src/HOL/Bali/Basis.thy
author paulson
Wed Dec 21 12:02:57 2005 +0100 (2005-12-21)
changeset 18447 da548623916a
parent 17876 b9c92f384109
child 18576 8d98b7711e47
permissions -rw-r--r--
removed or modified some instances of [iff]
wenzelm@12857
     1
(*  Title:      HOL/Bali/Basis.thy
schirmer@12854
     2
    ID:         $Id$
schirmer@12854
     3
    Author:     David von Oheimb
schirmer@12854
     4
schirmer@12854
     5
*)
schirmer@12854
     6
header {* Definitions extending HOL as logical basis of Bali *}
schirmer@12854
     7
haftmann@16417
     8
theory Basis imports Main begin
schirmer@12854
     9
wenzelm@16121
    10
ML {*
schirmer@12854
    11
Unify.search_bound := 40;
schirmer@12854
    12
Unify.trace_bound  := 40;
schirmer@12854
    13
*}
schirmer@12854
    14
(*print_depth 100;*)
schirmer@12854
    15
(*Syntax.ambiguity_level := 1;*)
schirmer@12854
    16
schirmer@12854
    17
section "misc"
schirmer@12854
    18
schirmer@12854
    19
declare same_fstI [intro!] (*### TO HOL/Wellfounded_Relations *)
schirmer@12854
    20
schirmer@12854
    21
ML {*
wenzelm@13462
    22
fun cond_simproc name pat pred thm = Simplifier.simproc (Thm.sign_of_thm thm) name [pat]
skalberg@15531
    23
  (fn _ => fn _ => fn t => if pred t then NONE else SOME (mk_meta_eq thm));
schirmer@12854
    24
*}
schirmer@12854
    25
schirmer@12854
    26
declare split_if_asm  [split] option.split [split] option.split_asm [split]
schirmer@12854
    27
ML {*
wenzelm@17876
    28
change_simpset (fn ss => ss addloop ("split_all_tac", split_all_tac));
schirmer@12854
    29
*}
schirmer@12854
    30
declare if_weak_cong [cong del] option.weak_case_cong [cong del]
paulson@18447
    31
declare length_Suc_conv [iff]
paulson@18447
    32
paulson@18447
    33
declare not_None_eq [iff]
schirmer@12854
    34
schirmer@12854
    35
(*###to be phased out *)
schirmer@12854
    36
ML {*
schirmer@12854
    37
bind_thm ("make_imp", rearrange_prems [1,0] mp)
schirmer@12854
    38
*}
schirmer@12854
    39
schirmer@12854
    40
lemma Collect_split_eq: "{p. P (split f p)} = {(a,b). P (f a b)}"
schirmer@12854
    41
apply auto
schirmer@12854
    42
done
schirmer@12854
    43
schirmer@12854
    44
lemma subset_insertD: 
schirmer@12854
    45
  "A <= insert x B ==> A <= B & x ~: A | (EX B'. A = insert x B' & B' <= B)"
schirmer@12854
    46
apply (case_tac "x:A")
schirmer@12854
    47
apply (rule disjI2)
schirmer@12854
    48
apply (rule_tac x = "A-{x}" in exI)
schirmer@12854
    49
apply fast+
schirmer@12854
    50
done
schirmer@12854
    51
schirmer@12854
    52
syntax
schirmer@12925
    53
  "3" :: nat   ("3") 
schirmer@12854
    54
  "4" :: nat   ("4")
schirmer@12854
    55
translations
schirmer@12854
    56
 "3" == "Suc 2"
schirmer@12854
    57
 "4" == "Suc 3"
schirmer@12854
    58
schirmer@12854
    59
(*unused*)
schirmer@12854
    60
lemma range_bool_domain: "range f = {f True, f False}"
schirmer@12854
    61
apply auto
schirmer@12854
    62
apply (case_tac "xa")
schirmer@12854
    63
apply auto
schirmer@12854
    64
done
schirmer@12854
    65
nipkow@13867
    66
(* irrefl_tranclI in Transitive_Closure.thy is more general *)
schirmer@12854
    67
lemma irrefl_tranclI': "r^-1 Int r^+ = {} ==> !x. (x, x) ~: r^+"
nipkow@13867
    68
by(blast elim: tranclE dest: trancl_into_rtrancl)
nipkow@13867
    69
schirmer@12854
    70
schirmer@12854
    71
lemma trancl_rtrancl_trancl:
schirmer@12854
    72
"\<lbrakk>(x,y)\<in>r^+; (y,z)\<in>r^*\<rbrakk> \<Longrightarrow> (x,z)\<in>r^+"
schirmer@12854
    73
by (auto dest: tranclD rtrancl_trans rtrancl_into_trancl2)
schirmer@12854
    74
schirmer@12854
    75
lemma rtrancl_into_trancl3:
schirmer@12925
    76
"\<lbrakk>(a,b)\<in>r^*; a\<noteq>b\<rbrakk> \<Longrightarrow> (a,b)\<in>r^+" 
schirmer@12854
    77
apply (drule rtranclD)
schirmer@12854
    78
apply auto
schirmer@12854
    79
done
schirmer@12854
    80
schirmer@12854
    81
lemma rtrancl_into_rtrancl2: 
schirmer@12854
    82
  "\<lbrakk> (a, b) \<in>  r; (b, c) \<in> r^* \<rbrakk> \<Longrightarrow> (a, c) \<in>  r^*"
schirmer@12854
    83
by (auto intro: r_into_rtrancl rtrancl_trans)
schirmer@12854
    84
schirmer@12854
    85
lemma triangle_lemma:
schirmer@12854
    86
 "\<lbrakk> \<And> a b c. \<lbrakk>(a,b)\<in>r; (a,c)\<in>r\<rbrakk> \<Longrightarrow> b=c; (a,x)\<in>r\<^sup>*; (a,y)\<in>r\<^sup>*\<rbrakk> 
schirmer@12854
    87
 \<Longrightarrow> (x,y)\<in>r\<^sup>* \<or> (y,x)\<in>r\<^sup>*"
schirmer@12854
    88
proof -
schirmer@12854
    89
  note converse_rtrancl_induct = converse_rtrancl_induct [consumes 1]
schirmer@12854
    90
  note converse_rtranclE = converse_rtranclE [consumes 1] 
schirmer@12854
    91
  assume unique: "\<And> a b c. \<lbrakk>(a,b)\<in>r; (a,c)\<in>r\<rbrakk> \<Longrightarrow> b=c"
schirmer@12854
    92
  assume "(a,x)\<in>r\<^sup>*" 
schirmer@12854
    93
  then show "(a,y)\<in>r\<^sup>* \<Longrightarrow> (x,y)\<in>r\<^sup>* \<or> (y,x)\<in>r\<^sup>*"
schirmer@12854
    94
  proof (induct rule: converse_rtrancl_induct)
schirmer@12854
    95
    assume "(x,y)\<in>r\<^sup>*"
schirmer@12854
    96
    then show ?thesis 
schirmer@12854
    97
      by blast
schirmer@12854
    98
  next
schirmer@12854
    99
    fix a v
schirmer@12854
   100
    assume a_v_r: "(a, v) \<in> r" and
schirmer@12854
   101
          v_x_rt: "(v, x) \<in> r\<^sup>*" and
schirmer@12854
   102
          a_y_rt: "(a, y) \<in> r\<^sup>*"  and
schirmer@12854
   103
             hyp: "(v, y) \<in> r\<^sup>* \<Longrightarrow> (x, y) \<in> r\<^sup>* \<or> (y, x) \<in> r\<^sup>*"
schirmer@12854
   104
    from a_y_rt 
schirmer@12854
   105
    show "(x, y) \<in> r\<^sup>* \<or> (y, x) \<in> r\<^sup>*"
schirmer@12854
   106
    proof (cases rule: converse_rtranclE)
schirmer@12854
   107
      assume "a=y"
schirmer@12854
   108
      with a_v_r v_x_rt have "(y,x) \<in> r\<^sup>*"
schirmer@12854
   109
	by (auto intro: r_into_rtrancl rtrancl_trans)
schirmer@12854
   110
      then show ?thesis 
schirmer@12854
   111
	by blast
schirmer@12854
   112
    next
schirmer@12854
   113
      fix w 
schirmer@12854
   114
      assume a_w_r: "(a, w) \<in> r" and
schirmer@12854
   115
            w_y_rt: "(w, y) \<in> r\<^sup>*"
schirmer@12854
   116
      from a_v_r a_w_r unique 
schirmer@12854
   117
      have "v=w" 
schirmer@12854
   118
	by auto
schirmer@12854
   119
      with w_y_rt hyp 
schirmer@12854
   120
      show ?thesis
schirmer@12854
   121
	by blast
schirmer@12854
   122
    qed
schirmer@12854
   123
  qed
schirmer@12854
   124
qed
schirmer@12854
   125
schirmer@12854
   126
schirmer@12854
   127
lemma rtrancl_cases [consumes 1, case_names Refl Trancl]:
schirmer@12854
   128
 "\<lbrakk>(a,b)\<in>r\<^sup>*;  a = b \<Longrightarrow> P; (a,b)\<in>r\<^sup>+ \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
schirmer@12854
   129
apply (erule rtranclE)
schirmer@12854
   130
apply (auto dest: rtrancl_into_trancl1)
schirmer@12854
   131
done
schirmer@12854
   132
schirmer@12854
   133
(* ### To Transitive_Closure *)
schirmer@12854
   134
theorems converse_rtrancl_induct 
schirmer@12854
   135
 = converse_rtrancl_induct [consumes 1,case_names Id Step]
schirmer@12854
   136
schirmer@12854
   137
theorems converse_trancl_induct 
schirmer@12854
   138
         = converse_trancl_induct [consumes 1,case_names Single Step]
schirmer@12854
   139
schirmer@12854
   140
(* context (theory "Set") *)
schirmer@12854
   141
lemma Ball_weaken:"\<lbrakk>Ball s P;\<And> x. P x\<longrightarrow>Q x\<rbrakk>\<Longrightarrow>Ball s Q"
schirmer@12854
   142
by auto
schirmer@12854
   143
schirmer@12854
   144
(* context (theory "Finite") *)
schirmer@12854
   145
lemma finite_SetCompr2: "[| finite (Collect P); !y. P y --> finite (range (f y)) |] ==>  
schirmer@12854
   146
  finite {f y x |x y. P y}"
schirmer@12854
   147
apply (subgoal_tac "{f y x |x y. P y} = UNION (Collect P) (%y. range (f y))")
schirmer@12854
   148
prefer 2 apply  fast
schirmer@12854
   149
apply (erule ssubst)
schirmer@12854
   150
apply (erule finite_UN_I)
schirmer@12854
   151
apply fast
schirmer@12854
   152
done
schirmer@12854
   153
schirmer@12854
   154
schirmer@12854
   155
(* ### TO theory "List" *)
schirmer@12854
   156
lemma list_all2_trans: "\<forall> a b c. P1 a b \<longrightarrow> P2 b c \<longrightarrow> P3 a c \<Longrightarrow>
schirmer@12854
   157
 \<forall>xs2 xs3. list_all2 P1 xs1 xs2 \<longrightarrow> list_all2 P2 xs2 xs3 \<longrightarrow> list_all2 P3 xs1 xs3"
schirmer@12854
   158
apply (induct_tac "xs1")
schirmer@12854
   159
apply simp
schirmer@12854
   160
apply (rule allI)
schirmer@12854
   161
apply (induct_tac "xs2")
schirmer@12854
   162
apply simp
schirmer@12854
   163
apply (rule allI)
schirmer@12854
   164
apply (induct_tac "xs3")
schirmer@12854
   165
apply auto
schirmer@12854
   166
done
schirmer@12854
   167
schirmer@12854
   168
schirmer@12854
   169
section "pairs"
schirmer@12854
   170
schirmer@12854
   171
lemma surjective_pairing5: "p = (fst p, fst (snd p), fst (snd (snd p)), fst (snd (snd (snd p))), 
schirmer@12854
   172
  snd (snd (snd (snd p))))"
schirmer@12854
   173
apply auto
schirmer@12854
   174
done
schirmer@12854
   175
schirmer@12854
   176
lemma fst_splitE [elim!]: 
schirmer@12854
   177
"[| fst s' = x';  !!x s. [| s' = (x,s);  x = x' |] ==> Q |] ==> Q"
schirmer@12854
   178
apply (cut_tac p = "s'" in surjective_pairing)
schirmer@12854
   179
apply auto
schirmer@12854
   180
done
schirmer@12854
   181
schirmer@12854
   182
lemma fst_in_set_lemma [rule_format (no_asm)]: "(x, y) : set l --> x : fst ` set l"
schirmer@12854
   183
apply (induct_tac "l")
schirmer@12854
   184
apply  auto
schirmer@12854
   185
done
schirmer@12854
   186
schirmer@12854
   187
schirmer@12854
   188
section "quantifiers"
schirmer@12854
   189
schirmer@12854
   190
(*###to be phased out *)
schirmer@12854
   191
ML {* 
schirmer@12854
   192
fun noAll_simpset () = simpset() setmksimps 
skalberg@15570
   193
	mksimps (List.filter (fn (x,_) => x<>"All") mksimps_pairs)
schirmer@12854
   194
*}
schirmer@12854
   195
schirmer@12854
   196
lemma All_Ex_refl_eq2 [simp]: 
schirmer@12854
   197
 "(!x. (? b. x = f b & Q b) \<longrightarrow> P x) = (!b. Q b --> P (f b))"
schirmer@12854
   198
apply auto
schirmer@12854
   199
done
schirmer@12854
   200
schirmer@12854
   201
lemma ex_ex_miniscope1 [simp]:
schirmer@12854
   202
  "(EX w v. P w v & Q v) = (EX v. (EX w. P w v) & Q v)"
schirmer@12854
   203
apply auto
schirmer@12854
   204
done
schirmer@12854
   205
schirmer@12854
   206
lemma ex_miniscope2 [simp]:
schirmer@12854
   207
  "(EX v. P v & Q & R v) = (Q & (EX v. P v & R v))" 
schirmer@12854
   208
apply auto
schirmer@12854
   209
done
schirmer@12854
   210
schirmer@12854
   211
lemma ex_reorder31: "(\<exists>z x y. P x y z) = (\<exists>x y z. P x y z)"
schirmer@12854
   212
apply auto
schirmer@12854
   213
done
schirmer@12854
   214
schirmer@12854
   215
lemma All_Ex_refl_eq1 [simp]: "(!x. (? b. x = f b) --> P x) = (!b. P (f b))"
schirmer@12854
   216
apply auto
schirmer@12854
   217
done
schirmer@12854
   218
schirmer@12854
   219
schirmer@12854
   220
section "sums"
schirmer@12854
   221
schirmer@12854
   222
hide const In0 In1
schirmer@12854
   223
schirmer@12854
   224
syntax
schirmer@12854
   225
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
schirmer@12854
   226
translations
schirmer@12854
   227
 "fun_sum" == "sum_case"
schirmer@12854
   228
schirmer@12854
   229
consts    the_Inl  :: "'a + 'b \<Rightarrow> 'a"
schirmer@12854
   230
          the_Inr  :: "'a + 'b \<Rightarrow> 'b"
schirmer@12854
   231
primrec  "the_Inl (Inl a) = a"
schirmer@12854
   232
primrec  "the_Inr (Inr b) = b"
schirmer@12854
   233
schirmer@12854
   234
datatype ('a, 'b, 'c) sum3 = In1 'a | In2 'b | In3 'c
schirmer@12854
   235
schirmer@12854
   236
consts    the_In1  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'a"
schirmer@12854
   237
          the_In2  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'b"
schirmer@12854
   238
          the_In3  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'c"
schirmer@12854
   239
primrec  "the_In1 (In1 a) = a"
schirmer@12854
   240
primrec  "the_In2 (In2 b) = b"
schirmer@12854
   241
primrec  "the_In3 (In3 c) = c"
schirmer@12854
   242
schirmer@12854
   243
syntax
schirmer@12854
   244
	 In1l	:: "'al \<Rightarrow> ('al + 'ar, 'b, 'c) sum3"
schirmer@12854
   245
	 In1r	:: "'ar \<Rightarrow> ('al + 'ar, 'b, 'c) sum3"
schirmer@12854
   246
translations
schirmer@12854
   247
	"In1l e" == "In1 (Inl e)"
schirmer@12854
   248
	"In1r c" == "In1 (Inr c)"
schirmer@12854
   249
schirmer@13688
   250
syntax the_In1l :: "('al + 'ar, 'b, 'c) sum3 \<Rightarrow> 'al"
schirmer@13688
   251
       the_In1r :: "('al + 'ar, 'b, 'c) sum3 \<Rightarrow> 'ar"
schirmer@13688
   252
translations
schirmer@13688
   253
   "the_In1l" == "the_Inl \<circ> the_In1"
schirmer@13688
   254
   "the_In1r" == "the_Inr \<circ> the_In1"
schirmer@13688
   255
schirmer@12854
   256
ML {*
schirmer@12854
   257
fun sum3_instantiate thm = map (fn s => simplify(simpset()delsimps[not_None_eq])
schirmer@12854
   258
 (read_instantiate [("t","In"^s^" ?x")] thm)) ["1l","2","3","1r"]
schirmer@12854
   259
*}
schirmer@12854
   260
(* e.g. lemmas is_stmt_rews = is_stmt_def [of "In1l x", simplified] *)
schirmer@12854
   261
schirmer@12854
   262
translations
wenzelm@12919
   263
  "option"<= (type) "Datatype.option"
schirmer@12854
   264
  "list"  <= (type) "List.list"
schirmer@12854
   265
  "sum3"  <= (type) "Basis.sum3"
schirmer@12854
   266
schirmer@12854
   267
schirmer@12854
   268
section "quantifiers for option type"
schirmer@12854
   269
schirmer@12854
   270
syntax
schirmer@12854
   271
  Oall :: "[pttrn, 'a option, bool] => bool"   ("(3! _:_:/ _)" [0,0,10] 10)
schirmer@12854
   272
  Oex  :: "[pttrn, 'a option, bool] => bool"   ("(3? _:_:/ _)" [0,0,10] 10)
schirmer@12854
   273
schirmer@12854
   274
syntax (symbols)
schirmer@12854
   275
  Oall :: "[pttrn, 'a option, bool] => bool"   ("(3\<forall>_\<in>_:/ _)"  [0,0,10] 10)
schirmer@12854
   276
  Oex  :: "[pttrn, 'a option, bool] => bool"   ("(3\<exists>_\<in>_:/ _)"  [0,0,10] 10)
schirmer@12854
   277
schirmer@12854
   278
translations
schirmer@12854
   279
  "! x:A: P"    == "! x:o2s A. P"
schirmer@12854
   280
  "? x:A: P"    == "? x:o2s A. P"
schirmer@12854
   281
schirmer@12854
   282
schirmer@12854
   283
section "unique association lists"
schirmer@12854
   284
schirmer@12854
   285
constdefs
schirmer@12854
   286
  unique   :: "('a \<times> 'b) list \<Rightarrow> bool"
wenzelm@12893
   287
 "unique \<equiv> distinct \<circ> map fst"
schirmer@12854
   288
schirmer@12854
   289
lemma uniqueD [rule_format (no_asm)]: 
schirmer@12854
   290
"unique l--> (!x y. (x,y):set l --> (!x' y'. (x',y'):set l --> x=x'-->  y=y'))"
schirmer@12854
   291
apply (unfold unique_def o_def)
schirmer@12854
   292
apply (induct_tac "l")
schirmer@12854
   293
apply  (auto dest: fst_in_set_lemma)
schirmer@12854
   294
done
schirmer@12854
   295
schirmer@12854
   296
lemma unique_Nil [simp]: "unique []"
schirmer@12854
   297
apply (unfold unique_def)
schirmer@12854
   298
apply (simp (no_asm))
schirmer@12854
   299
done
schirmer@12854
   300
schirmer@12854
   301
lemma unique_Cons [simp]: "unique ((x,y)#l) = (unique l & (!y. (x,y) ~: set l))"
schirmer@12854
   302
apply (unfold unique_def)
schirmer@12854
   303
apply  (auto dest: fst_in_set_lemma)
schirmer@12854
   304
done
schirmer@12854
   305
schirmer@12854
   306
lemmas unique_ConsI = conjI [THEN unique_Cons [THEN iffD2], standard]
schirmer@12854
   307
schirmer@12854
   308
lemma unique_single [simp]: "!!p. unique [p]"
schirmer@12854
   309
apply auto
schirmer@12854
   310
done
schirmer@12854
   311
schirmer@12854
   312
lemma unique_ConsD: "unique (x#xs) ==> unique xs"
schirmer@12854
   313
apply (simp add: unique_def)
schirmer@12854
   314
done
schirmer@12854
   315
schirmer@12854
   316
lemma unique_append [rule_format (no_asm)]: "unique l' ==> unique l -->  
schirmer@12854
   317
  (!(x,y):set l. !(x',y'):set l'. x' ~= x) --> unique (l @ l')"
schirmer@12854
   318
apply (induct_tac "l")
schirmer@12854
   319
apply  (auto dest: fst_in_set_lemma)
schirmer@12854
   320
done
schirmer@12854
   321
schirmer@12854
   322
lemma unique_map_inj [rule_format (no_asm)]: "unique l --> inj f --> unique (map (%(k,x). (f k, g k x)) l)"
schirmer@12854
   323
apply (induct_tac "l")
schirmer@12854
   324
apply  (auto dest: fst_in_set_lemma simp add: inj_eq)
schirmer@12854
   325
done
schirmer@12854
   326
schirmer@12854
   327
lemma map_of_SomeI [rule_format (no_asm)]: "unique l --> (k, x) : set l --> map_of l k = Some x"
schirmer@12854
   328
apply (induct_tac "l")
schirmer@12854
   329
apply auto
schirmer@12854
   330
done
schirmer@12854
   331
schirmer@12854
   332
schirmer@12854
   333
section "list patterns"
schirmer@12854
   334
schirmer@12854
   335
consts
schirmer@12854
   336
  lsplit         :: "[['a, 'a list] => 'b, 'a list] => 'b"
schirmer@12854
   337
defs
schirmer@12854
   338
  lsplit_def:    "lsplit == %f l. f (hd l) (tl l)"
schirmer@12854
   339
(*  list patterns -- extends pre-defined type "pttrn" used in abstractions *)
schirmer@12854
   340
syntax
schirmer@12854
   341
  "_lpttrn"    :: "[pttrn,pttrn] => pttrn"     ("_#/_" [901,900] 900)
schirmer@12854
   342
translations
schirmer@12854
   343
  "%y#x#xs. b"  == "lsplit (%y x#xs. b)"
schirmer@12854
   344
  "%x#xs  . b"  == "lsplit (%x xs  . b)"
schirmer@12854
   345
schirmer@12854
   346
lemma lsplit [simp]: "lsplit c (x#xs) = c x xs"
schirmer@12854
   347
apply (unfold lsplit_def)
schirmer@12854
   348
apply (simp (no_asm))
schirmer@12854
   349
done
schirmer@12854
   350
schirmer@12854
   351
lemma lsplit2 [simp]: "lsplit P (x#xs) y z = P x xs y z"
schirmer@12854
   352
apply (unfold lsplit_def)
schirmer@12854
   353
apply simp
schirmer@12854
   354
done 
schirmer@12854
   355
schirmer@12854
   356
schirmer@12854
   357
end