|
himmelma@35172
|
753 |
show "\<exists>p. p division_of \<Union>insert x F" using elementary_union_interval[OF p[unfolded *], of a b]
|
himmelma@35172
|
754 |
unfolding Union_insert ab * by auto
|
himmelma@35172
|
755 |
qed(insert assms,auto) thus ?thesis apply-apply(erule exE,rule that) by auto qed
|
himmelma@35172
|
756 |
|
hoelzl@37489
|
757 |
lemma elementary_union: assumes "ps division_of s" "pt division_of (t::('a::ordered_euclidean_space) set)"
|
himmelma@35172
|
758 |
obtains p where "p division_of (s \<union> t)"
|
himmelma@35172
|
759 |
proof- have "s \<union> t = \<Union>ps \<union> \<Union>pt" using assms unfolding division_of_def by auto
|
himmelma@35172
|
760 |
hence *:"\<Union>(ps \<union> pt) = s \<union> t" by auto
|
himmelma@35172
|
761 |
show ?thesis apply-apply(rule elementary_unions_intervals[of "ps\<union>pt"])
|
himmelma@35172
|
762 |
unfolding * prefer 3 apply(rule_tac p=p in that)
|
himmelma@35172
|
763 |
using assms[unfolded division_of_def] by auto qed
|
himmelma@35172
|
764 |
|
hoelzl@37489
|
765 |
lemma partial_division_extend: fixes t::"('a::ordered_euclidean_space) set"
|
himmelma@35172
|
766 |
assumes "p division_of s" "q division_of t" "s \<subseteq> t"
|
himmelma@35172
|
767 |
obtains r where "p \<subseteq> r" "r division_of t" proof-
|
himmelma@35172
|
768 |
note divp = division_ofD[OF assms(1)] and divq = division_ofD[OF assms(2)]
|
himmelma@35172
|
769 |
obtain a b where ab:"t\<subseteq>{a..b}" using elementary_subset_interval[OF assms(2)] by auto
|
himmelma@35172
|
770 |
guess r1 apply(rule partial_division_extend_interval) apply(rule assms(1)[unfolded divp(6)[THEN sym]])
|
himmelma@35172
|
771 |
apply(rule subset_trans) by(rule ab assms[unfolded divp(6)[THEN sym]])+ note r1 = this division_ofD[OF this(2)]
|
himmelma@35172
|
772 |
guess p' apply(rule elementary_unions_intervals[of "r1 - p"]) using r1(3,6) by auto
|
himmelma@35172
|
773 |
then obtain r2 where r2:"r2 division_of (\<Union>(r1 - p)) \<inter> (\<Union>q)"
|
himmelma@35172
|
774 |
apply- apply(drule elementary_inter[OF _ assms(2)[unfolded divq(6)[THEN sym]]]) by auto
|
himmelma@35172
|
775 |
{ fix x assume x:"x\<in>t" "x\<notin>s"
|
himmelma@35172
|
776 |
hence "x\<in>\<Union>r1" unfolding r1 using ab by auto
|
himmelma@35172
|
777 |
then guess r unfolding Union_iff .. note r=this moreover
|
himmelma@35172
|
778 |
have "r \<notin> p" proof assume "r\<in>p" hence "x\<in>s" using divp(2) r by auto
|
himmelma@35172
|
779 |
thus False using x by auto qed
|
himmelma@35172
|
780 |
ultimately have "x\<in>\<Union>(r1 - p)" by auto }
|
himmelma@35172
|
781 |
hence *:"t = \<Union>p \<union> (\<Union>(r1 - p) \<inter> \<Union>q)" unfolding divp divq using assms(3) by auto
|
himmelma@35172
|
782 |
show ?thesis apply(rule that[of "p \<union> r2"]) unfolding * defer apply(rule division_disjoint_union)
|
himmelma@35172
|
783 |
unfolding divp(6) apply(rule assms r2)+
|
himmelma@35172
|
784 |
proof- have "interior s \<inter> interior (\<Union>(r1-p)) = {}"
|
himmelma@35172
|
785 |
proof(rule inter_interior_unions_intervals)
|
himmelma@35172
|
786 |
show "finite (r1 - p)" "open (interior s)" "\<forall>t\<in>r1-p. \<exists>a b. t = {a..b}" using r1 by auto
|
himmelma@35172
|
787 |
have *:"\<And>s. (\<And>x. x \<in> s \<Longrightarrow> False) \<Longrightarrow> s = {}" by auto
|
himmelma@35172
|
788 |
show "\<forall>t\<in>r1-p. interior s \<inter> interior t = {}" proof(rule)
|
himmelma@35172
|
789 |
fix m x assume as:"m\<in>r1-p"
|
himmelma@35172
|
790 |
have "interior m \<inter> interior (\<Union>p) = {}" proof(rule inter_interior_unions_intervals)
|
himmelma@35172
|
791 |
show "finite p" "open (interior m)" "\<forall>t\<in>p. \<exists>a b. t = {a..b}" using divp by auto
|
himmelma@35172
|
792 |
show "\<forall>t\<in>p. interior m \<inter> interior t = {}" apply(rule, rule r1(7)) using as using r1 by auto
|
himmelma@35172
|
793 |
qed thus "interior s \<inter> interior m = {}" unfolding divp by auto
|
himmelma@35172
|
794 |
qed qed
|
himmelma@35172
|
795 |
thus "interior s \<inter> interior (\<Union>(r1-p) \<inter> (\<Union>q)) = {}" using interior_subset by auto
|
himmelma@35172
|
796 |
qed auto qed
|
himmelma@35172
|
797 |
|
himmelma@35172
|
798 |
subsection {* Tagged (partial) divisions. *}
|
himmelma@35172
|
799 |
|
himmelma@35172
|
800 |
definition tagged_partial_division_of (infixr "tagged'_partial'_division'_of" 40) where
|
himmelma@35172
|
801 |
"(s tagged_partial_division_of i) \<equiv>
|
himmelma@35172
|
802 |
finite s \<and>
|
himmelma@35172
|
803 |
(\<forall>x k. (x,k) \<in> s \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
|
himmelma@35172
|
804 |
(\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ((x1,k1) \<noteq> (x2,k2))
|
himmelma@35172
|
805 |
\<longrightarrow> (interior(k1) \<inter> interior(k2) = {}))"
|
himmelma@35172
|
806 |
|
himmelma@35172
|
807 |
lemma tagged_partial_division_ofD[dest]: assumes "s tagged_partial_division_of i"
|
himmelma@35172
|
808 |
shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"
|
himmelma@35172
|
809 |
"\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
|
himmelma@35172
|
810 |
"\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> (x1,k1) \<noteq> (x2,k2) \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}"
|
himmelma@35172
|
811 |
using assms unfolding tagged_partial_division_of_def apply- by blast+
|
himmelma@35172
|
812 |
|
himmelma@35172
|
813 |
definition tagged_division_of (infixr "tagged'_division'_of" 40) where
|
himmelma@35172
|
814 |
"(s tagged_division_of i) \<equiv>
|
himmelma@35172
|
815 |
(s tagged_partial_division_of i) \<and> (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
|
himmelma@35172
|
816 |
|
huffman@44167
|
817 |
lemma tagged_division_of_finite: "s tagged_division_of i \<Longrightarrow> finite s"
|
himmelma@35172
|
818 |
unfolding tagged_division_of_def tagged_partial_division_of_def by auto
|
himmelma@35172
|
819 |
|
himmelma@35172
|
820 |
lemma tagged_division_of:
|
himmelma@35172
|
821 |
"(s tagged_division_of i) \<longleftrightarrow>
|
himmelma@35172
|
822 |
finite s \<and>
|
himmelma@35172
|
823 |
(\<forall>x k. (x,k) \<in> s
|
himmelma@35172
|
824 |
\<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
|
himmelma@35172
|
825 |
(\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ~((x1,k1) = (x2,k2))
|
himmelma@35172
|
826 |
\<longrightarrow> (interior(k1) \<inter> interior(k2) = {})) \<and>
|
himmelma@35172
|
827 |
(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
|
himmelma@35172
|
828 |
unfolding tagged_division_of_def tagged_partial_division_of_def by auto
|
himmelma@35172
|
829 |
|
himmelma@35172
|
830 |
lemma tagged_division_ofI: assumes
|
himmelma@35172
|
831 |
"finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i" "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
|
himmelma@35172
|
832 |
"\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
|
himmelma@35172
|
833 |
"(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
|
himmelma@35172
|
834 |
shows "s tagged_division_of i"
|
himmelma@35172
|
835 |
unfolding tagged_division_of apply(rule) defer apply rule
|
himmelma@35172
|
836 |
apply(rule allI impI conjI assms)+ apply assumption
|
himmelma@35172
|
837 |
apply(rule, rule assms, assumption) apply(rule assms, assumption)
|
himmelma@35172
|
838 |
using assms(1,5-) apply- by blast+
|
himmelma@35172
|
839 |
|
himmelma@35172
|
840 |
lemma tagged_division_ofD[dest]: assumes "s tagged_division_of i"
|
himmelma@35172
|
841 |
shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i" "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
|
himmelma@35172
|
842 |
"\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
|
himmelma@35172
|
843 |
"(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)" using assms unfolding tagged_division_of apply- by blast+
|
himmelma@35172
|
844 |
|
himmelma@35172
|
845 |
lemma division_of_tagged_division: assumes"s tagged_division_of i" shows "(snd ` s) division_of i"
|
himmelma@35172
|
846 |
proof(rule division_ofI) note assm=tagged_division_ofD[OF assms]
|
himmelma@35172
|
847 |
show "\<Union>snd ` s = i" "finite (snd ` s)" using assm by auto
|
himmelma@35172
|
848 |
fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto
|
nipkow@44890
|
849 |
thus "k \<subseteq> i" "k \<noteq> {}" "\<exists>a b. k = {a..b}" using assm apply- by fastforce+
|
himmelma@35172
|
850 |
fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto
|
himmelma@35172
|
851 |
thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
|
himmelma@35172
|
852 |
qed
|
himmelma@35172
|
853 |
|
himmelma@35172
|
854 |
lemma partial_division_of_tagged_division: assumes "s tagged_partial_division_of i"
|
himmelma@35172
|
855 |
shows "(snd ` s) division_of \<Union>(snd ` s)"
|
himmelma@35172
|
856 |
proof(rule division_ofI) note assm=tagged_partial_division_ofD[OF assms]
|
himmelma@35172
|
857 |
show "finite (snd ` s)" "\<Union>snd ` s = \<Union>snd ` s" using assm by auto
|
himmelma@35172
|
858 |
fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto
|
himmelma@35172
|
859 |
thus "k\<noteq>{}" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>snd ` s" using assm by auto
|
himmelma@35172
|
860 |
fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto
|
himmelma@35172
|
861 |
thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
|
himmelma@35172
|
862 |
qed
|
himmelma@35172
|
863 |
|
himmelma@35172
|
864 |
lemma tagged_partial_division_subset: assumes "s tagged_partial_division_of i" "t \<subseteq> s"
|
himmelma@35172
|
865 |
shows "t tagged_partial_division_of i"
|
himmelma@35172
|
866 |
using assms unfolding tagged_partial_division_of_def using finite_subset[OF assms(2)] by blast
|
himmelma@35172
|
867 |
|
hoelzl@37489
|
868 |
lemma setsum_over_tagged_division_lemma: fixes d::"('m::ordered_euclidean_space) set \<Rightarrow> 'a::real_normed_vector"
|
himmelma@35172
|
869 |
assumes "p tagged_division_of i" "\<And>u v. {u..v} \<noteq> {} \<Longrightarrow> content {u..v} = 0 \<Longrightarrow> d {u..v} = 0"
|
himmelma@35172
|
870 |
shows "setsum (\<lambda>(x,k). d k) p = setsum d (snd ` p)"
|
himmelma@35172
|
871 |
proof- note assm=tagged_division_ofD[OF assms(1)]
|
himmelma@35172
|
872 |
have *:"(\<lambda>(x,k). d k) = d \<circ> snd" unfolding o_def apply(rule ext) by auto
|
himmelma@35172
|
873 |
show ?thesis unfolding * apply(subst eq_commute) proof(rule setsum_reindex_nonzero)
|
himmelma@35172
|
874 |
show "finite p" using assm by auto
|
himmelma@35172
|
875 |
fix x y assume as:"x\<in>p" "y\<in>p" "x\<noteq>y" "snd x = snd y"
|
himmelma@35172
|
876 |
obtain a b where ab:"snd x = {a..b}" using assm(4)[of "fst x" "snd x"] as(1) by auto
|
himmelma@35172
|
877 |
have "(fst x, snd y) \<in> p" "(fst x, snd y) \<noteq> y" unfolding as(4)[THEN sym] using as(1-3) by auto
|
himmelma@35172
|
878 |
hence "interior (snd x) \<inter> interior (snd y) = {}" apply-apply(rule assm(5)[of "fst x" _ "fst y"]) using as by auto
|
himmelma@35172
|
879 |
hence "content {a..b} = 0" unfolding as(4)[THEN sym] ab content_eq_0_interior by auto
|
himmelma@35172
|
880 |
hence "d {a..b} = 0" apply-apply(rule assms(2)) using assm(2)[of "fst x" "snd x"] as(1) unfolding ab[THEN sym] by auto
|
himmelma@35172
|
881 |
thus "d (snd x) = 0" unfolding ab by auto qed qed
|
himmelma@35172
|
882 |
|
himmelma@35172
|
883 |
lemma tag_in_interval: "p tagged_division_of i \<Longrightarrow> (x,k) \<in> p \<Longrightarrow> x \<in> i" by auto
|
himmelma@35172
|
884 |
|
himmelma@35172
|
885 |
lemma tagged_division_of_empty: "{} tagged_division_of {}"
|
himmelma@35172
|
886 |
unfolding tagged_division_of by auto
|
himmelma@35172
|
887 |
|
himmelma@35172
|
888 |
lemma tagged_partial_division_of_trivial[simp]:
|
himmelma@35172
|
889 |
"p tagged_partial_division_of {} \<longleftrightarrow> p = {}"
|
himmelma@35172
|
890 |
unfolding tagged_partial_division_of_def by auto
|
himmelma@35172
|
891 |
|
himmelma@35172
|
892 |
lemma tagged_division_of_trivial[simp]:
|
himmelma@35172
|
893 |
"p tagged_division_of {} \<longleftrightarrow> p = {}"
|
himmelma@35172
|
894 |
unfolding tagged_division_of by auto
|
himmelma@35172
|
895 |
|
himmelma@35172
|
896 |
lemma tagged_division_of_self:
|
himmelma@35172
|
897 |
"x \<in> {a..b} \<Longrightarrow> {(x,{a..b})} tagged_division_of {a..b}"
|
himmelma@35172
|
898 |
apply(rule tagged_division_ofI) by auto
|
himmelma@35172
|
899 |
|
himmelma@35172
|
900 |
lemma tagged_division_union:
|
himmelma@35172
|
901 |
assumes "p1 tagged_division_of s1" "p2 tagged_division_of s2" "interior s1 \<inter> interior s2 = {}"
|
himmelma@35172
|
902 |
shows "(p1 \<union> p2) tagged_division_of (s1 \<union> s2)"
|
himmelma@35172
|
903 |
proof(rule tagged_division_ofI) note p1=tagged_division_ofD[OF assms(1)] and p2=tagged_division_ofD[OF assms(2)]
|
himmelma@35172
|
904 |
show "finite (p1 \<union> p2)" using p1(1) p2(1) by auto
|
himmelma@35172
|
905 |
show "\<Union>{k. \<exists>x. (x, k) \<in> p1 \<union> p2} = s1 \<union> s2" using p1(6) p2(6) by blast
|
himmelma@35172
|
906 |
fix x k assume xk:"(x,k)\<in>p1\<union>p2" show "x\<in>k" "\<exists>a b. k = {a..b}" using xk p1(2,4) p2(2,4) by auto
|
himmelma@35172
|
907 |
show "k\<subseteq>s1\<union>s2" using xk p1(3) p2(3) by blast
|
himmelma@35172
|
908 |
fix x' k' assume xk':"(x',k')\<in>p1\<union>p2" "(x,k) \<noteq> (x',k')"
|
huffman@44522
|
909 |
have *:"\<And>a b. a\<subseteq> s1 \<Longrightarrow> b\<subseteq> s2 \<Longrightarrow> interior a \<inter> interior b = {}" using assms(3) interior_mono by blast
|
himmelma@35172
|
910 |
show "interior k \<inter> interior k' = {}" apply(cases "(x,k)\<in>p1", case_tac[!] "(x',k')\<in>p1")
|
himmelma@35172
|
911 |
apply(rule p1(5)) prefer 4 apply(rule *) prefer 6 apply(subst Int_commute,rule *) prefer 8 apply(rule p2(5))
|
himmelma@35172
|
912 |
using p1(3) p2(3) using xk xk' by auto qed
|
himmelma@35172
|
913 |
|
himmelma@35172
|
914 |
lemma tagged_division_unions:
|
himmelma@35172
|
915 |
assumes "finite iset" "\<forall>i\<in>iset. (pfn(i) tagged_division_of i)"
|
himmelma@35172
|
916 |
"\<forall>i1 \<in> iset. \<forall>i2 \<in> iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})"
|
himmelma@35172
|
917 |
shows "\<Union>(pfn ` iset) tagged_division_of (\<Union>iset)"
|
himmelma@35172
|
918 |
proof(rule tagged_division_ofI)
|
himmelma@35172
|
919 |
note assm = tagged_division_ofD[OF assms(2)[rule_format]]
|
himmelma@35172
|
920 |
show "finite (\<Union>pfn ` iset)" apply(rule finite_Union) using assms by auto
|
himmelma@35172
|
921 |
have "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>(\<lambda>i. \<Union>{k. \<exists>x. (x, k) \<in> pfn i}) ` iset" by blast
|
himmelma@35172
|
922 |
also have "\<dots> = \<Union>iset" using assm(6) by auto
|
himmelma@35172
|
923 |
finally show "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>iset" .
|
himmelma@35172
|
924 |
fix x k assume xk:"(x,k)\<in>\<Union>pfn ` iset" then obtain i where i:"i \<in> iset" "(x, k) \<in> pfn i" by auto
|
himmelma@35172
|
925 |
show "x\<in>k" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>iset" using assm(2-4)[OF i] using i(1) by auto
|
himmelma@35172
|
926 |
fix x' k' assume xk':"(x',k')\<in>\<Union>pfn ` iset" "(x, k) \<noteq> (x', k')" then obtain i' where i':"i' \<in> iset" "(x', k') \<in> pfn i'" by auto
|
himmelma@35172
|
927 |
have *:"\<And>a b. i\<noteq>i' \<Longrightarrow> a\<subseteq> i \<Longrightarrow> b\<subseteq> i' \<Longrightarrow> interior a \<inter> interior b = {}" using i(1) i'(1)
|
huffman@44522
|
928 |
using assms(3)[rule_format] interior_mono by blast
|
himmelma@35172
|
929 |
show "interior k \<inter> interior k' = {}" apply(cases "i=i'")
|
himmelma@35172
|
930 |
using assm(5)[OF i _ xk'(2)] i'(2) using assm(3)[OF i] assm(3)[OF i'] defer apply-apply(rule *) by auto
|
himmelma@35172
|
931 |
qed
|
himmelma@35172
|
932 |
|
himmelma@35172
|
933 |
lemma tagged_partial_division_of_union_self:
|
himmelma@35172
|
934 |
assumes "p tagged_partial_division_of s" shows "p tagged_division_of (\<Union>(snd ` p))"
|
himmelma@35172
|
935 |
apply(rule tagged_division_ofI) using tagged_partial_division_ofD[OF assms] by auto
|
himmelma@35172
|
936 |
|
himmelma@35172
|
937 |
lemma tagged_division_of_union_self: assumes "p tagged_division_of s"
|
himmelma@35172
|
938 |
shows "p tagged_division_of (\<Union>(snd ` p))"
|
himmelma@35172
|
939 |
apply(rule tagged_division_ofI) using tagged_division_ofD[OF assms] by auto
|
himmelma@35172
|
940 |
|
himmelma@35172
|
941 |
subsection {* Fine-ness of a partition w.r.t. a gauge. *}
|
himmelma@35172
|
942 |
|
himmelma@35172
|
943 |
definition fine (infixr "fine" 46) where
|
himmelma@35172
|
944 |
"d fine s \<longleftrightarrow> (\<forall>(x,k) \<in> s. k \<subseteq> d(x))"
|
himmelma@35172
|
945 |
|
himmelma@35172
|
946 |
lemma fineI: assumes "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x"
|
himmelma@35172
|
947 |
shows "d fine s" using assms unfolding fine_def by auto
|
himmelma@35172
|
948 |
|
himmelma@35172
|
949 |
lemma fineD[dest]: assumes "d fine s"
|
himmelma@35172
|
950 |
shows "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x" using assms unfolding fine_def by auto
|
himmelma@35172
|
951 |
|
himmelma@35172
|
952 |
lemma fine_inter: "(\<lambda>x. d1 x \<inter> d2 x) fine p \<longleftrightarrow> d1 fine p \<and> d2 fine p"
|
himmelma@35172
|
953 |
unfolding fine_def by auto
|
himmelma@35172
|
954 |
|
himmelma@35172
|
955 |
lemma fine_inters:
|
himmelma@35172
|
956 |
"(\<lambda>x. \<Inter> {f d x | d. d \<in> s}) fine p \<longleftrightarrow> (\<forall>d\<in>s. (f d) fine p)"
|
himmelma@35172
|
957 |
unfolding fine_def by blast
|
himmelma@35172
|
958 |
|
himmelma@35172
|
959 |
lemma fine_union:
|
himmelma@35172
|
960 |
"d fine p1 \<Longrightarrow> d fine p2 \<Longrightarrow> d fine (p1 \<union> p2)"
|
himmelma@35172
|
961 |
unfolding fine_def by blast
|
himmelma@35172
|
962 |
|
himmelma@35172
|
963 |
lemma fine_unions:"(\<And>p. p \<in> ps \<Longrightarrow> d fine p) \<Longrightarrow> d fine (\<Union>ps)"
|
himmelma@35172
|
964 |
unfolding fine_def by auto
|
himmelma@35172
|
965 |
|
himmelma@35172
|
966 |
lemma fine_subset: "p \<subseteq> q \<Longrightarrow> d fine q \<Longrightarrow> d fine p"
|
himmelma@35172
|
967 |
unfolding fine_def by blast
|
himmelma@35172
|
968 |
|
himmelma@35172
|
969 |
subsection {* Gauge integral. Define on compact intervals first, then use a limit. *}
|
himmelma@35172
|
970 |
|
himmelma@35172
|
971 |
definition has_integral_compact_interval (infixr "has'_integral'_compact'_interval" 46) where
|
himmelma@35172
|
972 |
"(f has_integral_compact_interval y) i \<equiv>
|
himmelma@35172
|
973 |
(\<forall>e>0. \<exists>d. gauge d \<and>
|
himmelma@35172
|
974 |
(\<forall>p. p tagged_division_of i \<and> d fine p
|
himmelma@35172
|
975 |
\<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - y) < e))"
|
himmelma@35172
|
976 |
|
himmelma@35172
|
977 |
definition has_integral (infixr "has'_integral" 46) where
|
hoelzl@37489
|
978 |
"((f::('n::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector)) has_integral y) i \<equiv>
|
himmelma@35172
|
979 |
if (\<exists>a b. i = {a..b}) then (f has_integral_compact_interval y) i
|
himmelma@35172
|
980 |
else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
|
himmelma@35172
|
981 |
\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f x else 0) has_integral_compact_interval z) {a..b} \<and>
|
himmelma@35172
|
982 |
norm(z - y) < e))"
|
himmelma@35172
|
983 |
|
himmelma@35172
|
984 |
lemma has_integral:
|
himmelma@35172
|
985 |
"(f has_integral y) ({a..b}) \<longleftrightarrow>
|
himmelma@35172
|
986 |
(\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
|
himmelma@35172
|
987 |
\<longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f x) p - y) < e))"
|
himmelma@35172
|
988 |
unfolding has_integral_def has_integral_compact_interval_def by auto
|
himmelma@35172
|
989 |
|
himmelma@35172
|
990 |
lemma has_integralD[dest]: assumes
|
himmelma@35172
|
991 |
"(f has_integral y) ({a..b})" "e>0"
|
himmelma@35172
|
992 |
obtains d where "gauge d" "\<And>p. p tagged_division_of {a..b} \<Longrightarrow> d fine p
|
himmelma@35172
|
993 |
\<Longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f(x)) p - y) < e"
|
himmelma@35172
|
994 |
using assms unfolding has_integral by auto
|
himmelma@35172
|
995 |
|
himmelma@35172
|
996 |
lemma has_integral_alt:
|
himmelma@35172
|
997 |
"(f has_integral y) i \<longleftrightarrow>
|
himmelma@35172
|
998 |
(if (\<exists>a b. i = {a..b}) then (f has_integral y) i
|
himmelma@35172
|
999 |
else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
|
himmelma@35172
|
1000 |
\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0)
|
himmelma@35172
|
1001 |
has_integral z) ({a..b}) \<and>
|
himmelma@35172
|
1002 |
norm(z - y) < e)))"
|
himmelma@35172
|
1003 |
unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto
|
himmelma@35172
|
1004 |
|
himmelma@35172
|
1005 |
lemma has_integral_altD:
|
himmelma@35172
|
1006 |
assumes "(f has_integral y) i" "\<not> (\<exists>a b. i = {a..b})" "e>0"
|
himmelma@35172
|
1007 |
obtains B where "B>0" "\<forall>a b. ball 0 B \<subseteq> {a..b}\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) has_integral z) ({a..b}) \<and> norm(z - y) < e)"
|
himmelma@35172
|
1008 |
using assms unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto
|
himmelma@35172
|
1009 |
|
himmelma@35172
|
1010 |
definition integrable_on (infixr "integrable'_on" 46) where
|
himmelma@35172
|
1011 |
"(f integrable_on i) \<equiv> \<exists>y. (f has_integral y) i"
|
himmelma@35172
|
1012 |
|
himmelma@35172
|
1013 |
definition "integral i f \<equiv> SOME y. (f has_integral y) i"
|
himmelma@35172
|
1014 |
|
himmelma@35172
|
1015 |
lemma integrable_integral[dest]:
|
himmelma@35172
|
1016 |
"f integrable_on i \<Longrightarrow> (f has_integral (integral i f)) i"
|
himmelma@35172
|
1017 |
unfolding integrable_on_def integral_def by(rule someI_ex)
|
himmelma@35172
|
1018 |
|
himmelma@35172
|
1019 |
lemma has_integral_integrable[intro]: "(f has_integral i) s \<Longrightarrow> f integrable_on s"
|
himmelma@35172
|
1020 |
unfolding integrable_on_def by auto
|
himmelma@35172
|
1021 |
|
himmelma@35172
|
1022 |
lemma has_integral_integral:"f integrable_on s \<longleftrightarrow> (f has_integral (integral s f)) s"
|
himmelma@35172
|
1023 |
by auto
|
himmelma@35172
|
1024 |
|
himmelma@35172
|
1025 |
lemma setsum_content_null:
|
himmelma@35172
|
1026 |
assumes "content({a..b}) = 0" "p tagged_division_of {a..b}"
|
himmelma@35172
|
1027 |
shows "setsum (\<lambda>(x,k). content k *\<^sub>R f x) p = (0::'a::real_normed_vector)"
|
himmelma@35172
|
1028 |
proof(rule setsum_0',rule) fix y assume y:"y\<in>p"
|
himmelma@35172
|
1029 |
obtain x k where xk:"y = (x,k)" using surj_pair[of y] by blast
|
himmelma@35172
|
1030 |
note assm = tagged_division_ofD(3-4)[OF assms(2) y[unfolded xk]]
|
himmelma@35172
|
1031 |
from this(2) guess c .. then guess d .. note c_d=this
|
himmelma@35172
|
1032 |
have "(\<lambda>(x, k). content k *\<^sub>R f x) y = content k *\<^sub>R f x" unfolding xk by auto
|
himmelma@35172
|
1033 |
also have "\<dots> = 0" using content_subset[OF assm(1)[unfolded c_d]] content_pos_le[of c d]
|
himmelma@35172
|
1034 |
unfolding assms(1) c_d by auto
|
himmelma@35172
|
1035 |
finally show "(\<lambda>(x, k). content k *\<^sub>R f x) y = 0" .
|
himmelma@35172
|
1036 |
qed
|
himmelma@35172
|
1037 |
|
himmelma@35172
|
1038 |
subsection {* Some basic combining lemmas. *}
|
himmelma@35172
|
1039 |
|
himmelma@35172
|
1040 |
lemma tagged_division_unions_exists:
|
himmelma@35172
|
1041 |
assumes "finite iset" "\<forall>i \<in> iset. \<exists>p. p tagged_division_of i \<and> d fine p"
|
himmelma@35172
|
1042 |
"\<forall>i1\<in>iset. \<forall>i2\<in>iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})" "(\<Union>iset = i)"
|
himmelma@35172
|
1043 |
obtains p where "p tagged_division_of i" "d fine p"
|
himmelma@35172
|
1044 |
proof- guess pfn using bchoice[OF assms(2)] .. note pfn = conjunctD2[OF this[rule_format]]
|
himmelma@35172
|
1045 |
show thesis apply(rule_tac p="\<Union>(pfn ` iset)" in that) unfolding assms(4)[THEN sym]
|
himmelma@35172
|
1046 |
apply(rule tagged_division_unions[OF assms(1) _ assms(3)]) defer
|
himmelma@35172
|
1047 |
apply(rule fine_unions) using pfn by auto
|
himmelma@35172
|
1048 |
qed
|
himmelma@35172
|
1049 |
|
himmelma@35172
|
1050 |
subsection {* The set we're concerned with must be closed. *}
|
himmelma@35172
|
1051 |
|
hoelzl@37489
|
1052 |
lemma division_of_closed: "s division_of i \<Longrightarrow> closed (i::('n::ordered_euclidean_space) set)"
|
nipkow@44890
|
1053 |
unfolding division_of_def by fastforce
|
himmelma@35172
|
1054 |
|
himmelma@35172
|
1055 |
subsection {* General bisection principle for intervals; might be useful elsewhere. *}
|
himmelma@35172
|
1056 |
|
hoelzl@37489
|
1057 |
lemma interval_bisection_step: fixes type::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
1058 |
assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "~(P {a..b::'a})"
|
himmelma@35172
|
1059 |
obtains c d where "~(P{c..d})"
|
hoelzl@37489
|
1060 |
"\<forall>i<DIM('a). a$$i \<le> c$$i \<and> c$$i \<le> d$$i \<and> d$$i \<le> b$$i \<and> 2 * (d$$i - c$$i) \<le> b$$i - a$$i"
|
himmelma@35172
|
1061 |
proof- have "{a..b} \<noteq> {}" using assms(1,3) by auto
|
himmelma@35172
|
1062 |
note ab=this[unfolded interval_eq_empty not_ex not_less]
|
himmelma@35172
|
1063 |
{ fix f have "finite f \<Longrightarrow>
|
himmelma@35172
|
1064 |
(\<forall>s\<in>f. P s) \<Longrightarrow>
|
himmelma@35172
|
1065 |
(\<forall>s\<in>f. \<exists>a b. s = {a..b}) \<Longrightarrow>
|
himmelma@35172
|
1066 |
(\<forall>s\<in>f.\<forall>t\<in>f. ~(s = t) \<longrightarrow> interior(s) \<inter> interior(t) = {}) \<Longrightarrow> P(\<Union>f)"
|
himmelma@35172
|
1067 |
proof(induct f rule:finite_induct)
|
himmelma@35172
|
1068 |
case empty show ?case using assms(1) by auto
|
himmelma@35172
|
1069 |
next case (insert x f) show ?case unfolding Union_insert apply(rule assms(2)[rule_format])
|
himmelma@35172
|
1070 |
apply rule defer apply rule defer apply(rule inter_interior_unions_intervals)
|
himmelma@35172
|
1071 |
using insert by auto
|
himmelma@35172
|
1072 |
qed } note * = this
|
hoelzl@37489
|
1073 |
let ?A = "{{c..d} | c d::'a. \<forall>i<DIM('a). (c$$i = a$$i) \<and> (d$$i = (a$$i + b$$i) / 2) \<or> (c$$i = (a$$i + b$$i) / 2) \<and> (d$$i = b$$i)}"
|
hoelzl@37489
|
1074 |
let ?PP = "\<lambda>c d. \<forall>i<DIM('a). a$$i \<le> c$$i \<and> c$$i \<le> d$$i \<and> d$$i \<le> b$$i \<and> 2 * (d$$i - c$$i) \<le> b$$i - a$$i"
|
himmelma@35172
|
1075 |
{ presume "\<forall>c d. ?PP c d \<longrightarrow> P {c..d} \<Longrightarrow> False"
|
himmelma@35172
|
1076 |
thus thesis unfolding atomize_not not_all apply-apply(erule exE)+ apply(rule_tac c=x and d=xa in that) by auto }
|
himmelma@35172
|
1077 |
assume as:"\<forall>c d. ?PP c d \<longrightarrow> P {c..d}"
|
himmelma@35172
|
1078 |
have "P (\<Union> ?A)" proof(rule *, rule_tac[2-] ballI, rule_tac[4] ballI, rule_tac[4] impI)
|
hoelzl@37489
|
1079 |
let ?B = "(\<lambda>s.{(\<chi>\<chi> i. if i \<in> s then a$$i else (a$$i + b$$i) / 2)::'a ..
|
hoelzl@37489
|
1080 |
(\<chi>\<chi> i. if i \<in> s then (a$$i + b$$i) / 2 else b$$i)}) ` {s. s \<subseteq> {..<DIM('a)}}"
|
himmelma@35172
|
1081 |
have "?A \<subseteq> ?B" proof case goal1
|
himmelma@35172
|
1082 |
then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+) note c_d=this[rule_format]
|
himmelma@35172
|
1083 |
have *:"\<And>a b c d. a = c \<Longrightarrow> b = d \<Longrightarrow> {a..b} = {c..d}" by auto
|
hoelzl@37489
|
1084 |
show "x\<in>?B" unfolding image_iff apply(rule_tac x="{i. i<DIM('a) \<and> c$$i = a$$i}" in bexI)
|
hoelzl@37489
|
1085 |
unfolding c_d apply(rule * ) unfolding euclidean_eq[where 'a='a] apply safe unfolding euclidean_lambda_beta' mem_Collect_eq
|
hoelzl@37489
|
1086 |
proof- fix i assume "i<DIM('a)" thus " c $$ i = (if i < DIM('a) \<and> c $$ i = a $$ i then a $$ i else (a $$ i + b $$ i) / 2)"
|
hoelzl@37489
|
1087 |
"d $$ i = (if i < DIM('a) \<and> c $$ i = a $$ i then (a $$ i + b $$ i) / 2 else b $$ i)"
|
himmelma@35172
|
1088 |
using c_d(2)[of i] ab[THEN spec[where x=i]] by(auto simp add:field_simps)
|
hoelzl@37489
|
1089 |
qed qed
|
hoelzl@37489
|
1090 |
thus "finite ?A" apply(rule finite_subset) by auto
|
himmelma@35172
|
1091 |
fix s assume "s\<in>?A" then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+)
|
himmelma@35172
|
1092 |
note c_d=this[rule_format]
|
hoelzl@37489
|
1093 |
show "P s" unfolding c_d apply(rule as[rule_format]) proof- case goal1 thus ?case
|
himmelma@35172
|
1094 |
using c_d(2)[of i] using ab[THEN spec[where x=i]] by auto qed
|
himmelma@35172
|
1095 |
show "\<exists>a b. s = {a..b}" unfolding c_d by auto
|
himmelma@35172
|
1096 |
fix t assume "t\<in>?A" then guess e unfolding mem_Collect_eq .. then guess f apply- by(erule exE,(erule conjE)+)
|
himmelma@35172
|
1097 |
note e_f=this[rule_format]
|
himmelma@35172
|
1098 |
assume "s \<noteq> t" hence "\<not> (c = e \<and> d = f)" unfolding c_d e_f by auto
|
hoelzl@37489
|
1099 |
then obtain i where "c$$i \<noteq> e$$i \<or> d$$i \<noteq> f$$i" and i':"i<DIM('a)" unfolding de_Morgan_conj euclidean_eq[where 'a='a] by auto
|
hoelzl@37489
|
1100 |
hence i:"c$$i \<noteq> e$$i" "d$$i \<noteq> f$$i" apply- apply(erule_tac[!] disjE)
|
nipkow@44890
|
1101 |
proof- assume "c$$i \<noteq> e$$i" thus "d$$i \<noteq> f$$i" using c_d(2)[of i] e_f(2)[of i] by fastforce
|
nipkow@44890
|
1102 |
next assume "d$$i \<noteq> f$$i" thus "c$$i \<noteq> e$$i" using c_d(2)[of i] e_f(2)[of i] by fastforce
|
himmelma@35172
|
1103 |
qed have *:"\<And>s t. (\<And>a. a\<in>s \<Longrightarrow> a\<in>t \<Longrightarrow> False) \<Longrightarrow> s \<inter> t = {}" by auto
|
himmelma@35172
|
1104 |
show "interior s \<inter> interior t = {}" unfolding e_f c_d interior_closed_interval proof(rule *)
|
himmelma@35172
|
1105 |
fix x assume "x\<in>{c<..<d}" "x\<in>{e<..<f}"
|
hoelzl@37489
|
1106 |
hence x:"c$$i < d$$i" "e$$i < f$$i" "c$$i < f$$i" "e$$i < d$$i" unfolding mem_interval using i'
|
hoelzl@37489
|
1107 |
apply-apply(erule_tac[!] x=i in allE)+ by auto
|
hoelzl@37489
|
1108 |
show False using c_d(2)[OF i'] apply- apply(erule_tac disjE)
|
hoelzl@37489
|
1109 |
proof(erule_tac[!] conjE) assume as:"c $$ i = a $$ i" "d $$ i = (a $$ i + b $$ i) / 2"
|
nipkow@44890
|
1110 |
show False using e_f(2)[of i] and i x unfolding as by(fastforce simp add:field_simps)
|
hoelzl@37489
|
1111 |
next assume as:"c $$ i = (a $$ i + b $$ i) / 2" "d $$ i = b $$ i"
|
nipkow@44890
|
1112 |
show False using e_f(2)[of i] and i x unfolding as by(fastforce simp add:field_simps)
|
himmelma@35172
|
1113 |
qed qed qed
|
nipkow@39302
|
1114 |
also have "\<Union> ?A = {a..b}" proof(rule set_eqI,rule)
|
himmelma@35172
|
1115 |
fix x assume "x\<in>\<Union>?A" then guess Y unfolding Union_iff ..
|
himmelma@35172
|
1116 |
from this(1) guess c unfolding mem_Collect_eq .. then guess d ..
|
himmelma@35172
|
1117 |
note c_d = this[THEN conjunct2,rule_format] `x\<in>Y`[unfolded this[THEN conjunct1]]
|
hoelzl@37489
|
1118 |
show "x\<in>{a..b}" unfolding mem_interval proof safe
|
hoelzl@37489
|
1119 |
fix i assume "i<DIM('a)" thus "a $$ i \<le> x $$ i" "x $$ i \<le> b $$ i"
|
himmelma@35172
|
1120 |
using c_d(1)[of i] c_d(2)[unfolded mem_interval,THEN spec[where x=i]] by auto qed
|
himmelma@35172
|
1121 |
next fix x assume x:"x\<in>{a..b}"
|
hoelzl@37489
|
1122 |
have "\<forall>i<DIM('a). \<exists>c d. (c = a$$i \<and> d = (a$$i + b$$i) / 2 \<or> c = (a$$i + b$$i) / 2 \<and> d = b$$i) \<and> c\<le>x$$i \<and> x$$i \<le> d"
|
hoelzl@37489
|
1123 |
(is "\<forall>i<DIM('a). \<exists>c d. ?P i c d") unfolding mem_interval proof(rule,rule) fix i
|
hoelzl@37489
|
1124 |
have "?P i (a$$i) ((a $$ i + b $$ i) / 2) \<or> ?P i ((a $$ i + b $$ i) / 2) (b$$i)"
|
himmelma@35172
|
1125 |
using x[unfolded mem_interval,THEN spec[where x=i]] by auto thus "\<exists>c d. ?P i c d" by blast
|
hoelzl@37489
|
1126 |
qed thus "x\<in>\<Union>?A" unfolding Union_iff unfolding lambda_skolem' unfolding Bex_def mem_Collect_eq
|
himmelma@35172
|
1127 |
apply-apply(erule exE)+ apply(rule_tac x="{xa..xaa}" in exI) unfolding mem_interval by auto
|
himmelma@35172
|
1128 |
qed finally show False using assms by auto qed
|
himmelma@35172
|
1129 |
|
hoelzl@37489
|
1130 |
lemma interval_bisection: fixes type::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
1131 |
assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "\<not> P {a..b::'a}"
|
himmelma@35172
|
1132 |
obtains x where "x \<in> {a..b}" "\<forall>e>0. \<exists>c d. x \<in> {c..d} \<and> {c..d} \<subseteq> ball x e \<and> {c..d} \<subseteq> {a..b} \<and> ~P({c..d})"
|
himmelma@35172
|
1133 |
proof-
|
hoelzl@37489
|
1134 |
have "\<forall>x. \<exists>y. \<not> P {fst x..snd x} \<longrightarrow> (\<not> P {fst y..snd y} \<and>
|
hoelzl@37489
|
1135 |
(\<forall>i<DIM('a). fst x$$i \<le> fst y$$i \<and> fst y$$i \<le> snd y$$i \<and> snd y$$i \<le> snd x$$i \<and>
|
hoelzl@37489
|
1136 |
2 * (snd y$$i - fst y$$i) \<le> snd x$$i - fst x$$i))" proof case goal1 thus ?case proof-
|
himmelma@35172
|
1137 |
presume "\<not> P {fst x..snd x} \<Longrightarrow> ?thesis"
|
himmelma@35172
|
1138 |
thus ?thesis apply(cases "P {fst x..snd x}") by auto
|
himmelma@35172
|
1139 |
next assume as:"\<not> P {fst x..snd x}" from interval_bisection_step[of P, OF assms(1-2) as] guess c d .
|
himmelma@35172
|
1140 |
thus ?thesis apply- apply(rule_tac x="(c,d)" in exI) by auto
|
himmelma@35172
|
1141 |
qed qed then guess f apply-apply(drule choice) by(erule exE) note f=this
|
himmelma@35172
|
1142 |
def AB \<equiv> "\<lambda>n. (f ^^ n) (a,b)" def A \<equiv> "\<lambda>n. fst(AB n)" and B \<equiv> "\<lambda>n. snd(AB n)" note ab_def = this AB_def
|
himmelma@35172
|
1143 |
have "A 0 = a" "B 0 = b" "\<And>n. \<not> P {A(Suc n)..B(Suc n)} \<and>
|
hoelzl@37489
|
1144 |
(\<forall>i<DIM('a). A(n)$$i \<le> A(Suc n)$$i \<and> A(Suc n)$$i \<le> B(Suc n)$$i \<and> B(Suc n)$$i \<le> B(n)$$i \<and>
|
hoelzl@37489
|
1145 |
2 * (B(Suc n)$$i - A(Suc n)$$i) \<le> B(n)$$i - A(n)$$i)" (is "\<And>n. ?P n")
|
himmelma@35172
|
1146 |
proof- show "A 0 = a" "B 0 = b" unfolding ab_def by auto
|
himmelma@35172
|
1147 |
case goal3 note S = ab_def funpow.simps o_def id_apply show ?case
|
himmelma@35172
|
1148 |
proof(induct n) case 0 thus ?case unfolding S apply(rule f[rule_format]) using assms(3) by auto
|
himmelma@35172
|
1149 |
next case (Suc n) show ?case unfolding S apply(rule f[rule_format]) using Suc unfolding S by auto
|
himmelma@35172
|
1150 |
qed qed note AB = this(1-2) conjunctD2[OF this(3),rule_format]
|
himmelma@35172
|
1151 |
|
himmelma@35172
|
1152 |
have interv:"\<And>e. 0 < e \<Longrightarrow> \<exists>n. \<forall>x\<in>{A n..B n}. \<forall>y\<in>{A n..B n}. dist x y < e"
|
hoelzl@37489
|
1153 |
proof- case goal1 guess n using real_arch_pow2[of "(setsum (\<lambda>i. b$$i - a$$i) {..<DIM('a)}) / e"] .. note n=this
|
himmelma@35172
|
1154 |
show ?case apply(rule_tac x=n in exI) proof(rule,rule)
|
himmelma@35172
|
1155 |
fix x y assume xy:"x\<in>{A n..B n}" "y\<in>{A n..B n}"
|
hoelzl@37489
|
1156 |
have "dist x y \<le> setsum (\<lambda>i. abs((x - y)$$i)) {..<DIM('a)}" unfolding dist_norm by(rule norm_le_l1)
|
hoelzl@37489
|
1157 |
also have "\<dots> \<le> setsum (\<lambda>i. B n$$i - A n$$i) {..<DIM('a)}"
|
hoelzl@37489
|
1158 |
proof(rule setsum_mono) fix i show "\<bar>(x - y) $$ i\<bar> \<le> B n $$ i - A n $$ i"
|
hoelzl@37489
|
1159 |
using xy[unfolded mem_interval,THEN spec[where x=i]] by auto qed
|
hoelzl@37489
|
1160 |
also have "\<dots> \<le> setsum (\<lambda>i. b$$i - a$$i) {..<DIM('a)} / 2^n" unfolding setsum_divide_distrib
|
himmelma@35172
|
1161 |
proof(rule setsum_mono) case goal1 thus ?case
|
himmelma@35172
|
1162 |
proof(induct n) case 0 thus ?case unfolding AB by auto
|
hoelzl@37489
|
1163 |
next case (Suc n) have "B (Suc n) $$ i - A (Suc n) $$ i \<le> (B n $$ i - A n $$ i) / 2"
|
hoelzl@37489
|
1164 |
using AB(4)[of i n] using goal1 by auto
|
hoelzl@37489
|
1165 |
also have "\<dots> \<le> (b $$ i - a $$ i) / 2 ^ Suc n" using Suc by(auto simp add:field_simps) finally show ?case .
|
himmelma@35172
|
1166 |
qed qed
|
himmelma@35172
|
1167 |
also have "\<dots> < e" using n using goal1 by(auto simp add:field_simps) finally show "dist x y < e" .
|
himmelma@35172
|
1168 |
qed qed
|
himmelma@35172
|
1169 |
{ fix n m ::nat assume "m \<le> n" then guess d unfolding le_Suc_ex_iff .. note d=this
|
himmelma@35172
|
1170 |
have "{A n..B n} \<subseteq> {A m..B m}" unfolding d
|
himmelma@35172
|
1171 |
proof(induct d) case 0 thus ?case by auto
|
himmelma@35172
|
1172 |
next case (Suc d) show ?case apply(rule subset_trans[OF _ Suc])
|
himmelma@35172
|
1173 |
apply(rule) unfolding mem_interval apply(rule,erule_tac x=i in allE)
|
hoelzl@37489
|
1174 |
proof- case goal1 thus ?case using AB(4)[of i "m + d"] by(auto simp add:field_simps)
|
himmelma@35172
|
1175 |
qed qed } note ABsubset = this
|
himmelma@35172
|
1176 |
have "\<exists>a. \<forall>n. a\<in>{A n..B n}" apply(rule decreasing_closed_nest[rule_format,OF closed_interval _ ABsubset interv])
|
himmelma@35172
|
1177 |
proof- fix n show "{A n..B n} \<noteq> {}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(1,3) AB(1-2) by auto qed auto
|
himmelma@35172
|
1178 |
then guess x0 .. note x0=this[rule_format]
|
himmelma@35172
|
1179 |
show thesis proof(rule that[rule_format,of x0])
|
himmelma@35172
|
1180 |
show "x0\<in>{a..b}" using x0[of 0] unfolding AB .
|
himmelma@35172
|
1181 |
fix e assume "0 < (e::real)" from interv[OF this] guess n .. note n=this
|
himmelma@35172
|
1182 |
show "\<exists>c d. x0 \<in> {c..d} \<and> {c..d} \<subseteq> ball x0 e \<and> {c..d} \<subseteq> {a..b} \<and> \<not> P {c..d}"
|
himmelma@35172
|
1183 |
apply(rule_tac x="A n" in exI,rule_tac x="B n" in exI) apply(rule,rule x0) apply rule defer
|
himmelma@35172
|
1184 |
proof show "\<not> P {A n..B n}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(3) AB(1-2) by auto
|
himmelma@35172
|
1185 |
show "{A n..B n} \<subseteq> ball x0 e" using n using x0[of n] by auto
|
himmelma@35172
|
1186 |
show "{A n..B n} \<subseteq> {a..b}" unfolding AB(1-2)[symmetric] apply(rule ABsubset) by auto
|
himmelma@35172
|
1187 |
qed qed qed
|
himmelma@35172
|
1188 |
|
himmelma@35172
|
1189 |
subsection {* Cousin's lemma. *}
|
himmelma@35172
|
1190 |
|
himmelma@35172
|
1191 |
lemma fine_division_exists: assumes "gauge g"
|
hoelzl@37489
|
1192 |
obtains p where "p tagged_division_of {a..b::'a::ordered_euclidean_space}" "g fine p"
|
himmelma@35172
|
1193 |
proof- presume "\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p) \<Longrightarrow> False"
|
himmelma@35172
|
1194 |
then guess p unfolding atomize_not not_not .. thus thesis apply-apply(rule that[of p]) by auto
|
himmelma@35172
|
1195 |
next assume as:"\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p)"
|
himmelma@35172
|
1196 |
guess x apply(rule interval_bisection[of "\<lambda>s. \<exists>p. p tagged_division_of s \<and> g fine p",rule_format,OF _ _ as])
|
himmelma@35172
|
1197 |
apply(rule_tac x="{}" in exI) defer apply(erule conjE exE)+
|
himmelma@35172
|
1198 |
proof- show "{} tagged_division_of {} \<and> g fine {}" unfolding fine_def by auto
|
himmelma@35172
|
1199 |
fix s t p p' assume "p tagged_division_of s" "g fine p" "p' tagged_division_of t" "g fine p'" "interior s \<inter> interior t = {}"
|
himmelma@35172
|
1200 |
thus "\<exists>p. p tagged_division_of s \<union> t \<and> g fine p" apply-apply(rule_tac x="p \<union> p'" in exI) apply rule
|
himmelma@35172
|
1201 |
apply(rule tagged_division_union) prefer 4 apply(rule fine_union) by auto
|
himmelma@35172
|
1202 |
qed note x=this
|
himmelma@35172
|
1203 |
obtain e where e:"e>0" "ball x e \<subseteq> g x" using gaugeD[OF assms, of x] unfolding open_contains_ball by auto
|
himmelma@35172
|
1204 |
from x(2)[OF e(1)] guess c d apply-apply(erule exE conjE)+ . note c_d = this
|
himmelma@35172
|
1205 |
have "g fine {(x, {c..d})}" unfolding fine_def using e using c_d(2) by auto
|
himmelma@35172
|
1206 |
thus False using tagged_division_of_self[OF c_d(1)] using c_d by auto qed
|
himmelma@35172
|
1207 |
|
himmelma@35172
|
1208 |
subsection {* Basic theorems about integrals. *}
|
himmelma@35172
|
1209 |
|
hoelzl@37489
|
1210 |
lemma has_integral_unique: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"
|
himmelma@35172
|
1211 |
assumes "(f has_integral k1) i" "(f has_integral k2) i" shows "k1 = k2"
|
himmelma@35172
|
1212 |
proof(rule ccontr) let ?e = "norm(k1 - k2) / 2" assume as:"k1 \<noteq> k2" hence e:"?e > 0" by auto
|
hoelzl@37489
|
1213 |
have lem:"\<And>f::'n \<Rightarrow> 'a. \<And> a b k1 k2.
|
himmelma@35172
|
1214 |
(f has_integral k1) ({a..b}) \<Longrightarrow> (f has_integral k2) ({a..b}) \<Longrightarrow> k1 \<noteq> k2 \<Longrightarrow> False"
|
himmelma@35172
|
1215 |
proof- case goal1 let ?e = "norm(k1 - k2) / 2" from goal1(3) have e:"?e > 0" by auto
|
himmelma@35172
|
1216 |
guess d1 by(rule has_integralD[OF goal1(1) e]) note d1=this
|
himmelma@35172
|
1217 |
guess d2 by(rule has_integralD[OF goal1(2) e]) note d2=this
|
himmelma@35172
|
1218 |
guess p by(rule fine_division_exists[OF gauge_inter[OF d1(1) d2(1)],of a b]) note p=this
|
himmelma@35172
|
1219 |
let ?c = "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" have "norm (k1 - k2) \<le> norm (?c - k2) + norm (?c - k1)"
|
haftmann@36350
|
1220 |
using norm_triangle_ineq4[of "k1 - ?c" "k2 - ?c"] by(auto simp add:algebra_simps norm_minus_commute)
|
himmelma@35172
|
1221 |
also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2"
|
himmelma@35172
|
1222 |
apply(rule add_strict_mono) apply(rule_tac[!] d2(2) d1(2)) using p unfolding fine_def by auto
|
himmelma@35172
|
1223 |
finally show False by auto
|
himmelma@35172
|
1224 |
qed { presume "\<not> (\<exists>a b. i = {a..b}) \<Longrightarrow> False"
|
himmelma@35172
|
1225 |
thus False apply-apply(cases "\<exists>a b. i = {a..b}")
|
himmelma@35172
|
1226 |
using assms by(auto simp add:has_integral intro:lem[OF _ _ as]) }
|
himmelma@35172
|
1227 |
assume as:"\<not> (\<exists>a b. i = {a..b})"
|
himmelma@35172
|
1228 |
guess B1 by(rule has_integral_altD[OF assms(1) as,OF e]) note B1=this[rule_format]
|
himmelma@35172
|
1229 |
guess B2 by(rule has_integral_altD[OF assms(2) as,OF e]) note B2=this[rule_format]
|
hoelzl@37489
|
1230 |
have "\<exists>a b::'n. ball 0 B1 \<union> ball 0 B2 \<subseteq> {a..b}" apply(rule bounded_subset_closed_interval)
|
himmelma@35172
|
1231 |
using bounded_Un bounded_ball by auto then guess a b apply-by(erule exE)+
|
himmelma@35172
|
1232 |
note ab=conjunctD2[OF this[unfolded Un_subset_iff]]
|
himmelma@35172
|
1233 |
guess w using B1(2)[OF ab(1)] .. note w=conjunctD2[OF this]
|
himmelma@35172
|
1234 |
guess z using B2(2)[OF ab(2)] .. note z=conjunctD2[OF this]
|
himmelma@35172
|
1235 |
have "z = w" using lem[OF w(1) z(1)] by auto
|
himmelma@35172
|
1236 |
hence "norm (k1 - k2) \<le> norm (z - k2) + norm (w - k1)"
|
himmelma@35172
|
1237 |
using norm_triangle_ineq4[of "k1 - w" "k2 - z"] by(auto simp add: norm_minus_commute)
|
himmelma@35172
|
1238 |
also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2" apply(rule add_strict_mono) by(rule_tac[!] z(2) w(2))
|
himmelma@35172
|
1239 |
finally show False by auto qed
|
himmelma@35172
|
1240 |
|
himmelma@35172
|
1241 |
lemma integral_unique[intro]:
|
himmelma@35172
|
1242 |
"(f has_integral y) k \<Longrightarrow> integral k f = y"
|
himmelma@35172
|
1243 |
unfolding integral_def apply(rule some_equality) by(auto intro: has_integral_unique)
|
himmelma@35172
|
1244 |
|
hoelzl@37489
|
1245 |
lemma has_integral_is_0: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"
|
himmelma@35172
|
1246 |
assumes "\<forall>x\<in>s. f x = 0" shows "(f has_integral 0) s"
|
hoelzl@37489
|
1247 |
proof- have lem:"\<And>a b. \<And>f::'n \<Rightarrow> 'a.
|
himmelma@35172
|
1248 |
(\<forall>x\<in>{a..b}. f(x) = 0) \<Longrightarrow> (f has_integral 0) ({a..b})" unfolding has_integral
|
hoelzl@37489
|
1249 |
proof(rule,rule) fix a b e and f::"'n \<Rightarrow> 'a"
|
himmelma@35172
|
1250 |
assume as:"\<forall>x\<in>{a..b}. f x = 0" "0 < (e::real)"
|
himmelma@35172
|
1251 |
show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e)"
|
himmelma@35172
|
1252 |
apply(rule_tac x="\<lambda>x. ball x 1" in exI) apply(rule,rule gaugeI) unfolding centre_in_ball defer apply(rule open_ball)
|
himmelma@35172
|
1253 |
proof(rule,rule,erule conjE) case goal1
|
himmelma@35172
|
1254 |
have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) = 0" proof(rule setsum_0',rule)
|
himmelma@35172
|
1255 |
fix x assume x:"x\<in>p" have "f (fst x) = 0" using tagged_division_ofD(2-3)[OF goal1(1), of "fst x" "snd x"] using as x by auto
|
himmelma@35172
|
1256 |
thus "(\<lambda>(x, k). content k *\<^sub>R f x) x = 0" apply(subst surjective_pairing[of x]) unfolding split_conv by auto
|
himmelma@35172
|
1257 |
qed thus ?case using as by auto
|
himmelma@35172
|
1258 |
qed auto qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
|
himmelma@35172
|
1259 |
thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}")
|
himmelma@35172
|
1260 |
using assms by(auto simp add:has_integral intro:lem) }
|
himmelma@35172
|
1261 |
have *:"(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. 0)" apply(rule ext) using assms by auto
|
himmelma@35172
|
1262 |
assume "\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P *
|
himmelma@35172
|
1263 |
apply(rule,rule,rule_tac x=1 in exI,rule) defer apply(rule,rule,rule)
|
himmelma@35172
|
1264 |
proof- fix e::real and a b assume "e>0"
|
hoelzl@37489
|
1265 |
thus "\<exists>z. ((\<lambda>x::'n. 0::'a) has_integral z) {a..b} \<and> norm (z - 0) < e"
|
himmelma@35172
|
1266 |
apply(rule_tac x=0 in exI) apply(rule,rule lem) by auto
|
himmelma@35172
|
1267 |
qed auto qed
|
himmelma@35172
|
1268 |
|
hoelzl@37489
|
1269 |
lemma has_integral_0[simp]: "((\<lambda>x::'n::ordered_euclidean_space. 0) has_integral 0) s"
|
himmelma@35172
|
1270 |
apply(rule has_integral_is_0) by auto
|
himmelma@35172
|
1271 |
|
himmelma@35172
|
1272 |
lemma has_integral_0_eq[simp]: "((\<lambda>x. 0) has_integral i) s \<longleftrightarrow> i = 0"
|
himmelma@35172
|
1273 |
using has_integral_unique[OF has_integral_0] by auto
|
himmelma@35172
|
1274 |
|
hoelzl@37489
|
1275 |
lemma has_integral_linear: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"
|
himmelma@35172
|
1276 |
assumes "(f has_integral y) s" "bounded_linear h" shows "((h o f) has_integral ((h y))) s"
|
himmelma@35172
|
1277 |
proof- interpret bounded_linear h using assms(2) . from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format]
|
hoelzl@37489
|
1278 |
have lem:"\<And>f::'n \<Rightarrow> 'a. \<And> y a b.
|
himmelma@35172
|
1279 |
(f has_integral y) ({a..b}) \<Longrightarrow> ((h o f) has_integral h(y)) ({a..b})"
|
himmelma@35172
|
1280 |
proof(subst has_integral,rule,rule) case goal1
|
himmelma@35172
|
1281 |
from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format]
|
himmelma@35172
|
1282 |
have *:"e / B > 0" apply(rule divide_pos_pos) using goal1(2) B by auto
|
himmelma@35172
|
1283 |
guess g using has_integralD[OF goal1(1) *] . note g=this
|
himmelma@35172
|
1284 |
show ?case apply(rule_tac x=g in exI) apply(rule,rule g(1))
|
himmelma@35172
|
1285 |
proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "g fine p"
|
himmelma@35172
|
1286 |
have *:"\<And>x k. h ((\<lambda>(x, k). content k *\<^sub>R f x) x) = (\<lambda>(x, k). h (content k *\<^sub>R f x)) x" by auto
|
himmelma@35172
|
1287 |
have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = setsum (h \<circ> (\<lambda>(x, k). content k *\<^sub>R f x)) p"
|
himmelma@35172
|
1288 |
unfolding o_def unfolding scaleR[THEN sym] * by simp
|
himmelma@35172
|
1289 |
also have "\<dots> = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" using setsum[of "\<lambda>(x,k). content k *\<^sub>R f x" p] using as by auto
|
himmelma@35172
|
1290 |
finally have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" .
|
himmelma@35172
|
1291 |
show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) - h y) < e" unfolding * diff[THEN sym]
|
himmelma@35172
|
1292 |
apply(rule le_less_trans[OF B(2)]) using g(2)[OF as] B(1) by(auto simp add:field_simps)
|
himmelma@35172
|
1293 |
qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
|
himmelma@35172
|
1294 |
thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
|
himmelma@35172
|
1295 |
assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
|
himmelma@35172
|
1296 |
proof(rule,rule) fix e::real assume e:"0<e"
|
himmelma@35172
|
1297 |
have *:"0 < e/B" by(rule divide_pos_pos,rule e,rule B(1))
|
himmelma@35172
|
1298 |
guess M using has_integral_altD[OF assms(1) as *,rule_format] . note M=this
|
himmelma@35172
|
1299 |
show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) has_integral z) {a..b} \<and> norm (z - h y) < e)"
|
himmelma@35172
|
1300 |
apply(rule_tac x=M in exI) apply(rule,rule M(1))
|
himmelma@35172
|
1301 |
proof(rule,rule,rule) case goal1 guess z using M(2)[OF goal1(1)] .. note z=conjunctD2[OF this]
|
himmelma@35172
|
1302 |
have *:"(\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) = h \<circ> (\<lambda>x. if x \<in> s then f x else 0)"
|
himmelma@35172
|
1303 |
unfolding o_def apply(rule ext) using zero by auto
|
himmelma@35172
|
1304 |
show ?case apply(rule_tac x="h z" in exI,rule) unfolding * apply(rule lem[OF z(1)]) unfolding diff[THEN sym]
|
himmelma@35172
|
1305 |
apply(rule le_less_trans[OF B(2)]) using B(1) z(2) by(auto simp add:field_simps)
|
himmelma@35172
|
1306 |
qed qed qed
|
himmelma@35172
|
1307 |
|
himmelma@35172
|
1308 |
lemma has_integral_cmul:
|
himmelma@35172
|
1309 |
shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R k)) s"
|
himmelma@35172
|
1310 |
unfolding o_def[THEN sym] apply(rule has_integral_linear,assumption)
|
huffman@44282
|
1311 |
by(rule bounded_linear_scaleR_right)
|
himmelma@35172
|
1312 |
|
himmelma@35172
|
1313 |
lemma has_integral_neg:
|
himmelma@35172
|
1314 |
shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. -(f x)) has_integral (-k)) s"
|
himmelma@35172
|
1315 |
apply(drule_tac c="-1" in has_integral_cmul) by auto
|
himmelma@35172
|
1316 |
|
hoelzl@37489
|
1317 |
lemma has_integral_add: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"
|
himmelma@35172
|
1318 |
assumes "(f has_integral k) s" "(g has_integral l) s"
|
himmelma@35172
|
1319 |
shows "((\<lambda>x. f x + g x) has_integral (k + l)) s"
|
hoelzl@37489
|
1320 |
proof- have lem:"\<And>f g::'n \<Rightarrow> 'a. \<And>a b k l.
|
himmelma@35172
|
1321 |
(f has_integral k) ({a..b}) \<Longrightarrow> (g has_integral l) ({a..b}) \<Longrightarrow>
|
himmelma@35172
|
1322 |
((\<lambda>x. f(x) + g(x)) has_integral (k + l)) ({a..b})" proof- case goal1
|
himmelma@35172
|
1323 |
show ?case unfolding has_integral proof(rule,rule) fix e::real assume e:"e>0" hence *:"e/2>0" by auto
|
himmelma@35172
|
1324 |
guess d1 using has_integralD[OF goal1(1) *] . note d1=this
|
himmelma@35172
|
1325 |
guess d2 using has_integralD[OF goal1(2) *] . note d2=this
|
himmelma@35172
|
1326 |
show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e)"
|
himmelma@35172
|
1327 |
apply(rule_tac x="\<lambda>x. (d1 x) \<inter> (d2 x)" in exI) apply(rule,rule gauge_inter[OF d1(1) d2(1)])
|
himmelma@35172
|
1328 |
proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d1 x \<inter> d2 x) fine p"
|
himmelma@35172
|
1329 |
have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) = (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p. content k *\<^sub>R g x)"
|
himmelma@35172
|
1330 |
unfolding scaleR_right_distrib setsum_addf[of "\<lambda>(x,k). content k *\<^sub>R f x" "\<lambda>(x,k). content k *\<^sub>R g x" p,THEN sym]
|
himmelma@35172
|
1331 |
by(rule setsum_cong2,auto)
|
himmelma@35172
|
1332 |
have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) = norm (((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - l))"
|
haftmann@36350
|
1333 |
unfolding * by(auto simp add:algebra_simps) also let ?res = "\<dots>"
|
himmelma@35172
|
1334 |
from as have *:"d1 fine p" "d2 fine p" unfolding fine_inter by auto
|
himmelma@35172
|
1335 |
have "?res < e/2 + e/2" apply(rule le_less_trans[OF norm_triangle_ineq])
|
himmelma@35172
|
1336 |
apply(rule add_strict_mono) using d1(2)[OF as(1) *(1)] and d2(2)[OF as(1) *(2)] by auto
|
himmelma@35172
|
1337 |
finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e" by auto
|
himmelma@35172
|
1338 |
qed qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
|
himmelma@35172
|
1339 |
thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
|
himmelma@35172
|
1340 |
assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
|
himmelma@35172
|
1341 |
proof(rule,rule) case goal1 hence *:"e/2 > 0" by auto
|
himmelma@35172
|
1342 |
from has_integral_altD[OF assms(1) as *] guess B1 . note B1=this[rule_format]
|
himmelma@35172
|
1343 |
from has_integral_altD[OF assms(2) as *] guess B2 . note B2=this[rule_format]
|
himmelma@35172
|
1344 |
show ?case apply(rule_tac x="max B1 B2" in exI) apply(rule,rule min_max.less_supI1,rule B1)
|
hoelzl@37489
|
1345 |
proof(rule,rule,rule) fix a b assume "ball 0 (max B1 B2) \<subseteq> {a..b::'n}"
|
hoelzl@37489
|
1346 |
hence *:"ball 0 B1 \<subseteq> {a..b::'n}" "ball 0 B2 \<subseteq> {a..b::'n}" by auto
|
himmelma@35172
|
1347 |
guess w using B1(2)[OF *(1)] .. note w=conjunctD2[OF this]
|
himmelma@35172
|
1348 |
guess z using B2(2)[OF *(2)] .. note z=conjunctD2[OF this]
|
himmelma@35172
|
1349 |
have *:"\<And>x. (if x \<in> s then f x + g x else 0) = (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0)" by auto
|
himmelma@35172
|
1350 |
show "\<exists>z. ((\<lambda>x. if x \<in> s then f x + g x else 0) has_integral z) {a..b} \<and> norm (z - (k + l)) < e"
|
himmelma@35172
|
1351 |
apply(rule_tac x="w + z" in exI) apply(rule,rule lem[OF w(1) z(1), unfolded *[THEN sym]])
|
himmelma@35172
|
1352 |
using norm_triangle_ineq[of "w - k" "z - l"] w(2) z(2) by(auto simp add:field_simps)
|
himmelma@35172
|
1353 |
qed qed qed
|
himmelma@35172
|
1354 |
|
himmelma@35172
|
1355 |
lemma has_integral_sub:
|
himmelma@35172
|
1356 |
shows "(f has_integral k) s \<Longrightarrow> (g has_integral l) s \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) has_integral (k - l)) s"
|
haftmann@36350
|
1357 |
using has_integral_add[OF _ has_integral_neg,of f k s g l] unfolding algebra_simps by auto
|
himmelma@35172
|
1358 |
|
hoelzl@37489
|
1359 |
lemma integral_0: "integral s (\<lambda>x::'n::ordered_euclidean_space. 0::'m::real_normed_vector) = 0"
|
himmelma@35172
|
1360 |
by(rule integral_unique has_integral_0)+
|
himmelma@35172
|
1361 |
|
himmelma@35172
|
1362 |
lemma integral_add:
|
himmelma@35172
|
1363 |
shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow>
|
himmelma@35172
|
1364 |
integral s (\<lambda>x. f x + g x) = integral s f + integral s g"
|
himmelma@35172
|
1365 |
apply(rule integral_unique) apply(drule integrable_integral)+
|
himmelma@35172
|
1366 |
apply(rule has_integral_add) by assumption+
|
himmelma@35172
|
1367 |
|
himmelma@35172
|
1368 |
lemma integral_cmul:
|
himmelma@35172
|
1369 |
shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. c *\<^sub>R f x) = c *\<^sub>R integral s f"
|
himmelma@35172
|
1370 |
apply(rule integral_unique) apply(drule integrable_integral)+
|
himmelma@35172
|
1371 |
apply(rule has_integral_cmul) by assumption+
|
himmelma@35172
|
1372 |
|
himmelma@35172
|
1373 |
lemma integral_neg:
|
himmelma@35172
|
1374 |
shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. - f x) = - integral s f"
|
himmelma@35172
|
1375 |
apply(rule integral_unique) apply(drule integrable_integral)+
|
himmelma@35172
|
1376 |
apply(rule has_integral_neg) by assumption+
|
himmelma@35172
|
1377 |
|
himmelma@35172
|
1378 |
lemma integral_sub:
|
himmelma@35172
|
1379 |
shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> integral s (\<lambda>x. f x - g x) = integral s f - integral s g"
|
himmelma@35172
|
1380 |
apply(rule integral_unique) apply(drule integrable_integral)+
|
himmelma@35172
|
1381 |
apply(rule has_integral_sub) by assumption+
|
himmelma@35172
|
1382 |
|
himmelma@35172
|
1383 |
lemma integrable_0: "(\<lambda>x. 0) integrable_on s"
|
himmelma@35172
|
1384 |
unfolding integrable_on_def using has_integral_0 by auto
|
himmelma@35172
|
1385 |
|
himmelma@35172
|
1386 |
lemma integrable_add:
|
himmelma@35172
|
1387 |
shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x + g x) integrable_on s"
|
himmelma@35172
|
1388 |
unfolding integrable_on_def by(auto intro: has_integral_add)
|
himmelma@35172
|
1389 |
|
himmelma@35172
|
1390 |
lemma integrable_cmul:
|
himmelma@35172
|
1391 |
shows "f integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f(x)) integrable_on s"
|
himmelma@35172
|
1392 |
unfolding integrable_on_def by(auto intro: has_integral_cmul)
|
himmelma@35172
|
1393 |
|
himmelma@35172
|
1394 |
lemma integrable_neg:
|
himmelma@35172
|
1395 |
shows "f integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) integrable_on s"
|
himmelma@35172
|
1396 |
unfolding integrable_on_def by(auto intro: has_integral_neg)
|
himmelma@35172
|
1397 |
|
himmelma@35172
|
1398 |
lemma integrable_sub:
|
himmelma@35172
|
1399 |
shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x - g x) integrable_on s"
|
himmelma@35172
|
1400 |
unfolding integrable_on_def by(auto intro: has_integral_sub)
|
himmelma@35172
|
1401 |
|
himmelma@35172
|
1402 |
lemma integrable_linear:
|
himmelma@35172
|
1403 |
shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> (h o f) integrable_on s"
|
himmelma@35172
|
1404 |
unfolding integrable_on_def by(auto intro: has_integral_linear)
|
himmelma@35172
|
1405 |
|
himmelma@35172
|
1406 |
lemma integral_linear:
|
himmelma@35172
|
1407 |
shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> integral s (h o f) = h(integral s f)"
|
himmelma@35172
|
1408 |
apply(rule has_integral_unique) defer unfolding has_integral_integral
|
himmelma@35172
|
1409 |
apply(drule has_integral_linear,assumption,assumption) unfolding has_integral_integral[THEN sym]
|
himmelma@35172
|
1410 |
apply(rule integrable_linear) by assumption+
|
himmelma@35172
|
1411 |
|
hoelzl@37489
|
1412 |
lemma integral_component_eq[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
|
hoelzl@37489
|
1413 |
assumes "f integrable_on s" shows "integral s (\<lambda>x. f x $$ k) = integral s f $$ k"
|
hoelzl@37489
|
1414 |
unfolding integral_linear[OF assms(1) bounded_linear_component,unfolded o_def] ..
|
himmelma@36243
|
1415 |
|
himmelma@35172
|
1416 |
lemma has_integral_setsum:
|
himmelma@35172
|
1417 |
assumes "finite t" "\<forall>a\<in>t. ((f a) has_integral (i a)) s"
|
himmelma@35172
|
1418 |
shows "((\<lambda>x. setsum (\<lambda>a. f a x) t) has_integral (setsum i t)) s"
|
himmelma@35172
|
1419 |
proof(insert assms(1) subset_refl[of t],induct rule:finite_subset_induct)
|
himmelma@35172
|
1420 |
case (insert x F) show ?case unfolding setsum_insert[OF insert(1,3)]
|
himmelma@35172
|
1421 |
apply(rule has_integral_add) using insert assms by auto
|
himmelma@35172
|
1422 |
qed auto
|
himmelma@35172
|
1423 |
|
himmelma@35172
|
1424 |
lemma integral_setsum:
|
himmelma@35172
|
1425 |
shows "finite t \<Longrightarrow> \<forall>a\<in>t. (f a) integrable_on s \<Longrightarrow>
|
himmelma@35172
|
1426 |
integral s (\<lambda>x. setsum (\<lambda>a. f a x) t) = setsum (\<lambda>a. integral s (f a)) t"
|
himmelma@35172
|
1427 |
apply(rule integral_unique) apply(rule has_integral_setsum)
|
himmelma@35172
|
1428 |
using integrable_integral by auto
|
himmelma@35172
|
1429 |
|
himmelma@35172
|
1430 |
lemma integrable_setsum:
|
himmelma@35172
|
1431 |
shows "finite t \<Longrightarrow> \<forall>a \<in> t.(f a) integrable_on s \<Longrightarrow> (\<lambda>x. setsum (\<lambda>a. f a x) t) integrable_on s"
|
himmelma@35172
|
1432 |
unfolding integrable_on_def apply(drule bchoice) using has_integral_setsum[of t] by auto
|
himmelma@35172
|
1433 |
|
himmelma@35172
|
1434 |
lemma has_integral_eq:
|
himmelma@35172
|
1435 |
assumes "\<forall>x\<in>s. f x = g x" "(f has_integral k) s" shows "(g has_integral k) s"
|
himmelma@35172
|
1436 |
using has_integral_sub[OF assms(2), of "\<lambda>x. f x - g x" 0]
|
himmelma@35172
|
1437 |
using has_integral_is_0[of s "\<lambda>x. f x - g x"] using assms(1) by auto
|
himmelma@35172
|
1438 |
|
himmelma@35172
|
1439 |
lemma integrable_eq:
|
himmelma@35172
|
1440 |
shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> f integrable_on s \<Longrightarrow> g integrable_on s"
|
himmelma@35172
|
1441 |
unfolding integrable_on_def using has_integral_eq[of s f g] by auto
|
himmelma@35172
|
1442 |
|
himmelma@35172
|
1443 |
lemma has_integral_eq_eq:
|
himmelma@35172
|
1444 |
shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> ((f has_integral k) s \<longleftrightarrow> (g has_integral k) s)"
|
huffman@36362
|
1445 |
using has_integral_eq[of s f g] has_integral_eq[of s g f] by rule auto
|
himmelma@35172
|
1446 |
|
himmelma@35172
|
1447 |
lemma has_integral_null[dest]:
|
himmelma@35172
|
1448 |
assumes "content({a..b}) = 0" shows "(f has_integral 0) ({a..b})"
|
himmelma@35172
|
1449 |
unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI,rule) defer
|
himmelma@35172
|
1450 |
proof(rule,rule,erule conjE) fix e::real assume e:"e>0" thus "gauge (\<lambda>x. ball x 1)" by auto
|
himmelma@35172
|
1451 |
fix p assume p:"p tagged_division_of {a..b}" (*"(\<lambda>x. ball x 1) fine p"*)
|
himmelma@35172
|
1452 |
have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) = 0" unfolding norm_eq_zero diff_0_right
|
himmelma@35172
|
1453 |
using setsum_content_null[OF assms(1) p, of f] .
|
himmelma@35172
|
1454 |
thus "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e" using e by auto qed
|
himmelma@35172
|
1455 |
|
himmelma@35172
|
1456 |
lemma has_integral_null_eq[simp]:
|
himmelma@35172
|
1457 |
shows "content({a..b}) = 0 \<Longrightarrow> ((f has_integral i) ({a..b}) \<longleftrightarrow> i = 0)"
|
himmelma@35172
|
1458 |
apply rule apply(rule has_integral_unique,assumption)
|
himmelma@35172
|
1459 |
apply(drule has_integral_null,assumption)
|
himmelma@35172
|
1460 |
apply(drule has_integral_null) by auto
|
himmelma@35172
|
1461 |
|
himmelma@35172
|
1462 |
lemma integral_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> integral({a..b}) f = 0"
|
himmelma@35172
|
1463 |
by(rule integral_unique,drule has_integral_null)
|
himmelma@35172
|
1464 |
|
himmelma@35172
|
1465 |
lemma integrable_on_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> f integrable_on {a..b}"
|
himmelma@35172
|
1466 |
unfolding integrable_on_def apply(drule has_integral_null) by auto
|
himmelma@35172
|
1467 |
|
himmelma@35172
|
1468 |
lemma has_integral_empty[intro]: shows "(f has_integral 0) {}"
|
himmelma@35172
|
1469 |
unfolding empty_as_interval apply(rule has_integral_null)
|
himmelma@35172
|
1470 |
using content_empty unfolding empty_as_interval .
|
himmelma@35172
|
1471 |
|
himmelma@35172
|
1472 |
lemma has_integral_empty_eq[simp]: shows "(f has_integral i) {} \<longleftrightarrow> i = 0"
|
himmelma@35172
|
1473 |
apply(rule,rule has_integral_unique,assumption) by auto
|
himmelma@35172
|
1474 |
|
himmelma@35172
|
1475 |
lemma integrable_on_empty[intro]: shows "f integrable_on {}" unfolding integrable_on_def by auto
|
himmelma@35172
|
1476 |
|
himmelma@35172
|
1477 |
lemma integral_empty[simp]: shows "integral {} f = 0"
|
himmelma@35172
|
1478 |
apply(rule integral_unique) using has_integral_empty .
|
himmelma@35172
|
1479 |
|
hoelzl@37489
|
1480 |
lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}" "(f has_integral 0) {a::'a::ordered_euclidean_space}"
|
nipkow@39302
|
1481 |
proof- have *:"{a} = {a..a}" apply(rule set_eqI) unfolding mem_interval singleton_iff euclidean_eq[where 'a='a]
|
himmelma@35540
|
1482 |
apply safe prefer 3 apply(erule_tac x=i in allE) by(auto simp add: field_simps)
|
himmelma@35540
|
1483 |
show "(f has_integral 0) {a..a}" "(f has_integral 0) {a}" unfolding *
|
himmelma@35540
|
1484 |
apply(rule_tac[!] has_integral_null) unfolding content_eq_0_interior
|
himmelma@35540
|
1485 |
unfolding interior_closed_interval using interval_sing by auto qed
|
himmelma@35172
|
1486 |
|
himmelma@35172
|
1487 |
lemma integrable_on_refl[intro]: shows "f integrable_on {a..a}" unfolding integrable_on_def by auto
|
himmelma@35172
|
1488 |
|
himmelma@35172
|
1489 |
lemma integral_refl: shows "integral {a..a} f = 0" apply(rule integral_unique) by auto
|
himmelma@35172
|
1490 |
|
himmelma@35172
|
1491 |
subsection {* Cauchy-type criterion for integrability. *}
|
himmelma@35172
|
1492 |
|
hoelzl@37489
|
1493 |
(* XXXXXXX *)
|
hoelzl@37489
|
1494 |
lemma integrable_cauchy: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::{real_normed_vector,complete_space}"
|
himmelma@35172
|
1495 |
shows "f integrable_on {a..b} \<longleftrightarrow>
|
himmelma@35172
|
1496 |
(\<forall>e>0.\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<and> d fine p1 \<and>
|
himmelma@35172
|
1497 |
p2 tagged_division_of {a..b} \<and> d fine p2
|
himmelma@35172
|
1498 |
\<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 -
|
himmelma@35172
|
1499 |
setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) < e))" (is "?l = (\<forall>e>0. \<exists>d. ?P e d)")
|
himmelma@35172
|
1500 |
proof assume ?l
|
himmelma@35172
|
1501 |
then guess y unfolding integrable_on_def has_integral .. note y=this
|
himmelma@35172
|
1502 |
show "\<forall>e>0. \<exists>d. ?P e d" proof(rule,rule) case goal1 hence "e/2 > 0" by auto
|
himmelma@35172
|
1503 |
then guess d apply- apply(drule y[rule_format]) by(erule exE,erule conjE) note d=this[rule_format]
|
himmelma@35172
|
1504 |
show ?case apply(rule_tac x=d in exI,rule,rule d) apply(rule,rule,rule,(erule conjE)+)
|
himmelma@35172
|
1505 |
proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b}" "d fine p1" "p2 tagged_division_of {a..b}" "d fine p2"
|
himmelma@35172
|
1506 |
show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
|
huffman@36587
|
1507 |
apply(rule dist_triangle_half_l[where y=y,unfolded dist_norm])
|
himmelma@35172
|
1508 |
using d(2)[OF conjI[OF as(1-2)]] d(2)[OF conjI[OF as(3-4)]] .
|
himmelma@35172
|
1509 |
qed qed
|
himmelma@35172
|
1510 |
next assume "\<forall>e>0. \<exists>d. ?P e d" hence "\<forall>n::nat. \<exists>d. ?P (inverse(real (n + 1))) d" by auto
|
himmelma@35172
|
1511 |
from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format],rule_format]
|
himmelma@35172
|
1512 |
have "\<And>n. gauge (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}})" apply(rule gauge_inters) using d(1) by auto
|
himmelma@35172
|
1513 |
hence "\<forall>n. \<exists>p. p tagged_division_of {a..b} \<and> (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}}) fine p" apply-
|
himmelma@35172
|
1514 |
proof case goal1 from this[of n] show ?case apply(drule_tac fine_division_exists) by auto qed
|
himmelma@35172
|
1515 |
from choice[OF this] guess p .. note p = conjunctD2[OF this[rule_format]]
|
himmelma@35172
|
1516 |
have dp:"\<And>i n. i\<le>n \<Longrightarrow> d i fine p n" using p(2) unfolding fine_inters by auto
|
himmelma@35172
|
1517 |
have "Cauchy (\<lambda>n. setsum (\<lambda>(x,k). content k *\<^sub>R (f x)) (p n))"
|
himmelma@35172
|
1518 |
proof(rule CauchyI) case goal1 then guess N unfolding real_arch_inv[of e] .. note N=this
|
himmelma@35172
|
1519 |
show ?case apply(rule_tac x=N in exI)
|
himmelma@35172
|
1520 |
proof(rule,rule,rule,rule) fix m n assume mn:"N \<le> m" "N \<le> n" have *:"N = (N - 1) + 1" using N by auto
|
himmelma@35172
|
1521 |
show "norm ((\<Sum>(x, k)\<in>p m. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p n. content k *\<^sub>R f x)) < e"
|
himmelma@35172
|
1522 |
apply(rule less_trans[OF _ N[THEN conjunct2,THEN conjunct2]]) apply(subst *) apply(rule d(2))
|
himmelma@35172
|
1523 |
using dp p(1) using mn by auto
|
himmelma@35172
|
1524 |
qed qed
|
huffman@44906
|
1525 |
then guess y unfolding convergent_eq_cauchy[THEN sym] .. note y=this[THEN LIMSEQ_D]
|
himmelma@35172
|
1526 |
show ?l unfolding integrable_on_def has_integral apply(rule_tac x=y in exI)
|
himmelma@35172
|
1527 |
proof(rule,rule) fix e::real assume "e>0" hence *:"e/2 > 0" by auto
|
himmelma@35172
|
1528 |
then guess N1 unfolding real_arch_inv[of "e/2"] .. note N1=this hence N1':"N1 = N1 - 1 + 1" by auto
|
himmelma@35172
|
1529 |
guess N2 using y[OF *] .. note N2=this
|
himmelma@35172
|
1530 |
show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - y) < e)"
|
himmelma@35172
|
1531 |
apply(rule_tac x="d (N1 + N2)" in exI) apply rule defer
|
himmelma@35172
|
1532 |
proof(rule,rule,erule conjE) show "gauge (d (N1 + N2))" using d by auto
|
himmelma@35172
|
1533 |
fix q assume as:"q tagged_division_of {a..b}" "d (N1 + N2) fine q"
|
himmelma@35172
|
1534 |
have *:"inverse (real (N1 + N2 + 1)) < e / 2" apply(rule less_trans) using N1 by auto
|
himmelma@35172
|
1535 |
show "norm ((\<Sum>(x, k)\<in>q. content k *\<^sub>R f x) - y) < e" apply(rule norm_triangle_half_r)
|
himmelma@35172
|
1536 |
apply(rule less_trans[OF _ *]) apply(subst N1', rule d(2)[of "p (N1+N2)"]) defer
|
huffman@44906
|
1537 |
using N2[rule_format,of "N1+N2"]
|
himmelma@35172
|
1538 |
using as dp[of "N1 - 1 + 1 + N2" "N1 + N2"] using p(1)[of "N1 + N2"] using N1 by auto qed qed qed
|
himmelma@35172
|
1539 |
|
himmelma@35172
|
1540 |
subsection {* Additivity of integral on abutting intervals. *}
|
himmelma@35172
|
1541 |
|
hoelzl@37489
|
1542 |
lemma interval_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
|
hoelzl@37489
|
1543 |
"{a..b} \<inter> {x. x$$k \<le> c} = {a .. (\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)}"
|
hoelzl@37489
|
1544 |
"{a..b} \<inter> {x. x$$k \<ge> c} = {(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i) .. b}"
|
nipkow@39302
|
1545 |
apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval mem_Collect_eq using assms by auto
|
hoelzl@37489
|
1546 |
|
hoelzl@37489
|
1547 |
lemma content_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
|
hoelzl@37489
|
1548 |
"content {a..b} = content({a..b} \<inter> {x. x$$k \<le> c}) + content({a..b} \<inter> {x. x$$k >= c})"
|
hoelzl@37489
|
1549 |
proof- note simps = interval_split[OF assms] content_closed_interval_cases eucl_le[where 'a='a]
|
hoelzl@37489
|
1550 |
{ presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps using assms by auto }
|
hoelzl@37489
|
1551 |
have *:"{..<DIM('a)} = insert k ({..<DIM('a)} - {k})" "\<And>x. finite ({..<DIM('a)}-{x})" "\<And>x. x\<notin>{..<DIM('a)}-{x}"
|
hoelzl@37489
|
1552 |
using assms by auto
|
hoelzl@37489
|
1553 |
have *:"\<And>X Y Z. (\<Prod>i\<in>{..<DIM('a)}. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>{..<DIM('a)}-{k}. Z i (Y i))"
|
hoelzl@37489
|
1554 |
"(\<Prod>i\<in>{..<DIM('a)}. b$$i - a$$i) = (\<Prod>i\<in>{..<DIM('a)}-{k}. b$$i - a$$i) * (b$$k - a$$k)"
|
himmelma@35172
|
1555 |
apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto
|
hoelzl@37489
|
1556 |
assume as:"a\<le>b" moreover have "\<And>x. min (b $$ k) c = max (a $$ k) c
|
hoelzl@37489
|
1557 |
\<Longrightarrow> x* (b$$k - a$$k) = x*(max (a $$ k) c - a $$ k) + x*(b $$ k - max (a $$ k) c)"
|
himmelma@35172
|
1558 |
by (auto simp add:field_simps)
|
hoelzl@37489
|
1559 |
moreover have **:"(\<Prod>i<DIM('a). ((\<chi>\<chi> i. if i = k then min (b $$ k) c else b $$ i)::'a) $$ i - a $$ i) =
|
hoelzl@37489
|
1560 |
(\<Prod>i<DIM('a). (if i = k then min (b $$ k) c else b $$ i) - a $$ i)"
|
hoelzl@37489
|
1561 |
"(\<Prod>i<DIM('a). b $$ i - ((\<chi>\<chi> i. if i = k then max (a $$ k) c else a $$ i)::'a) $$ i) =
|
hoelzl@37489
|
1562 |
(\<Prod>i<DIM('a). b $$ i - (if i = k then max (a $$ k) c else a $$ i))"
|
hoelzl@37489
|
1563 |
apply(rule_tac[!] setprod.cong) by auto
|
hoelzl@37489
|
1564 |
have "\<not> a $$ k \<le> c \<Longrightarrow> \<not> c \<le> b $$ k \<Longrightarrow> False"
|
hoelzl@37489
|
1565 |
unfolding not_le using as[unfolded eucl_le[where 'a='a],rule_format,of k] assms by auto
|
hoelzl@37489
|
1566 |
ultimately show ?thesis using assms unfolding simps **
|
hoelzl@37489
|
1567 |
unfolding *(1)[of "\<lambda>i x. b$$i - x"] *(1)[of "\<lambda>i x. x - a$$i"] unfolding *(2)
|
hoelzl@37489
|
1568 |
apply(subst(2) euclidean_lambda_beta''[where 'a='a])
|
hoelzl@37489
|
1569 |
apply(subst(3) euclidean_lambda_beta''[where 'a='a]) by auto
|
himmelma@35172
|
1570 |
qed
|
himmelma@35172
|
1571 |
|
hoelzl@37489
|
1572 |
lemma division_split_left_inj: fixes type::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
1573 |
assumes "d division_of i" "k1 \<in> d" "k2 \<in> d" "k1 \<noteq> k2"
|
hoelzl@37489
|
1574 |
"k1 \<inter> {x::'a. x$$k \<le> c} = k2 \<inter> {x. x$$k \<le> c}"and k:"k<DIM('a)"
|
hoelzl@37489
|
1575 |
shows "content(k1 \<inter> {x. x$$k \<le> c}) = 0"
|
himmelma@35172
|
1576 |
proof- note d=division_ofD[OF assms(1)]
|
hoelzl@37489
|
1577 |
have *:"\<And>a b::'a. \<And> c. (content({a..b} \<inter> {x. x$$k \<le> c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$$k \<le> c}) = {})"
|
hoelzl@37489
|
1578 |
unfolding interval_split[OF k] content_eq_0_interior by auto
|
himmelma@35172
|
1579 |
guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this
|
himmelma@35172
|
1580 |
guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this
|
himmelma@35172
|
1581 |
have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
|
himmelma@35172
|
1582 |
show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]])
|
himmelma@35172
|
1583 |
defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed
|
hoelzl@37489
|
1584 |
|
hoelzl@37489
|
1585 |
lemma division_split_right_inj: fixes type::"'a::ordered_euclidean_space"
|
himmelma@35172
|
1586 |
assumes "d division_of i" "k1 \<in> d" "k2 \<in> d" "k1 \<noteq> k2"
|
hoelzl@37489
|
1587 |
"k1 \<inter> {x::'a. x$$k \<ge> c} = k2 \<inter> {x. x$$k \<ge> c}" and k:"k<DIM('a)"
|
hoelzl@37489
|
1588 |
shows "content(k1 \<inter> {x. x$$k \<ge> c}) = 0"
|
himmelma@35172
|
1589 |
proof- note d=division_ofD[OF assms(1)]
|
hoelzl@37489
|
1590 |
have *:"\<And>a b::'a. \<And> c. (content({a..b} \<inter> {x. x$$k >= c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$$k >= c}) = {})"
|
hoelzl@37489
|
1591 |
unfolding interval_split[OF k] content_eq_0_interior by auto
|
himmelma@35172
|
1592 |
guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this
|
himmelma@35172
|
1593 |
guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this
|
himmelma@35172
|
1594 |
have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
|
himmelma@35172
|
1595 |
show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]])
|
himmelma@35172
|
1596 |
defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed
|
himmelma@35172
|
1597 |
|
hoelzl@37489
|
1598 |
lemma tagged_division_split_left_inj: fixes x1::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
1599 |
assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2" "k1 \<inter> {x. x$$k \<le> c} = k2 \<inter> {x. x$$k \<le> c}"
|
hoelzl@37489
|
1600 |
and k:"k<DIM('a)"
|
hoelzl@37489
|
1601 |
shows "content(k1 \<inter> {x. x$$k \<le> c}) = 0"
|
himmelma@35172
|
1602 |
proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto
|
himmelma@35172
|
1603 |
show ?thesis apply(rule division_split_left_inj[OF division_of_tagged_division[OF assms(1)]])
|
himmelma@35172
|
1604 |
apply(rule_tac[1-2] *) using assms(2-) by auto qed
|
himmelma@35172
|
1605 |
|
hoelzl@37489
|
1606 |
lemma tagged_division_split_right_inj: fixes x1::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
1607 |
assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2" "k1 \<inter> {x. x$$k \<ge> c} = k2 \<inter> {x. x$$k \<ge> c}"
|
hoelzl@37489
|
1608 |
and k:"k<DIM('a)"
|
hoelzl@37489
|
1609 |
shows "content(k1 \<inter> {x. x$$k \<ge> c}) = 0"
|
himmelma@35172
|
1610 |
proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto
|
himmelma@35172
|
1611 |
show ?thesis apply(rule division_split_right_inj[OF division_of_tagged_division[OF assms(1)]])
|
himmelma@35172
|
1612 |
apply(rule_tac[1-2] *) using assms(2-) by auto qed
|
himmelma@35172
|
1613 |
|
hoelzl@37489
|
1614 |
lemma division_split: fixes a::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
1615 |
assumes "p division_of {a..b}" and k:"k<DIM('a)"
|
hoelzl@37489
|
1616 |
shows "{l \<inter> {x. x$$k \<le> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$$k \<le> c} = {})} division_of({a..b} \<inter> {x. x$$k \<le> c})" (is "?p1 division_of ?I1") and
|
hoelzl@37489
|
1617 |
"{l \<inter> {x. x$$k \<ge> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$$k \<ge> c} = {})} division_of ({a..b} \<inter> {x. x$$k \<ge> c})" (is "?p2 division_of ?I2")
|
hoelzl@37489
|
1618 |
proof(rule_tac[!] division_ofI) note p=division_ofD[OF assms(1)]
|
himmelma@35172
|
1619 |
show "finite ?p1" "finite ?p2" using p(1) by auto show "\<Union>?p1 = ?I1" "\<Union>?p2 = ?I2" unfolding p(6)[THEN sym] by auto
|
himmelma@35172
|
1620 |
{ fix k assume "k\<in>?p1" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
|
himmelma@35172
|
1621 |
guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this
|
himmelma@35172
|
1622 |
show "k\<subseteq>?I1" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
|
hoelzl@37489
|
1623 |
using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split[OF k]) by auto
|
himmelma@35172
|
1624 |
fix k' assume "k'\<in>?p1" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this
|
himmelma@35172
|
1625 |
assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
|
himmelma@35172
|
1626 |
{ fix k assume "k\<in>?p2" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
|
himmelma@35172
|
1627 |
guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this
|
himmelma@35172
|
1628 |
show "k\<subseteq>?I2" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
|
hoelzl@37489
|
1629 |
using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split[OF k]) by auto
|
himmelma@35172
|
1630 |
fix k' assume "k'\<in>?p2" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this
|
himmelma@35172
|
1631 |
assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
|
himmelma@35172
|
1632 |
qed
|
himmelma@35172
|
1633 |
|
hoelzl@37489
|
1634 |
lemma has_integral_split: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
|
hoelzl@37489
|
1635 |
assumes "(f has_integral i) ({a..b} \<inter> {x. x$$k \<le> c})" "(f has_integral j) ({a..b} \<inter> {x. x$$k \<ge> c})" and k:"k<DIM('a)"
|
himmelma@35172
|
1636 |
shows "(f has_integral (i + j)) ({a..b})"
|
himmelma@35172
|
1637 |
proof(unfold has_integral,rule,rule) case goal1 hence e:"e/2>0" by auto
|
hoelzl@37489
|
1638 |
guess d1 using has_integralD[OF assms(1)[unfolded interval_split[OF k]] e] . note d1=this[unfolded interval_split[THEN sym,OF k]]
|
hoelzl@37489
|
1639 |
guess d2 using has_integralD[OF assms(2)[unfolded interval_split[OF k]] e] . note d2=this[unfolded interval_split[THEN sym,OF k]]
|
hoelzl@37489
|
1640 |
let ?d = "\<lambda>x. if x$$k = c then (d1 x \<inter> d2 x) else ball x (abs(x$$k - c)) \<inter> d1 x \<inter> d2 x"
|
himmelma@35172
|
1641 |
show ?case apply(rule_tac x="?d" in exI,rule) defer apply(rule,rule,(erule conjE)+)
|
himmelma@35172
|
1642 |
proof- show "gauge ?d" using d1(1) d2(1) unfolding gauge_def by auto
|
himmelma@35172
|
1643 |
fix p assume "p tagged_division_of {a..b}" "?d fine p" note p = this tagged_division_ofD[OF this(1)]
|
hoelzl@37489
|
1644 |
have lem0:"\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$$k \<le> c} = {}) \<Longrightarrow> x$$k \<le> c"
|
hoelzl@37489
|
1645 |
"\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$$k \<ge> c} = {}) \<Longrightarrow> x$$k \<ge> c"
|
himmelma@35172
|
1646 |
proof- fix x kk assume as:"(x,kk)\<in>p"
|
hoelzl@37489
|
1647 |
show "~(kk \<inter> {x. x$$k \<le> c} = {}) \<Longrightarrow> x$$k \<le> c"
|
himmelma@35172
|
1648 |
proof(rule ccontr) case goal1
|
hoelzl@37489
|
1649 |
from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $$ k - c\<bar>"
|
himmelma@35172
|
1650 |
using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto
|
hoelzl@37489
|
1651 |
hence "\<exists>y. y \<in> ball x \<bar>x $$ k - c\<bar> \<inter> {x. x $$ k \<le> c}" using goal1(1) by blast
|
hoelzl@37489
|
1652 |
then guess y .. hence "\<bar>x $$ k - y $$ k\<bar> < \<bar>x $$ k - c\<bar>" "y$$k \<le> c" apply-apply(rule le_less_trans)
|
hoelzl@37489
|
1653 |
using component_le_norm[of "x - y" k] by(auto simp add:dist_norm)
|
himmelma@35172
|
1654 |
thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps)
|
himmelma@35172
|
1655 |
qed
|
hoelzl@37489
|
1656 |
show "~(kk \<inter> {x. x$$k \<ge> c} = {}) \<Longrightarrow> x$$k \<ge> c"
|
himmelma@35172
|
1657 |
proof(rule ccontr) case goal1
|
hoelzl@37489
|
1658 |
from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $$ k - c\<bar>"
|
himmelma@35172
|
1659 |
using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto
|
hoelzl@37489
|
1660 |
hence "\<exists>y. y \<in> ball x \<bar>x $$ k - c\<bar> \<inter> {x. x $$ k \<ge> c}" using goal1(1) by blast
|
hoelzl@37489
|
1661 |
then guess y .. hence "\<bar>x $$ k - y $$ k\<bar> < \<bar>x $$ k - c\<bar>" "y$$k \<ge> c" apply-apply(rule le_less_trans)
|
hoelzl@37489
|
1662 |
using component_le_norm[of "x - y" k] by(auto simp add:dist_norm)
|
himmelma@35172
|
1663 |
thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps)
|
himmelma@35172
|
1664 |
qed
|
himmelma@35172
|
1665 |
qed
|
himmelma@35172
|
1666 |
|
himmelma@35172
|
1667 |
have lem1: "\<And>f P Q. (\<forall>x k. (x,k) \<in> {(x,f k) | x k. P x k} \<longrightarrow> Q x k) \<longleftrightarrow> (\<forall>x k. P x k \<longrightarrow> Q x (f k))" by auto
|
himmelma@35172
|
1668 |
have lem2: "\<And>f s P f. finite s \<Longrightarrow> finite {(x,f k) | x k. (x,k) \<in> s \<and> P x k}"
|
himmelma@35172
|
1669 |
proof- case goal1 thus ?case apply-apply(rule finite_subset[of _ "(\<lambda>(x,k). (x,f k)) ` s"]) by auto qed
|
huffman@44170
|
1670 |
have lem3: "\<And>g::'a set \<Rightarrow> 'a set. finite p \<Longrightarrow>
|
himmelma@35172
|
1671 |
setsum (\<lambda>(x,k). content k *\<^sub>R f x) {(x,g k) |x k. (x,k) \<in> p \<and> ~(g k = {})}
|
himmelma@35172
|
1672 |
= setsum (\<lambda>(x,k). content k *\<^sub>R f x) ((\<lambda>(x,k). (x,g k)) ` p)"
|
himmelma@35172
|
1673 |
apply(rule setsum_mono_zero_left) prefer 3
|
huffman@44170
|
1674 |
proof fix g::"'a set \<Rightarrow> 'a set" and i::"('a) \<times> (('a) set)"
|
himmelma@35172
|
1675 |
assume "i \<in> (\<lambda>(x, k). (x, g k)) ` p - {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}"
|
himmelma@35172
|
1676 |
then obtain x k where xk:"i=(x,g k)" "(x,k)\<in>p" "(x,g k) \<notin> {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}" by auto
|
himmelma@35172
|
1677 |
have "content (g k) = 0" using xk using content_empty by auto
|
himmelma@35172
|
1678 |
thus "(\<lambda>(x, k). content k *\<^sub>R f x) i = 0" unfolding xk split_conv by auto
|
himmelma@35172
|
1679 |
qed auto
|
himmelma@35172
|
1680 |
have lem4:"\<And>g. (\<lambda>(x,l). content (g l) *\<^sub>R f x) = (\<lambda>(x,l). content l *\<^sub>R f x) o (\<lambda>(x,l). (x,g l))" apply(rule ext) by auto
|
himmelma@35172
|
1681 |
|
hoelzl@37489
|
1682 |
let ?M1 = "{(x,kk \<inter> {x. x$$k \<le> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$$k \<le> c} \<noteq> {}}"
|
himmelma@35172
|
1683 |
have "norm ((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) < e/2" apply(rule d1(2),rule tagged_division_ofI)
|
himmelma@35172
|
1684 |
apply(rule lem2 p(3))+ prefer 6 apply(rule fineI)
|
hoelzl@37489
|
1685 |
proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M1} = {a..b} \<inter> {x. x$$k \<le> c}" unfolding p(8)[THEN sym] by auto
|
himmelma@35172
|
1686 |
fix x l assume xl:"(x,l)\<in>?M1"
|
himmelma@35172
|
1687 |
then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note xl'=this
|
himmelma@35172
|
1688 |
have "l' \<subseteq> d1 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto
|
himmelma@35172
|
1689 |
thus "l \<subseteq> d1 x" unfolding xl' by auto
|
hoelzl@37489
|
1690 |
show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $$ k \<le> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
|
himmelma@35172
|
1691 |
using lem0(1)[OF xl'(3-4)] by auto
|
nipkow@44890
|
1692 |
show "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastforce simp add: interval_split[OF k,where c=c])
|
himmelma@35172
|
1693 |
fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M1"
|
himmelma@35172
|
1694 |
then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note yr'=this
|
himmelma@35172
|
1695 |
assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
|
himmelma@35172
|
1696 |
proof(cases "l' = r' \<longrightarrow> x' = y'")
|
himmelma@35172
|
1697 |
case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
|
himmelma@35172
|
1698 |
next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto
|
himmelma@35172
|
1699 |
thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
|
himmelma@35172
|
1700 |
qed qed moreover
|
himmelma@35172
|
1701 |
|
hoelzl@37489
|
1702 |
let ?M2 = "{(x,kk \<inter> {x. x$$k \<ge> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$$k \<ge> c} \<noteq> {}}"
|
himmelma@35172
|
1703 |
have "norm ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) < e/2" apply(rule d2(2),rule tagged_division_ofI)
|
himmelma@35172
|
1704 |
apply(rule lem2 p(3))+ prefer 6 apply(rule fineI)
|
hoelzl@37489
|
1705 |
proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M2} = {a..b} \<inter> {x. x$$k \<ge> c}" unfolding p(8)[THEN sym] by auto
|
himmelma@35172
|
1706 |
fix x l assume xl:"(x,l)\<in>?M2"
|
himmelma@35172
|
1707 |
then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note xl'=this
|
himmelma@35172
|
1708 |
have "l' \<subseteq> d2 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto
|
himmelma@35172
|
1709 |
thus "l \<subseteq> d2 x" unfolding xl' by auto
|
hoelzl@37489
|
1710 |
show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $$ k \<ge> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
|
himmelma@35172
|
1711 |
using lem0(2)[OF xl'(3-4)] by auto
|
nipkow@44890
|
1712 |
show "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastforce simp add: interval_split[OF k, where c=c])
|
himmelma@35172
|
1713 |
fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M2"
|
himmelma@35172
|
1714 |
then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) . note yr'=this
|
himmelma@35172
|
1715 |
assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
|
himmelma@35172
|
1716 |
proof(cases "l' = r' \<longrightarrow> x' = y'")
|
himmelma@35172
|
1717 |
case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
|
himmelma@35172
|
1718 |
next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto
|
himmelma@35172
|
1719 |
thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
|
himmelma@35172
|
1720 |
qed qed ultimately
|
himmelma@35172
|
1721 |
|
himmelma@35172
|
1722 |
have "norm (((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)) < e/2 + e/2"
|
himmelma@35172
|
1723 |
apply- apply(rule norm_triangle_lt) by auto
|
hoelzl@37489
|
1724 |
also { have *:"\<And>x y. x = (0::real) \<Longrightarrow> x *\<^sub>R (y::'b) = 0" using scaleR_zero_left by auto
|
himmelma@35172
|
1725 |
have "((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)
|
himmelma@35172
|
1726 |
= (\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - (i + j)" by auto
|
hoelzl@37489
|
1727 |
also have "\<dots> = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. x $$ k \<le> c}) *\<^sub>R f x) +
|
hoelzl@37489
|
1728 |
(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. c \<le> x $$ k}) *\<^sub>R f x) - (i + j)"
|
himmelma@35172
|
1729 |
unfolding lem3[OF p(3)] apply(subst setsum_reindex_nonzero[OF p(3)]) defer apply(subst setsum_reindex_nonzero[OF p(3)])
|
himmelma@35172
|
1730 |
defer unfolding lem4[THEN sym] apply(rule refl) unfolding split_paired_all split_conv apply(rule_tac[!] *)
|
hoelzl@37489
|
1731 |
proof- case goal1 thus ?case apply- apply(rule tagged_division_split_left_inj [OF p(1), of a b aa ba]) using k by auto
|
hoelzl@37489
|
1732 |
next case goal2 thus ?case apply- apply(rule tagged_division_split_right_inj[OF p(1), of a b aa ba]) using k by auto
|
himmelma@35172
|
1733 |
qed also note setsum_addf[THEN sym]
|
hoelzl@37489
|
1734 |
also have *:"\<And>x. x\<in>p \<Longrightarrow> (\<lambda>(x, ka). content (ka \<inter> {x. x $$ k \<le> c}) *\<^sub>R f x) x + (\<lambda>(x, ka). content (ka \<inter> {x. c \<le> x $$ k}) *\<^sub>R f x) x
|
himmelma@35172
|
1735 |
= (\<lambda>(x,ka). content ka *\<^sub>R f x) x" unfolding split_paired_all split_conv
|
himmelma@35172
|
1736 |
proof- fix a b assume "(a,b) \<in> p" from p(6)[OF this] guess u v apply-by(erule exE)+ note uv=this
|
hoelzl@37489
|
1737 |
thus "content (b \<inter> {x. x $$ k \<le> c}) *\<^sub>R f a + content (b \<inter> {x. c \<le> x $$ k}) *\<^sub>R f a = content b *\<^sub>R f a"
|
hoelzl@37489
|
1738 |
unfolding scaleR_left_distrib[THEN sym] unfolding uv content_split[OF k,of u v c] by auto
|
himmelma@35172
|
1739 |
qed note setsum_cong2[OF this]
|
hoelzl@37489
|
1740 |
finally have "(\<Sum>(x, k)\<in>{(x, kk \<inter> {x. x $$ k \<le> c}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. x $$ k \<le> c} \<noteq> {}}. content k *\<^sub>R f x) - i +
|
hoelzl@37489
|
1741 |
((\<Sum>(x, k)\<in>{(x, kk \<inter> {x. c \<le> x $$ k}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. c \<le> x $$ k} \<noteq> {}}. content k *\<^sub>R f x) - j) =
|
himmelma@35172
|
1742 |
(\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f x) - (i + j)" by auto }
|
himmelma@35172
|
1743 |
finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (i + j)) < e" by auto qed qed
|
himmelma@35172
|
1744 |
|
hoelzl@37489
|
1745 |
(*lemma has_integral_split_cart: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"
|
hoelzl@37489
|
1746 |
assumes "(f has_integral i) ({a..b} \<inter> {x. x$k \<le> c})" "(f has_integral j) ({a..b} \<inter> {x. x$k \<ge> c})"
|
hoelzl@37489
|
1747 |
shows "(f has_integral (i + j)) ({a..b})" *)
|
hoelzl@37489
|
1748 |
|
himmelma@35172
|
1749 |
subsection {* A sort of converse, integrability on subintervals. *}
|
himmelma@35172
|
1750 |
|
hoelzl@37489
|
1751 |
lemma tagged_division_union_interval: fixes a::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
1752 |
assumes "p1 tagged_division_of ({a..b} \<inter> {x. x$$k \<le> (c::real)})" "p2 tagged_division_of ({a..b} \<inter> {x. x$$k \<ge> c})"
|
hoelzl@37489
|
1753 |
and k:"k<DIM('a)"
|
himmelma@35172
|
1754 |
shows "(p1 \<union> p2) tagged_division_of ({a..b})"
|
hoelzl@37489
|
1755 |
proof- have *:"{a..b} = ({a..b} \<inter> {x. x$$k \<le> c}) \<union> ({a..b} \<inter> {x. x$$k \<ge> c})" by auto
|
hoelzl@37489
|
1756 |
show ?thesis apply(subst *) apply(rule tagged_division_union[OF assms(1-2)])
|
hoelzl@37489
|
1757 |
unfolding interval_split[OF k] interior_closed_interval using k
|
hoelzl@37489
|
1758 |
by(auto simp add: eucl_less[where 'a='a] elim!:allE[where x=k]) qed
|
hoelzl@37489
|
1759 |
|
hoelzl@37489
|
1760 |
lemma has_integral_separate_sides: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
|
hoelzl@37489
|
1761 |
assumes "(f has_integral i) ({a..b})" "e>0" and k:"k<DIM('a)"
|
hoelzl@37489
|
1762 |
obtains d where "gauge d" "(\<forall>p1 p2. p1 tagged_division_of ({a..b} \<inter> {x. x$$k \<le> c}) \<and> d fine p1 \<and>
|
hoelzl@37489
|
1763 |
p2 tagged_division_of ({a..b} \<inter> {x. x$$k \<ge> c}) \<and> d fine p2
|
himmelma@35172
|
1764 |
\<longrightarrow> norm((setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 +
|
himmelma@35172
|
1765 |
setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) - i) < e)"
|
hoelzl@37489
|
1766 |
proof- guess d using has_integralD[OF assms(1-2)] . note d=this
|
himmelma@35172
|
1767 |
show ?thesis apply(rule that[of d]) apply(rule d) apply(rule,rule,rule,(erule conjE)+)
|
hoelzl@37489
|
1768 |
proof- fix p1 p2 assume "p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c}" "d fine p1" note p1=tagged_division_ofD[OF this(1)] this
|
hoelzl@37489
|
1769 |
assume "p2 tagged_division_of {a..b} \<inter> {x. c \<le> x $$ k}" "d fine p2" note p2=tagged_division_ofD[OF this(1)] this
|
himmelma@35172
|
1770 |
note tagged_division_union_interval[OF p1(7) p2(7)] note p12 = tagged_division_ofD[OF this] this
|
himmelma@35172
|
1771 |
have "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) = norm ((\<Sum>(x, k)\<in>p1 \<union> p2. content k *\<^sub>R f x) - i)"
|
himmelma@35172
|
1772 |
apply(subst setsum_Un_zero) apply(rule p1 p2)+ apply(rule) unfolding split_paired_all split_conv
|
himmelma@35172
|
1773 |
proof- fix a b assume ab:"(a,b) \<in> p1 \<inter> p2"
|
himmelma@35172
|
1774 |
have "(a,b) \<in> p1" using ab by auto from p1(4)[OF this] guess u v apply-by(erule exE)+ note uv =this
|
nipkow@44890
|
1775 |
have "b \<subseteq> {x. x$$k = c}" using ab p1(3)[of a b] p2(3)[of a b] by fastforce
|
hoelzl@37489
|
1776 |
moreover have "interior {x::'a. x $$ k = c} = {}"
|
hoelzl@37489
|
1777 |
proof(rule ccontr) case goal1 then obtain x where x:"x\<in>interior {x::'a. x$$k = c}" by auto
|
himmelma@35172
|
1778 |
then guess e unfolding mem_interior .. note e=this
|
nipkow@44890
|
1779 |
have x:"x$$k = c" using x interior_subset by fastforce
|
hoelzl@37489
|
1780 |
have *:"\<And>i. i<DIM('a) \<Longrightarrow> \<bar>(x - (x + (\<chi>\<chi> i. if i = k then e / 2 else 0))) $$ i\<bar>
|
hoelzl@37489
|
1781 |
= (if i = k then e/2 else 0)" using e by auto
|
hoelzl@37489
|
1782 |
have "(\<Sum>i<DIM('a). \<bar>(x - (x + (\<chi>\<chi> i. if i = k then e / 2 else 0))) $$ i\<bar>) =
|
hoelzl@37489
|
1783 |
(\<Sum>i<DIM('a). (if i = k then e / 2 else 0))" apply(rule setsum_cong2) apply(subst *) by auto
|
hoelzl@37489
|
1784 |
also have "... < e" apply(subst setsum_delta) using e by auto
|
hoelzl@37489
|
1785 |
finally have "x + (\<chi>\<chi> i. if i = k then e/2 else 0) \<in> ball x e" unfolding mem_ball dist_norm
|
hoelzl@37489
|
1786 |
by(rule le_less_trans[OF norm_le_l1])
|
hoelzl@37489
|
1787 |
hence "x + (\<chi>\<chi> i. if i = k then e/2 else 0) \<in> {x. x$$k = c}" using e by auto
|
hoelzl@37489
|
1788 |
thus False unfolding mem_Collect_eq using e x k by auto
|
huffman@44522
|
1789 |
qed ultimately have "content b = 0" unfolding uv content_eq_0_interior apply-apply(drule interior_mono) by auto
|
himmelma@35172
|
1790 |
thus "content b *\<^sub>R f a = 0" by auto
|
himmelma@35172
|
1791 |
qed auto
|
hoelzl@37489
|
1792 |
also have "\<dots> < e" by(rule k d(2) p12 fine_union p1 p2)+
|
himmelma@35172
|
1793 |
finally show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) < e" . qed qed
|
himmelma@35172
|
1794 |
|
hoelzl@37489
|
1795 |
lemma integrable_split[intro]: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::{real_normed_vector,complete_space}"
|
hoelzl@37489
|
1796 |
assumes "f integrable_on {a..b}" and k:"k<DIM('a)"
|
hoelzl@37489
|
1797 |
shows "f integrable_on ({a..b} \<inter> {x. x$$k \<le> c})" (is ?t1) and "f integrable_on ({a..b} \<inter> {x. x$$k \<ge> c})" (is ?t2)
|
hoelzl@37489
|
1798 |
proof- guess y using assms(1) unfolding integrable_on_def .. note y=this
|
hoelzl@37489
|
1799 |
def b' \<equiv> "(\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)::'a"
|
hoelzl@37489
|
1800 |
and a' \<equiv> "(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i)::'a"
|
hoelzl@37489
|
1801 |
show ?t1 ?t2 unfolding interval_split[OF k] integrable_cauchy unfolding interval_split[THEN sym,OF k]
|
himmelma@35172
|
1802 |
proof(rule_tac[!] allI impI)+ fix e::real assume "e>0" hence "e/2>0" by auto
|
hoelzl@37489
|
1803 |
from has_integral_separate_sides[OF y this k,of c] guess d . note d=this[rule_format]
|
hoelzl@37489
|
1804 |
let ?P = "\<lambda>A. \<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<inter> A \<and> d fine p1
|
hoelzl@37489
|
1805 |
\<and> p2 tagged_division_of {a..b} \<inter> A \<and> d fine p2 \<longrightarrow>
|
hoelzl@37489
|
1806 |
norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e)"
|
hoelzl@37489
|
1807 |
show "?P {x. x $$ k \<le> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
|
hoelzl@37489
|
1808 |
proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c} \<and> d fine p1
|
hoelzl@37489
|
1809 |
\<and> p2 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c} \<and> d fine p2"
|
himmelma@35172
|
1810 |
show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
|
himmelma@35172
|
1811 |
proof- guess p using fine_division_exists[OF d(1), of a' b] . note p=this
|
himmelma@35172
|
1812 |
show ?thesis using norm_triangle_half_l[OF d(2)[of p1 p] d(2)[of p2 p]]
|
hoelzl@37489
|
1813 |
using as unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric]
|
haftmann@36350
|
1814 |
using p using assms by(auto simp add:algebra_simps)
|
himmelma@35172
|
1815 |
qed qed
|
hoelzl@37489
|
1816 |
show "?P {x. x $$ k \<ge> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
|
hoelzl@37489
|
1817 |
proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<ge> c} \<and> d fine p1
|
hoelzl@37489
|
1818 |
\<and> p2 tagged_division_of {a..b} \<inter> {x. x $$ k \<ge> c} \<and> d fine p2"
|
himmelma@35172
|
1819 |
show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
|
himmelma@35172
|
1820 |
proof- guess p using fine_division_exists[OF d(1), of a b'] . note p=this
|
himmelma@35172
|
1821 |
show ?thesis using norm_triangle_half_l[OF d(2)[of p p1] d(2)[of p p2]]
|
hoelzl@37489
|
1822 |
using as unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric]
|
haftmann@36350
|
1823 |
using p using assms by(auto simp add:algebra_simps) qed qed qed qed
|
himmelma@35172
|
1824 |
|
himmelma@35172
|
1825 |
subsection {* Generalized notion of additivity. *}
|
himmelma@35172
|
1826 |
|
himmelma@35172
|
1827 |
definition "neutral opp = (SOME x. \<forall>y. opp x y = y \<and> opp y x = y)"
|
himmelma@35172
|
1828 |
|
hoelzl@37489
|
1829 |
definition operative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (('b::ordered_euclidean_space) set \<Rightarrow> 'a) \<Rightarrow> bool" where
|
himmelma@35172
|
1830 |
"operative opp f \<equiv>
|
himmelma@35172
|
1831 |
(\<forall>a b. content {a..b} = 0 \<longrightarrow> f {a..b} = neutral(opp)) \<and>
|
hoelzl@37489
|
1832 |
(\<forall>a b c. \<forall>k<DIM('b). f({a..b}) =
|
hoelzl@37489
|
1833 |
opp (f({a..b} \<inter> {x. x$$k \<le> c}))
|
hoelzl@37489
|
1834 |
(f({a..b} \<inter> {x. x$$k \<ge> c})))"
|
hoelzl@37489
|
1835 |
|
hoelzl@37489
|
1836 |
lemma operativeD[dest]: fixes type::"'a::ordered_euclidean_space" assumes "operative opp f"
|
hoelzl@37489
|
1837 |
shows "\<And>a b. content {a..b} = 0 \<Longrightarrow> f {a..b::'a} = neutral(opp)"
|
hoelzl@37489
|
1838 |
"\<And>a b c k. k<DIM('a) \<Longrightarrow> f({a..b}) = opp (f({a..b} \<inter> {x. x$$k \<le> c})) (f({a..b} \<inter> {x. x$$k \<ge> c}))"
|
himmelma@35172
|
1839 |
using assms unfolding operative_def by auto
|
himmelma@35172
|
1840 |
|
himmelma@35172
|
1841 |
lemma operative_trivial:
|
himmelma@35172
|
1842 |
"operative opp f \<Longrightarrow> content({a..b}) = 0 \<Longrightarrow> f({a..b}) = neutral opp"
|
himmelma@35172
|
1843 |
unfolding operative_def by auto
|
himmelma@35172
|
1844 |
|
himmelma@35172
|
1845 |
lemma property_empty_interval:
|
himmelma@35172
|
1846 |
"(\<forall>a b. content({a..b}) = 0 \<longrightarrow> P({a..b})) \<Longrightarrow> P {}"
|
himmelma@35172
|
1847 |
using content_empty unfolding empty_as_interval by auto
|
himmelma@35172
|
1848 |
|
himmelma@35172
|
1849 |
lemma operative_empty: "operative opp f \<Longrightarrow> f {} = neutral opp"
|
himmelma@35172
|
1850 |
unfolding operative_def apply(rule property_empty_interval) by auto
|
himmelma@35172
|
1851 |
|
himmelma@35172
|
1852 |
subsection {* Using additivity of lifted function to encode definedness. *}
|
himmelma@35172
|
1853 |
|
himmelma@35172
|
1854 |
lemma forall_option: "(\<forall>x. P x) \<longleftrightarrow> P None \<and> (\<forall>x. P(Some x))"
|
huffman@36362
|
1855 |
by (metis option.nchotomy)
|
himmelma@35172
|
1856 |
|
wenzelm@49197
|
1857 |
lemma exists_option: "(\<exists>x. P x) \<longleftrightarrow> P None \<or> (\<exists>x. P(Some x))"
|
huffman@36362
|
1858 |
by (metis option.nchotomy)
|
himmelma@35172
|
1859 |
|
wenzelm@49197
|
1860 |
fun lifted
|
wenzelm@49197
|
1861 |
where
|
wenzelm@49197
|
1862 |
"lifted (opp::'a\<Rightarrow>'a\<Rightarrow>'b) (Some x) (Some y) = Some (opp x y)"
|
wenzelm@49197
|
1863 |
| "lifted opp None _ = (None::'b option)"
|
wenzelm@49197
|
1864 |
| "lifted opp _ None = None"
|
himmelma@35172
|
1865 |
|
himmelma@35172
|
1866 |
lemma lifted_simp_1[simp]: "lifted opp v None = None"
|
wenzelm@49197
|
1867 |
by (induct v) auto
|
himmelma@35172
|
1868 |
|
himmelma@35172
|
1869 |
definition "monoidal opp \<equiv> (\<forall>x y. opp x y = opp y x) \<and>
|
himmelma@35172
|
1870 |
(\<forall>x y z. opp x (opp y z) = opp (opp x y) z) \<and>
|
himmelma@35172
|
1871 |
(\<forall>x. opp (neutral opp) x = x)"
|
himmelma@35172
|
1872 |
|
wenzelm@49197
|
1873 |
lemma monoidalI:
|
wenzelm@49197
|
1874 |
assumes "\<And>x y. opp x y = opp y x"
|
himmelma@35172
|
1875 |
"\<And>x y z. opp x (opp y z) = opp (opp x y) z"
|
himmelma@35172
|
1876 |
"\<And>x. opp (neutral opp) x = x" shows "monoidal opp"
|
nipkow@44890
|
1877 |
unfolding monoidal_def using assms by fastforce
|
himmelma@35172
|
1878 |
|
wenzelm@49197
|
1879 |
lemma monoidal_ac:
|
wenzelm@49197
|
1880 |
assumes "monoidal opp"
|
himmelma@35172
|
1881 |
shows "opp (neutral opp) a = a" "opp a (neutral opp) = a" "opp a b = opp b a"
|
himmelma@35172
|
1882 |
"opp (opp a b) c = opp a (opp b c)" "opp a (opp b c) = opp b (opp a c)"
|
wenzelm@49197
|
1883 |
using assms unfolding monoidal_def by metis+
|
himmelma@35172
|
1884 |
|
himmelma@35172
|
1885 |
lemma monoidal_simps[simp]: assumes "monoidal opp"
|
himmelma@35172
|
1886 |
shows "opp (neutral opp) a = a" "opp a (neutral opp) = a"
|
himmelma@35172
|
1887 |
using monoidal_ac[OF assms] by auto
|
himmelma@35172
|
1888 |
|
himmelma@35172
|
1889 |
lemma neutral_lifted[cong]: assumes "monoidal opp"
|
himmelma@35172
|
1890 |
shows "neutral (lifted opp) = Some(neutral opp)"
|
himmelma@35172
|
1891 |
apply(subst neutral_def) apply(rule some_equality) apply(rule,induct_tac y) prefer 3
|
wenzelm@49197
|
1892 |
proof -
|
wenzelm@49197
|
1893 |
fix x assume "\<forall>y. lifted opp x y = y \<and> lifted opp y x = y"
|
wenzelm@49197
|
1894 |
thus "x = Some (neutral opp)"
|
wenzelm@49197
|
1895 |
apply(induct x) defer
|
himmelma@35172
|
1896 |
apply rule apply(subst neutral_def) apply(subst eq_commute,rule some_equality)
|
wenzelm@49197
|
1897 |
apply(rule,erule_tac x="Some y" in allE) defer apply(erule_tac x="Some x" in allE)
|
wenzelm@49197
|
1898 |
apply auto
|
wenzelm@49197
|
1899 |
done
|
himmelma@35172
|
1900 |
qed(auto simp add:monoidal_ac[OF assms])
|
himmelma@35172
|
1901 |
|
himmelma@35172
|
1902 |
lemma monoidal_lifted[intro]: assumes "monoidal opp" shows "monoidal(lifted opp)"
|
himmelma@35172
|
1903 |
unfolding monoidal_def forall_option neutral_lifted[OF assms] using monoidal_ac[OF assms] by auto
|
himmelma@35172
|
1904 |
|
himmelma@35172
|
1905 |
definition "support opp f s = {x. x\<in>s \<and> f x \<noteq> neutral opp}"
|
haftmann@45994
|
1906 |
definition "fold' opp e s \<equiv> (if finite s then Finite_Set.fold opp e s else e)"
|
himmelma@35172
|
1907 |
definition "iterate opp s f \<equiv> fold' (\<lambda>x a. opp (f x) a) (neutral opp) (support opp f s)"
|
himmelma@35172
|
1908 |
|
himmelma@35172
|
1909 |
lemma support_subset[intro]:"support opp f s \<subseteq> s" unfolding support_def by auto
|
himmelma@35172
|
1910 |
lemma support_empty[simp]:"support opp f {} = {}" using support_subset[of opp f "{}"] by auto
|
himmelma@35172
|
1911 |
|
haftmann@42871
|
1912 |
lemma comp_fun_commute_monoidal[intro]: assumes "monoidal opp" shows "comp_fun_commute opp"
|
haftmann@42871
|
1913 |
unfolding comp_fun_commute_def using monoidal_ac[OF assms] by auto
|
himmelma@35172
|
1914 |
|
himmelma@35172
|
1915 |
lemma support_clauses:
|
himmelma@35172
|
1916 |
"\<And>f g s. support opp f {} = {}"
|
wenzelm@49197
|
1917 |
"\<And>f g s. support opp f (insert x s) =
|
wenzelm@49197
|
1918 |
(if f(x) = neutral opp then support opp f s else insert x (support opp f s))"
|
himmelma@35172
|
1919 |
"\<And>f g s. support opp f (s - {x}) = (support opp f s) - {x}"
|
himmelma@35172
|
1920 |
"\<And>f g s. support opp f (s \<union> t) = (support opp f s) \<union> (support opp f t)"
|
himmelma@35172
|
1921 |
"\<And>f g s. support opp f (s \<inter> t) = (support opp f s) \<inter> (support opp f t)"
|
himmelma@35172
|
1922 |
"\<And>f g s. support opp f (s - t) = (support opp f s) - (support opp f t)"
|
himmelma@35172
|
1923 |
"\<And>f g s. support opp g (f ` s) = f ` (support opp (g o f) s)"
|
himmelma@35172
|
1924 |
unfolding support_def by auto
|
himmelma@35172
|
1925 |
|
himmelma@35172
|
1926 |
lemma finite_support[intro]:"finite s \<Longrightarrow> finite (support opp f s)"
|
himmelma@35172
|
1927 |
unfolding support_def by auto
|
himmelma@35172
|
1928 |
|
himmelma@35172
|
1929 |
lemma iterate_empty[simp]:"iterate opp {} f = neutral opp"
|
himmelma@35172
|
1930 |
unfolding iterate_def fold'_def by auto
|
himmelma@35172
|
1931 |
|
himmelma@35172
|
1932 |
lemma iterate_insert[simp]: assumes "monoidal opp" "finite s"
|
himmelma@35172
|
1933 |
shows "iterate opp (insert x s) f = (if x \<in> s then iterate opp s f else opp (f x) (iterate opp s f))"
|
himmelma@35172
|
1934 |
proof(cases "x\<in>s") case True hence *:"insert x s = s" by auto
|
himmelma@35172
|
1935 |
show ?thesis unfolding iterate_def if_P[OF True] * by auto
|
himmelma@35172
|
1936 |
next case False note x=this
|
haftmann@42871
|
1937 |
note * = comp_fun_commute.comp_comp_fun_commute [OF comp_fun_commute_monoidal[OF assms(1)]]
|
himmelma@35172
|
1938 |
show ?thesis proof(cases "f x = neutral opp")
|
himmelma@35172
|
1939 |
case True show ?thesis unfolding iterate_def if_not_P[OF x] support_clauses if_P[OF True]
|
himmelma@35172
|
1940 |
unfolding True monoidal_simps[OF assms(1)] by auto
|
himmelma@35172
|
1941 |
next case False show ?thesis unfolding iterate_def fold'_def if_not_P[OF x] support_clauses if_not_P[OF False]
|
haftmann@42871
|
1942 |
apply(subst comp_fun_commute.fold_insert[OF * finite_support, simplified comp_def])
|
himmelma@35172
|
1943 |
using `finite s` unfolding support_def using False x by auto qed qed
|
himmelma@35172
|
1944 |
|
himmelma@35172
|
1945 |
lemma iterate_some:
|
himmelma@35172
|
1946 |
assumes "monoidal opp" "finite s"
|
himmelma@35172
|
1947 |
shows "iterate (lifted opp) s (\<lambda>x. Some(f x)) = Some (iterate opp s f)" using assms(2)
|
himmelma@35172
|
1948 |
proof(induct s) case empty thus ?case using assms by auto
|
himmelma@35172
|
1949 |
next case (insert x F) show ?case apply(subst iterate_insert) prefer 3 apply(subst if_not_P)
|
himmelma@35172
|
1950 |
defer unfolding insert(3) lifted.simps apply rule using assms insert by auto qed
|
himmelma@35172
|
1951 |
subsection {* Two key instances of additivity. *}
|
himmelma@35172
|
1952 |
|
himmelma@35172
|
1953 |
lemma neutral_add[simp]:
|
himmelma@35172
|
1954 |
"neutral op + = (0::_::comm_monoid_add)" unfolding neutral_def
|
himmelma@35172
|
1955 |
apply(rule some_equality) defer apply(erule_tac x=0 in allE) by auto
|
himmelma@35172
|
1956 |
|
hoelzl@37489
|
1957 |
lemma operative_content[intro]: "operative (op +) content"
|
hoelzl@37489
|
1958 |
unfolding operative_def neutral_add apply safe
|
hoelzl@37489
|
1959 |
unfolding content_split[THEN sym] ..
|
himmelma@35172
|
1960 |
|
huffman@36362
|
1961 |
lemma neutral_monoid: "neutral ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a) = 0"
|
huffman@36362
|
1962 |
by (rule neutral_add) (* FIXME: duplicate *)
|
himmelma@35172
|
1963 |
|
himmelma@35172
|
1964 |
lemma monoidal_monoid[intro]:
|
himmelma@35172
|
1965 |
shows "monoidal ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a)"
|
haftmann@36350
|
1966 |
unfolding monoidal_def neutral_monoid by(auto simp add: algebra_simps)
|
himmelma@35172
|
1967 |
|
hoelzl@37489
|
1968 |
lemma operative_integral: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"
|
himmelma@35172
|
1969 |
shows "operative (lifted(op +)) (\<lambda>i. if f integrable_on i then Some(integral i f) else None)"
|
himmelma@35172
|
1970 |
unfolding operative_def unfolding neutral_lifted[OF monoidal_monoid] neutral_add
|
hoelzl@37489
|
1971 |
apply(rule,rule,rule,rule) defer apply(rule allI impI)+
|
hoelzl@37489
|
1972 |
proof- fix a b c k assume k:"k<DIM('a)" show "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) =
|
hoelzl@37489
|
1973 |
lifted op + (if f integrable_on {a..b} \<inter> {x. x $$ k \<le> c} then Some (integral ({a..b} \<inter> {x. x $$ k \<le> c}) f) else None)
|
hoelzl@37489
|
1974 |
(if f integrable_on {a..b} \<inter> {x. c \<le> x $$ k} then Some (integral ({a..b} \<inter> {x. c \<le> x $$ k}) f) else None)"
|
himmelma@35172
|
1975 |
proof(cases "f integrable_on {a..b}")
|
hoelzl@37489
|
1976 |
case True show ?thesis unfolding if_P[OF True] using k apply-
|
hoelzl@37489
|
1977 |
unfolding if_P[OF integrable_split(1)[OF True]] unfolding if_P[OF integrable_split(2)[OF True]]
|
hoelzl@37489
|
1978 |
unfolding lifted.simps option.inject apply(rule integral_unique) apply(rule has_integral_split[OF _ _ k])
|
hoelzl@37489
|
1979 |
apply(rule_tac[!] integrable_integral integrable_split)+ using True k by auto
|
hoelzl@37489
|
1980 |
next case False have "(\<not> (f integrable_on {a..b} \<inter> {x. x $$ k \<le> c})) \<or> (\<not> ( f integrable_on {a..b} \<inter> {x. c \<le> x $$ k}))"
|
himmelma@35172
|
1981 |
proof(rule ccontr) case goal1 hence "f integrable_on {a..b}" apply- unfolding integrable_on_def
|
hoelzl@37489
|
1982 |
apply(rule_tac x="integral ({a..b} \<inter> {x. x $$ k \<le> c}) f + integral ({a..b} \<inter> {x. x $$ k \<ge> c}) f" in exI)
|
hoelzl@37489
|
1983 |
apply(rule has_integral_split[OF _ _ k]) apply(rule_tac[!] integrable_integral) by auto
|
himmelma@35172
|
1984 |
thus False using False by auto
|
himmelma@35172
|
1985 |
qed thus ?thesis using False by auto
|
himmelma@35172
|
1986 |
qed next
|
hoelzl@37489
|
1987 |
fix a b assume as:"content {a..b::'a} = 0"
|
himmelma@35172
|
1988 |
thus "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) = Some 0"
|
himmelma@35172
|
1989 |
unfolding if_P[OF integrable_on_null[OF as]] using has_integral_null_eq[OF as] by auto qed
|
himmelma@35172
|
1990 |
|
himmelma@35172
|
1991 |
subsection {* Points of division of a partition. *}
|
himmelma@35172
|
1992 |
|
hoelzl@37489
|
1993 |
definition "division_points (k::('a::ordered_euclidean_space) set) d =
|
hoelzl@37489
|
1994 |
{(j,x). j<DIM('a) \<and> (interval_lowerbound k)$$j < x \<and> x < (interval_upperbound k)$$j \<and>
|
hoelzl@37489
|
1995 |
(\<exists>i\<in>d. (interval_lowerbound i)$$j = x \<or> (interval_upperbound i)$$j = x)}"
|
hoelzl@37489
|
1996 |
|
hoelzl@37489
|
1997 |
lemma division_points_finite: fixes i::"('a::ordered_euclidean_space) set"
|
hoelzl@37489
|
1998 |
assumes "d division_of i" shows "finite (division_points i d)"
|
himmelma@35172
|
1999 |
proof- note assm = division_ofD[OF assms]
|
hoelzl@37489
|
2000 |
let ?M = "\<lambda>j. {(j,x)|x. (interval_lowerbound i)$$j < x \<and> x < (interval_upperbound i)$$j \<and>
|
hoelzl@37489
|
2001 |
(\<exists>i\<in>d. (interval_lowerbound i)$$j = x \<or> (interval_upperbound i)$$j = x)}"
|
hoelzl@37489
|
2002 |
have *:"division_points i d = \<Union>(?M ` {..<DIM('a)})"
|
himmelma@35172
|
2003 |
unfolding division_points_def by auto
|
himmelma@35172
|
2004 |
show ?thesis unfolding * using assm by auto qed
|
himmelma@35172
|
2005 |
|
hoelzl@37489
|
2006 |
lemma division_points_subset: fixes a::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
2007 |
assumes "d division_of {a..b}" "\<forall>i<DIM('a). a$$i < b$$i" "a$$k < c" "c < b$$k" and k:"k<DIM('a)"
|
hoelzl@37489
|
2008 |
shows "division_points ({a..b} \<inter> {x. x$$k \<le> c}) {l \<inter> {x. x$$k \<le> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$$k \<le> c} = {})}
|
himmelma@35172
|
2009 |
\<subseteq> division_points ({a..b}) d" (is ?t1) and
|
hoelzl@37489
|
2010 |
"division_points ({a..b} \<inter> {x. x$$k \<ge> c}) {l \<inter> {x. x$$k \<ge> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$$k \<ge> c} = {})}
|
himmelma@35172
|
2011 |
\<subseteq> division_points ({a..b}) d" (is ?t2)
|
himmelma@35172
|
2012 |
proof- note assm = division_ofD[OF assms(1)]
|
hoelzl@37489
|
2013 |
have *:"\<forall>i<DIM('a). a$$i \<le> b$$i" "\<forall>i<DIM('a). a$$i \<le> ((\<chi>\<chi> i. if i = k then min (b $$ k) c else b $$ i)::'a) $$ i"
|
hoelzl@37489
|
2014 |
"\<forall>i<DIM('a). ((\<chi>\<chi> i. if i = k then max (a $$ k) c else a $$ i)::'a) $$ i \<le> b$$i" "min (b $$ k) c = c" "max (a $$ k) c = c"
|
himmelma@35172
|
2015 |
using assms using less_imp_le by auto
|
hoelzl@37489
|
2016 |
show ?t1 unfolding division_points_def interval_split[OF k, of a b]
|
hoelzl@37489
|
2017 |
unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] unfolding *
|
hoelzl@37489
|
2018 |
unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+
|
hoelzl@37489
|
2019 |
unfolding mem_Collect_eq apply(erule exE conjE)+ unfolding euclidean_lambda_beta'
|
hoelzl@37489
|
2020 |
proof- fix i l x assume as:"a $$ fst x < snd x" "snd x < (if fst x = k then c else b $$ fst x)"
|
hoelzl@37489
|
2021 |
"interval_lowerbound i $$ fst x = snd x \<or> interval_upperbound i $$ fst x = snd x"
|
hoelzl@37489
|
2022 |
"i = l \<inter> {x. x $$ k \<le> c}" "l \<in> d" "l \<inter> {x. x $$ k \<le> c} \<noteq> {}" and fstx:"fst x <DIM('a)"
|
himmelma@35172
|
2023 |
from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this
|
hoelzl@37489
|
2024 |
have *:"\<forall>i<DIM('a). u $$ i \<le> ((\<chi>\<chi> i. if i = k then min (v $$ k) c else v $$ i)::'a) $$ i"
|
hoelzl@37489
|
2025 |
using as(6) unfolding l interval_split[OF k] interval_ne_empty as .
|
hoelzl@37489
|
2026 |
have **:"\<forall>i<DIM('a). u$$i \<le> v$$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
|
hoelzl@37489
|
2027 |
show "fst x <DIM('a) \<and> a $$ fst x < snd x \<and> snd x < b $$ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $$ fst x = snd x
|
hoelzl@37489
|
2028 |
\<or> interval_upperbound i $$ fst x = snd x)" apply(rule,rule fstx)
|
hoelzl@37489
|
2029 |
using as(1-3,5) unfolding l interval_split[OF k] interval_ne_empty as interval_bounds[OF *] apply-
|
himmelma@35172
|
2030 |
apply(rule,assumption,rule) defer apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
|
hoelzl@37489
|
2031 |
apply(case_tac[!] "fst x = k") using assms fstx apply- unfolding euclidean_lambda_beta by auto
|
himmelma@35172
|
2032 |
qed
|
hoelzl@37489
|
2033 |
show ?t2 unfolding division_points_def interval_split[OF k, of a b]
|
hoelzl@37489
|
2034 |
unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] unfolding *
|
hoelzl@37489
|
2035 |
unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+
|
hoelzl@37489
|
2036 |
unfolding mem_Collect_eq apply(erule exE conjE)+ unfolding euclidean_lambda_beta' apply(rule,assumption)
|
hoelzl@37489
|
2037 |
proof- fix i l x assume as:"(if fst x = k then c else a $$ fst x) < snd x" "snd x < b $$ fst x"
|
hoelzl@37489
|
2038 |
"interval_lowerbound i $$ fst x = snd x \<or> interval_upperbound i $$ fst x = snd x"
|
hoelzl@37489
|
2039 |
"i = l \<inter> {x. c \<le> x $$ k}" "l \<in> d" "l \<inter> {x. c \<le> x $$ k} \<noteq> {}" and fstx:"fst x < DIM('a)"
|
himmelma@35172
|
2040 |
from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this
|
hoelzl@37489
|
2041 |
have *:"\<forall>i<DIM('a). ((\<chi>\<chi> i. if i = k then max (u $$ k) c else u $$ i)::'a) $$ i \<le> v $$ i"
|
hoelzl@37489
|
2042 |
using as(6) unfolding l interval_split[OF k] interval_ne_empty as .
|
hoelzl@37489
|
2043 |
have **:"\<forall>i<DIM('a). u$$i \<le> v$$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
|
hoelzl@37489
|
2044 |
show "a $$ fst x < snd x \<and> snd x < b $$ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $$ fst x = snd x \<or>
|
hoelzl@37489
|
2045 |
interval_upperbound i $$ fst x = snd x)"
|
hoelzl@37489
|
2046 |
using as(1-3,5) unfolding l interval_split[OF k] interval_ne_empty as interval_bounds[OF *] apply-
|
himmelma@35172
|
2047 |
apply rule defer apply(rule,assumption) apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
|
hoelzl@37489
|
2048 |
apply(case_tac[!] "fst x = k") using assms fstx apply- by(auto simp add:euclidean_lambda_beta'[OF k]) qed qed
|
hoelzl@37489
|
2049 |
|
hoelzl@37489
|
2050 |
lemma division_points_psubset: fixes a::"'a::ordered_euclidean_space"
|
hoelzl@37489
|
2051 |
assumes "d division_of {a..b}" "\<forall>i<DIM('a). a$$i < b$$i" "a$$k < c" "c < b$$k"
|
hoelzl@37489
|
2052 |
"l \<in> d" "interval_lowerbound l$$k = c \<or> interval_upperbound l$$k = c" and k:"k<DIM('a)"
|
hoelzl@37489
|
2053 |
shows "division_points ({a..b} \<inter> {x. x$$k \<le> c}) {l \<inter> {x. x$$k \<le> c} | l. l\<in>d \<and> l \<inter> {x. x$$k \<le> c} \<noteq> {}}
|
hoelzl@37489
|
2054 |
\<subset> division_points ({a..b}) d" (is "?D1 \<subset> ?D")
|
hoelzl@37489
|
2055 |
"division_points ({a..b} \<inter> {x. x$$k \<ge> c}) {l \<inter> {x. x$$k \<ge> c} | l. l\<in>d \<and> l \<inter> {x. x$$k \<ge> c} \<noteq> {}}
|
hoelzl@37489
|
2056 |
\<subset> division_points ({a..b}) d" (is "?D2 \<subset> ?D")
|
hoelzl@37489
|
2057 |
proof- have ab:"\<forall>i<DIM('a). a$$i \<le> b$$i" using assms(2) by(auto intro!:less_imp_le)
|
himmelma@35172
|
2058 |
guess u v using division_ofD(4)[OF assms(1,5)] apply-by(erule exE)+ note l=this
|
hoelzl@37489
|
2059 |
have uv:"\<forall>i<DIM('a). u$$i \<le> v$$i" "\<forall>i<DIM('a). a$$i \<le> u$$i \<and> v$$i \<le> b$$i"
|
hoelzl@37489
|
2060 |
using division_ofD(2,2,3)[OF assms(1,5)] unfolding l interval_ne_empty
|
himmelma@35172
|
2061 |
unfolding subset_eq apply- defer apply(erule_tac x=u in ballE, erule_tac x=v in ballE) unfolding mem_interval by auto
|
hoelzl@37489
|
2062 |
have *:"interval_upperbound ({a..b} \<inter> {x. x $$ k \<le> interval_upperbound l $$ k}) $$ k = interval_upperbound l $$ k"
|
hoelzl@37489
|
2063 |
"interval_upperbound ({a..b} \<inter> {x. x $$ k \<le> interval_lowerbound l $$ k}) $$ k = interval_lowerbound l $$ k"
|
hoelzl@37489
|
2064 |
unfolding interval_split[OF k] apply(subst interval_bounds) prefer 3 apply(subst interval_bounds)
|
hoelzl@37489
|
2065 |
unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab k by auto
|
himmelma@35172
|
2066 |
have "\<exists>x. x \<in> ?D - ?D1" using assms(2-) apply-apply(erule disjE)
|
hoelzl@37489
|
2067 |
apply(rule_tac x="(k,(interval_lowerbound l)$$k)" in exI) defer
|
hoelzl@37489
|
2068 |
apply(rule_tac x="(k,(interval_upperbound l)$$k)" in exI)
|
hoelzl@37489
|
2069 |
unfolding division_points_def unfolding interval_bounds[OF ab] by(auto simp add:*)
|
hoelzl@37489
|
2070 |
thus "?D1 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4)]) using k by auto
|
hoelzl@37489
|
2071 |
|
hoelzl@37489
|
2072 |
have *:"interval_lowerbound ({a..b} \<inter> {x. x $$ k \<ge> interval_lowerbound l $$ k}) $$ k = interval_lowerbound l $$ k"
|
hoelzl@37489
|
2073 |
"interval_lowerbound ({a..b} \<inter> {x. x $$ k \<ge> interval_upperbound l $$ k}) $$ k = interval_upperbound l $$ k"
|
hoelzl@37489
|
2074 |
unfolding interval_split[OF k] apply(subst interval_bounds) prefer 3 apply(subst interval_bounds)
|
hoelzl@37489
|
2075 |
unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab k by auto
|
himmelma@35172
|
2076 |
have "\<exists>x. x \<in> ?D - ?D2" using assms(2-) apply-apply(erule disjE)
|
hoelzl@37489
|
2077 |
apply(rule_tac x="(k,(interval_lowerbound l)$$k)" in exI) defer
|
hoelzl@37489
|
2078 |
apply(rule_tac x="(k,(interval_upperbound l)$$k)" in exI)
|
hoelzl@37489
|
2079 |
unfolding division_points_def unfolding interval_bounds[OF ab] by(auto simp add:*)
|
hoelzl@37489
|
2080 |
thus "?D2 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4) k]) by auto qed
|
himmelma@35172
|
2081 |
|
himmelma@35172
|
2082 |
subsection {* Preservation by divisions and tagged divisions. *}
|
himmelma@35172
|
2083 |
|
himmelma@35172
|
2084 |
lemma support_support[simp]:"support opp f (support opp f s) = support opp f s"
|
himmelma@35172
|
2085 |
unfolding support_def by auto
|
himmelma@35172
|
2086 |
|
himmelma@35172
|
2087 |
lemma iterate_support[simp]: "iterate opp (support opp f s) f = iterate opp s f"
|
himmelma@35172
|
2088 |
unfolding iterate_def support_support by auto
|
himmelma@35172
|
2089 |
|
himmelma@35172
|
2090 |
lemma iterate_expand_cases:
|
himmelma@35172
|
2091 |
"iterate opp s f = (if finite(support opp f s) then iterate opp (support opp f s) f else neutral opp)"
|
himmelma@35172
|
2092 |
apply(cases) apply(subst if_P,assumption) unfolding iterate_def support_support fold'_def by auto
|
himmelma@35172
|
2093 |
|
himmelma@35172
|
2094 |
lemma iterate_image: assumes "monoidal opp" "inj_on f s"
|
himmelma@35172
|
2095 |
shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)"
|
himmelma@35172
|
2096 |
proof- have *:"\<And>s. finite s \<Longrightarrow> \<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<longrightarrow> x = y \<Longrightarrow>
|
himmelma@35172
|
2097 |
iterate opp (f ` s) g = iterate opp s (g \<circ> f)"
|
himmelma@35172
|
2098 |
proof- case goal1 show ?case using goal1
|
himmelma@35172
|
2099 |
proof(induct s) case empty thus ?case using assms(1) by auto
|
himmelma@35172
|
2100 |
next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)]
|
himmelma@35172
|
2101 |
unfolding if_not_P[OF insert(2)] apply(subst insert(3)[THEN sym])
|
himmelma@35172
|
2102 |
unfolding image_insert defer apply(subst iterate_insert[OF assms(1)])
|
himmelma@35172
|
2103 |
apply(rule finite_imageI insert)+ apply(subst if_not_P)
|
himmelma@35172
|
2104 |
unfolding image_iff o_def using insert(2,4) by auto
|
himmelma@35172
|
2105 |
qed qed
|
himmelma@35172
|
2106 |
show ?thesis
|
himmelma@35172
|
2107 |
apply(cases "finite (support opp g (f ` s))")
|
himmelma@35172
|
2108 |
apply(subst (1) iterate_support[THEN sym],subst (2) iterate_support[THEN sym])
|
himmelma@35172
|
2109 |
unfolding support_clauses apply(rule *)apply(rule finite_imageD,assumption) unfolding inj_on_def[symmetric]
|
himmelma@35172
|
2110 |
apply(rule subset_inj_on[OF assms(2) support_subset])+
|
himmelma@35172
|
2111 |
apply(subst iterate_expand_cases) unfolding support_clauses apply(simp only: if_False)
|
himmelma@35172
|
2112 |
apply(subst iterate_expand_cases) apply(subst if_not_P) by auto qed
|
himmelma@35172
|
2113 |
|
himmelma@35172
|
2114 |
|
himmelma@35172
|
2115 |
(* This lemma about iterations comes up in a few places. *)
|
himmelma@35172
|
2116 |
lemma iterate_nonzero_image_lemma:
|
himmelma@35172
|
2117 |
assumes "monoidal opp" "finite s" "g(a) = neutral opp"
|
himmelma@35172
|
2118 |
"\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = neutral opp"
|
himmelma@35172
|
2119 |
shows "iterate opp {f x | x. x \<in> s \<and> f x \<noteq> a} g = iterate opp s (g \<circ> f)"
|
himmelma@35172
|
2120 |
proof- have *:"{f x |x. x \<in> s \<and> ~(f x = a)} = f ` {x. x \<in> s \<and> ~(f x = a)}" by auto
|
himmelma@35172
|
2121 |
have **:"support opp (g \<circ> f) {x \<in> s. f x \<noteq> a} = support opp (g \<circ> f) s"
|
himmelma@35172
|
2122 |
unfolding support_def using assms(3) by auto
|
himmelma@35172
|
2123 |
show ?thesis unfolding *
|
himmelma@35172
|
2124 |
apply(subst iterate_support[THEN sym]) unfolding support_clauses
|
himmelma@35172
|
2125 |
apply(subst iterate_image[OF assms(1)]) defer
|
himmelma@35172
|
2126 |
apply(subst(2) iterate_support[THEN sym]) apply(subst **)
|
himmelma@35172
|
2127 |
unfolding inj_on_def using assms(3,4) unfolding support_def by auto qed
|
himmelma@35172
|
2128 |
|
himmelma@35172
|
2129 |
lemma iterate_eq_neutral:
|
himmelma@35172
|
2130 |
assumes "monoidal opp" "\<forall>x \<in> s. (f(x) = neutral opp)"
|
himmelma@35172
|
2131 |
shows "(iterate opp s f = neutral opp)"
|
himmelma@35172
|
2132 |
proof- have *:"support opp f s = {}" unfolding support_def using assms(2) by auto
|
himmelma@35172
|
2133 |
show ?thesis apply(subst iterate_support[THEN sym])
|
himmelma@35172
|
2134 |
unfolding * using assms(1) by auto qed
|
himmelma@35172
|
2135 |
|
himmelma@35172
|
2136 |
lemma iterate_op: assumes "monoidal opp" "finite s"
|
himmelma@35172
|
2137 |
shows "iterate opp s (\<lambda>x. opp (f x) (g x)) = opp (iterate opp s f) (iterate opp s g)" using assms(2)
|
himmelma@35172
|
2138 |
proof(induct s) case empty thus ?case unfolding iterate_insert[OF assms(1)] using assms(1) by auto
|