src/HOL/Fun.thy
author wenzelm
Fri Mar 28 19:43:54 2008 +0100 (2008-03-28)
changeset 26462 dac4e2bce00d
parent 26357 19b153ebda0b
child 26588 d83271bfaba5
permissions -rw-r--r--
avoid rebinding of existing facts;
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@923
     2
    ID:         $Id$
clasohm@1475
     3
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1994  University of Cambridge
huffman@18154
     5
*)
clasohm@923
     6
huffman@18154
     7
header {* Notions about functions *}
clasohm@923
     8
paulson@15510
     9
theory Fun
haftmann@22886
    10
imports Set
nipkow@15131
    11
begin
nipkow@2912
    12
haftmann@26147
    13
text{*As a simplification rule, it replaces all function equalities by
haftmann@26147
    14
  first-order equalities.*}
haftmann@26147
    15
lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
haftmann@26147
    16
apply (rule iffI)
haftmann@26147
    17
apply (simp (no_asm_simp))
haftmann@26147
    18
apply (rule ext)
haftmann@26147
    19
apply (simp (no_asm_simp))
haftmann@26147
    20
done
oheimb@5305
    21
haftmann@26147
    22
lemma apply_inverse:
haftmann@26357
    23
  "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
haftmann@26147
    24
  by auto
nipkow@2912
    25
wenzelm@12258
    26
haftmann@26147
    27
subsection {* The Identity Function @{text id} *}
paulson@6171
    28
haftmann@22744
    29
definition
haftmann@22744
    30
  id :: "'a \<Rightarrow> 'a"
haftmann@22744
    31
where
haftmann@22744
    32
  "id = (\<lambda>x. x)"
nipkow@13910
    33
haftmann@26147
    34
lemma id_apply [simp]: "id x = x"
haftmann@26147
    35
  by (simp add: id_def)
haftmann@26147
    36
haftmann@26147
    37
lemma image_ident [simp]: "(%x. x) ` Y = Y"
haftmann@26147
    38
by blast
haftmann@26147
    39
haftmann@26147
    40
lemma image_id [simp]: "id ` Y = Y"
haftmann@26147
    41
by (simp add: id_def)
haftmann@26147
    42
haftmann@26147
    43
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
haftmann@26147
    44
by blast
haftmann@26147
    45
haftmann@26147
    46
lemma vimage_id [simp]: "id -` A = A"
haftmann@26147
    47
by (simp add: id_def)
haftmann@26147
    48
haftmann@26147
    49
haftmann@26147
    50
subsection {* The Composition Operator @{text "f \<circ> g"} *}
haftmann@26147
    51
haftmann@22744
    52
definition
haftmann@22744
    53
  comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
haftmann@22744
    54
where
haftmann@22744
    55
  "f o g = (\<lambda>x. f (g x))"
oheimb@11123
    56
wenzelm@21210
    57
notation (xsymbols)
wenzelm@19656
    58
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    59
wenzelm@21210
    60
notation (HTML output)
wenzelm@19656
    61
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    62
paulson@13585
    63
text{*compatibility*}
paulson@13585
    64
lemmas o_def = comp_def
nipkow@2912
    65
paulson@13585
    66
lemma o_apply [simp]: "(f o g) x = f (g x)"
paulson@13585
    67
by (simp add: comp_def)
paulson@13585
    68
paulson@13585
    69
lemma o_assoc: "f o (g o h) = f o g o h"
paulson@13585
    70
by (simp add: comp_def)
paulson@13585
    71
paulson@13585
    72
lemma id_o [simp]: "id o g = g"
paulson@13585
    73
by (simp add: comp_def)
paulson@13585
    74
paulson@13585
    75
lemma o_id [simp]: "f o id = f"
paulson@13585
    76
by (simp add: comp_def)
paulson@13585
    77
paulson@13585
    78
lemma image_compose: "(f o g) ` r = f`(g`r)"
paulson@13585
    79
by (simp add: comp_def, blast)
paulson@13585
    80
paulson@13585
    81
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
paulson@13585
    82
by (unfold comp_def, blast)
paulson@13585
    83
paulson@13585
    84
haftmann@26357
    85
subsection {* The Forward Composition Operator @{text "f \<circ>> g"} *}
haftmann@26357
    86
haftmann@26357
    87
definition
haftmann@26357
    88
  fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o>" 60)
haftmann@26357
    89
where
haftmann@26357
    90
  "f o> g = (\<lambda>x. g (f x))"
haftmann@26357
    91
haftmann@26357
    92
notation (xsymbols)
haftmann@26357
    93
  fcomp  (infixl "\<circ>>" 60)
haftmann@26357
    94
haftmann@26357
    95
notation (HTML output)
haftmann@26357
    96
  fcomp  (infixl "\<circ>>" 60)
haftmann@26357
    97
haftmann@26357
    98
lemma fcomp_apply:  "(f o> g) x = g (f x)"
haftmann@26357
    99
  by (simp add: fcomp_def)
haftmann@26357
   100
haftmann@26357
   101
lemma fcomp_assoc: "(f o> g) o> h = f o> (g o> h)"
haftmann@26357
   102
  by (simp add: fcomp_def)
haftmann@26357
   103
haftmann@26357
   104
lemma id_fcomp [simp]: "id o> g = g"
haftmann@26357
   105
  by (simp add: fcomp_def)
haftmann@26357
   106
haftmann@26357
   107
lemma fcomp_id [simp]: "f o> id = f"
haftmann@26357
   108
  by (simp add: fcomp_def)
haftmann@26357
   109
haftmann@26357
   110
haftmann@26147
   111
subsection {* Injectivity and Surjectivity *}
haftmann@26147
   112
haftmann@26147
   113
constdefs
haftmann@26147
   114
  inj_on :: "['a => 'b, 'a set] => bool"  -- "injective"
haftmann@26147
   115
  "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
haftmann@26147
   116
haftmann@26147
   117
text{*A common special case: functions injective over the entire domain type.*}
haftmann@26147
   118
haftmann@26147
   119
abbreviation
haftmann@26147
   120
  "inj f == inj_on f UNIV"
paulson@13585
   121
haftmann@26147
   122
definition
haftmann@26147
   123
  bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
haftmann@26147
   124
  "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"
haftmann@26147
   125
haftmann@26147
   126
constdefs
haftmann@26147
   127
  surj :: "('a => 'b) => bool"                   (*surjective*)
haftmann@26147
   128
  "surj f == ! y. ? x. y=f(x)"
paulson@13585
   129
haftmann@26147
   130
  bij :: "('a => 'b) => bool"                    (*bijective*)
haftmann@26147
   131
  "bij f == inj f & surj f"
haftmann@26147
   132
haftmann@26147
   133
lemma injI:
haftmann@26147
   134
  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
haftmann@26147
   135
  shows "inj f"
haftmann@26147
   136
  using assms unfolding inj_on_def by auto
paulson@13585
   137
paulson@13585
   138
text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
paulson@13585
   139
lemma datatype_injI:
paulson@13585
   140
    "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
paulson@13585
   141
by (simp add: inj_on_def)
paulson@13585
   142
berghofe@13637
   143
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   144
  by (unfold inj_on_def, blast)
berghofe@13637
   145
paulson@13585
   146
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   147
by (simp add: inj_on_def)
paulson@13585
   148
paulson@13585
   149
(*Useful with the simplifier*)
paulson@13585
   150
lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   151
by (force simp add: inj_on_def)
paulson@13585
   152
haftmann@26147
   153
lemma inj_on_id[simp]: "inj_on id A"
haftmann@26147
   154
  by (simp add: inj_on_def) 
paulson@13585
   155
haftmann@26147
   156
lemma inj_on_id2[simp]: "inj_on (%x. x) A"
haftmann@26147
   157
by (simp add: inj_on_def) 
haftmann@26147
   158
haftmann@26147
   159
lemma surj_id[simp]: "surj id"
haftmann@26147
   160
by (simp add: surj_def) 
haftmann@26147
   161
haftmann@26147
   162
lemma bij_id[simp]: "bij id"
haftmann@26147
   163
by (simp add: bij_def inj_on_id surj_id) 
paulson@13585
   164
paulson@13585
   165
lemma inj_onI:
paulson@13585
   166
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   167
by (simp add: inj_on_def)
paulson@13585
   168
paulson@13585
   169
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   170
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   171
paulson@13585
   172
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   173
by (unfold inj_on_def, blast)
paulson@13585
   174
paulson@13585
   175
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
paulson@13585
   176
by (blast dest!: inj_onD)
paulson@13585
   177
paulson@13585
   178
lemma comp_inj_on:
paulson@13585
   179
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   180
by (simp add: comp_def inj_on_def)
paulson@13585
   181
nipkow@15303
   182
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
nipkow@15303
   183
apply(simp add:inj_on_def image_def)
nipkow@15303
   184
apply blast
nipkow@15303
   185
done
nipkow@15303
   186
nipkow@15439
   187
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
nipkow@15439
   188
  inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
nipkow@15439
   189
apply(unfold inj_on_def)
nipkow@15439
   190
apply blast
nipkow@15439
   191
done
nipkow@15439
   192
paulson@13585
   193
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   194
by (unfold inj_on_def, blast)
wenzelm@12258
   195
paulson@13585
   196
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   197
by (simp add: inj_on_def)
paulson@13585
   198
nipkow@15111
   199
lemma inj_on_empty[iff]: "inj_on f {}"
nipkow@15111
   200
by(simp add: inj_on_def)
nipkow@15111
   201
nipkow@15303
   202
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
paulson@13585
   203
by (unfold inj_on_def, blast)
paulson@13585
   204
nipkow@15111
   205
lemma inj_on_Un:
nipkow@15111
   206
 "inj_on f (A Un B) =
nipkow@15111
   207
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
nipkow@15111
   208
apply(unfold inj_on_def)
nipkow@15111
   209
apply (blast intro:sym)
nipkow@15111
   210
done
nipkow@15111
   211
nipkow@15111
   212
lemma inj_on_insert[iff]:
nipkow@15111
   213
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
nipkow@15111
   214
apply(unfold inj_on_def)
nipkow@15111
   215
apply (blast intro:sym)
nipkow@15111
   216
done
nipkow@15111
   217
nipkow@15111
   218
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
nipkow@15111
   219
apply(unfold inj_on_def)
nipkow@15111
   220
apply (blast)
nipkow@15111
   221
done
nipkow@15111
   222
paulson@13585
   223
lemma surjI: "(!! x. g(f x) = x) ==> surj g"
paulson@13585
   224
apply (simp add: surj_def)
paulson@13585
   225
apply (blast intro: sym)
paulson@13585
   226
done
paulson@13585
   227
paulson@13585
   228
lemma surj_range: "surj f ==> range f = UNIV"
paulson@13585
   229
by (auto simp add: surj_def)
paulson@13585
   230
paulson@13585
   231
lemma surjD: "surj f ==> EX x. y = f x"
paulson@13585
   232
by (simp add: surj_def)
paulson@13585
   233
paulson@13585
   234
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"
paulson@13585
   235
by (simp add: surj_def, blast)
paulson@13585
   236
paulson@13585
   237
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   238
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   239
apply (drule_tac x = y in spec, clarify)
paulson@13585
   240
apply (drule_tac x = x in spec, blast)
paulson@13585
   241
done
paulson@13585
   242
paulson@13585
   243
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   244
by (simp add: bij_def)
paulson@13585
   245
paulson@13585
   246
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   247
by (simp add: bij_def)
paulson@13585
   248
paulson@13585
   249
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   250
by (simp add: bij_def)
paulson@13585
   251
nipkow@26105
   252
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
nipkow@26105
   253
by (simp add: bij_betw_def)
nipkow@26105
   254
nipkow@26105
   255
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
nipkow@26105
   256
proof -
nipkow@26105
   257
  have i: "inj_on f A" and s: "f ` A = B"
nipkow@26105
   258
    using assms by(auto simp:bij_betw_def)
nipkow@26105
   259
  let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
nipkow@26105
   260
  { fix a b assume P: "?P b a"
nipkow@26105
   261
    hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast
nipkow@26105
   262
    hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
nipkow@26105
   263
    hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
nipkow@26105
   264
  } note g = this
nipkow@26105
   265
  have "inj_on ?g B"
nipkow@26105
   266
  proof(rule inj_onI)
nipkow@26105
   267
    fix x y assume "x:B" "y:B" "?g x = ?g y"
nipkow@26105
   268
    from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast
nipkow@26105
   269
    from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast
nipkow@26105
   270
    from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp
nipkow@26105
   271
  qed
nipkow@26105
   272
  moreover have "?g ` B = A"
nipkow@26105
   273
  proof(auto simp:image_def)
nipkow@26105
   274
    fix b assume "b:B"
nipkow@26105
   275
    with s obtain a where P: "?P b a" unfolding image_def by blast
nipkow@26105
   276
    thus "?g b \<in> A" using g[OF P] by auto
nipkow@26105
   277
  next
nipkow@26105
   278
    fix a assume "a:A"
nipkow@26105
   279
    then obtain b where P: "?P b a" using s unfolding image_def by blast
nipkow@26105
   280
    then have "b:B" using s unfolding image_def by blast
nipkow@26105
   281
    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
nipkow@26105
   282
  qed
nipkow@26105
   283
  ultimately show ?thesis by(auto simp:bij_betw_def)
nipkow@26105
   284
qed
nipkow@26105
   285
paulson@13585
   286
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
paulson@13585
   287
by (simp add: surj_range)
paulson@13585
   288
paulson@13585
   289
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   290
by (simp add: inj_on_def, blast)
paulson@13585
   291
paulson@13585
   292
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
paulson@13585
   293
apply (unfold surj_def)
paulson@13585
   294
apply (blast intro: sym)
paulson@13585
   295
done
paulson@13585
   296
paulson@13585
   297
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   298
by (unfold inj_on_def, blast)
paulson@13585
   299
paulson@13585
   300
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   301
apply (unfold bij_def)
paulson@13585
   302
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   303
done
paulson@13585
   304
paulson@13585
   305
lemma inj_on_image_Int:
paulson@13585
   306
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   307
apply (simp add: inj_on_def, blast)
paulson@13585
   308
done
paulson@13585
   309
paulson@13585
   310
lemma inj_on_image_set_diff:
paulson@13585
   311
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
paulson@13585
   312
apply (simp add: inj_on_def, blast)
paulson@13585
   313
done
paulson@13585
   314
paulson@13585
   315
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   316
by (simp add: inj_on_def, blast)
paulson@13585
   317
paulson@13585
   318
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   319
by (simp add: inj_on_def, blast)
paulson@13585
   320
paulson@13585
   321
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
paulson@13585
   322
by (blast dest: injD)
paulson@13585
   323
paulson@13585
   324
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
paulson@13585
   325
by (simp add: inj_on_def, blast)
paulson@13585
   326
paulson@13585
   327
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
paulson@13585
   328
by (blast dest: injD)
paulson@13585
   329
paulson@13585
   330
(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
paulson@13585
   331
lemma image_INT:
paulson@13585
   332
   "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
paulson@13585
   333
    ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   334
apply (simp add: inj_on_def, blast)
paulson@13585
   335
done
paulson@13585
   336
paulson@13585
   337
(*Compare with image_INT: no use of inj_on, and if f is surjective then
paulson@13585
   338
  it doesn't matter whether A is empty*)
paulson@13585
   339
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   340
apply (simp add: bij_def)
paulson@13585
   341
apply (simp add: inj_on_def surj_def, blast)
paulson@13585
   342
done
paulson@13585
   343
paulson@13585
   344
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
paulson@13585
   345
by (auto simp add: surj_def)
paulson@13585
   346
paulson@13585
   347
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   348
by (auto simp add: inj_on_def)
paulson@5852
   349
paulson@13585
   350
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   351
apply (simp add: bij_def)
paulson@13585
   352
apply (rule equalityI)
paulson@13585
   353
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   354
done
paulson@13585
   355
paulson@13585
   356
paulson@13585
   357
subsection{*Function Updating*}
paulson@13585
   358
haftmann@26147
   359
constdefs
haftmann@26147
   360
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
haftmann@26147
   361
  "fun_upd f a b == % x. if x=a then b else f x"
haftmann@26147
   362
haftmann@26147
   363
nonterminals
haftmann@26147
   364
  updbinds updbind
haftmann@26147
   365
syntax
haftmann@26147
   366
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
haftmann@26147
   367
  ""         :: "updbind => updbinds"             ("_")
haftmann@26147
   368
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
haftmann@26147
   369
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
haftmann@26147
   370
haftmann@26147
   371
translations
haftmann@26147
   372
  "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
haftmann@26147
   373
  "f(x:=y)"                     == "fun_upd f x y"
haftmann@26147
   374
haftmann@26147
   375
(* Hint: to define the sum of two functions (or maps), use sum_case.
haftmann@26147
   376
         A nice infix syntax could be defined (in Datatype.thy or below) by
haftmann@26147
   377
consts
haftmann@26147
   378
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
haftmann@26147
   379
translations
haftmann@26147
   380
 "fun_sum" == sum_case
haftmann@26147
   381
*)
haftmann@26147
   382
paulson@13585
   383
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   384
apply (simp add: fun_upd_def, safe)
paulson@13585
   385
apply (erule subst)
paulson@13585
   386
apply (rule_tac [2] ext, auto)
paulson@13585
   387
done
paulson@13585
   388
paulson@13585
   389
(* f x = y ==> f(x:=y) = f *)
paulson@13585
   390
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
paulson@13585
   391
paulson@13585
   392
(* f(x := f x) = f *)
paulson@17084
   393
lemmas fun_upd_triv = refl [THEN fun_upd_idem]
paulson@17084
   394
declare fun_upd_triv [iff]
paulson@13585
   395
paulson@13585
   396
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@17084
   397
by (simp add: fun_upd_def)
paulson@13585
   398
paulson@13585
   399
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   400
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   401
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   402
by simp
paulson@13585
   403
paulson@13585
   404
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   405
by simp
paulson@13585
   406
paulson@13585
   407
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
paulson@13585
   408
by (simp add: expand_fun_eq)
paulson@13585
   409
paulson@13585
   410
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   411
by (rule ext, auto)
paulson@13585
   412
nipkow@15303
   413
lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A"
nipkow@15303
   414
by(fastsimp simp:inj_on_def image_def)
nipkow@15303
   415
paulson@15510
   416
lemma fun_upd_image:
paulson@15510
   417
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
paulson@15510
   418
by auto
paulson@15510
   419
haftmann@26147
   420
haftmann@26147
   421
subsection {* @{text override_on} *}
haftmann@26147
   422
haftmann@26147
   423
definition
haftmann@26147
   424
  override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
haftmann@26147
   425
where
haftmann@26147
   426
  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
nipkow@13910
   427
nipkow@15691
   428
lemma override_on_emptyset[simp]: "override_on f g {} = f"
nipkow@15691
   429
by(simp add:override_on_def)
nipkow@13910
   430
nipkow@15691
   431
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
nipkow@15691
   432
by(simp add:override_on_def)
nipkow@13910
   433
nipkow@15691
   434
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
nipkow@15691
   435
by(simp add:override_on_def)
nipkow@13910
   436
haftmann@26147
   437
haftmann@26147
   438
subsection {* @{text swap} *}
paulson@15510
   439
haftmann@22744
   440
definition
haftmann@22744
   441
  swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
haftmann@22744
   442
where
haftmann@22744
   443
  "swap a b f = f (a := f b, b:= f a)"
paulson@15510
   444
paulson@15510
   445
lemma swap_self: "swap a a f = f"
nipkow@15691
   446
by (simp add: swap_def)
paulson@15510
   447
paulson@15510
   448
lemma swap_commute: "swap a b f = swap b a f"
paulson@15510
   449
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   450
paulson@15510
   451
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
paulson@15510
   452
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   453
paulson@15510
   454
lemma inj_on_imp_inj_on_swap:
haftmann@22744
   455
  "[|inj_on f A; a \<in> A; b \<in> A|] ==> inj_on (swap a b f) A"
paulson@15510
   456
by (simp add: inj_on_def swap_def, blast)
paulson@15510
   457
paulson@15510
   458
lemma inj_on_swap_iff [simp]:
paulson@15510
   459
  assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A = inj_on f A"
paulson@15510
   460
proof 
paulson@15510
   461
  assume "inj_on (swap a b f) A"
paulson@15510
   462
  with A have "inj_on (swap a b (swap a b f)) A" 
nipkow@17589
   463
    by (iprover intro: inj_on_imp_inj_on_swap) 
paulson@15510
   464
  thus "inj_on f A" by simp 
paulson@15510
   465
next
paulson@15510
   466
  assume "inj_on f A"
nipkow@17589
   467
  with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap)
paulson@15510
   468
qed
paulson@15510
   469
paulson@15510
   470
lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)"
paulson@15510
   471
apply (simp add: surj_def swap_def, clarify)
paulson@15510
   472
apply (rule_tac P = "y = f b" in case_split_thm, blast)
paulson@15510
   473
apply (rule_tac P = "y = f a" in case_split_thm, auto)
paulson@15510
   474
  --{*We don't yet have @{text case_tac}*}
paulson@15510
   475
done
paulson@15510
   476
paulson@15510
   477
lemma surj_swap_iff [simp]: "surj (swap a b f) = surj f"
paulson@15510
   478
proof 
paulson@15510
   479
  assume "surj (swap a b f)"
paulson@15510
   480
  hence "surj (swap a b (swap a b f))" by (rule surj_imp_surj_swap) 
paulson@15510
   481
  thus "surj f" by simp 
paulson@15510
   482
next
paulson@15510
   483
  assume "surj f"
paulson@15510
   484
  thus "surj (swap a b f)" by (rule surj_imp_surj_swap) 
paulson@15510
   485
qed
paulson@15510
   486
paulson@15510
   487
lemma bij_swap_iff: "bij (swap a b f) = bij f"
paulson@15510
   488
by (simp add: bij_def)
haftmann@21547
   489
haftmann@21547
   490
haftmann@22845
   491
subsection {* Proof tool setup *} 
haftmann@22845
   492
haftmann@22845
   493
text {* simplifies terms of the form
haftmann@22845
   494
  f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}
haftmann@22845
   495
wenzelm@24017
   496
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
haftmann@22845
   497
let
haftmann@22845
   498
  fun gen_fun_upd NONE T _ _ = NONE
wenzelm@24017
   499
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
haftmann@22845
   500
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
haftmann@22845
   501
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
haftmann@22845
   502
    let
haftmann@22845
   503
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
haftmann@22845
   504
            if v aconv x then SOME g else gen_fun_upd (find g) T v w
haftmann@22845
   505
        | find t = NONE
haftmann@22845
   506
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
wenzelm@24017
   507
wenzelm@24017
   508
  fun proc ss ct =
wenzelm@24017
   509
    let
wenzelm@24017
   510
      val ctxt = Simplifier.the_context ss
wenzelm@24017
   511
      val t = Thm.term_of ct
wenzelm@24017
   512
    in
wenzelm@24017
   513
      case find_double t of
wenzelm@24017
   514
        (T, NONE) => NONE
wenzelm@24017
   515
      | (T, SOME rhs) =>
wenzelm@24017
   516
          SOME (Goal.prove ctxt [] [] (Term.equals T $ t $ rhs)
wenzelm@24017
   517
            (fn _ =>
wenzelm@24017
   518
              rtac eq_reflection 1 THEN
wenzelm@24017
   519
              rtac ext 1 THEN
wenzelm@24017
   520
              simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
wenzelm@24017
   521
    end
wenzelm@24017
   522
in proc end
haftmann@22845
   523
*}
haftmann@22845
   524
haftmann@22845
   525
haftmann@21870
   526
subsection {* Code generator setup *}
haftmann@21870
   527
berghofe@25886
   528
types_code
berghofe@25886
   529
  "fun"  ("(_ ->/ _)")
berghofe@25886
   530
attach (term_of) {*
berghofe@25886
   531
fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
berghofe@25886
   532
*}
berghofe@25886
   533
attach (test) {*
berghofe@25886
   534
fun gen_fun_type aF aT bG bT i =
berghofe@25886
   535
  let
berghofe@25886
   536
    val tab = ref [];
berghofe@25886
   537
    fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
berghofe@25886
   538
      (aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y ()
berghofe@25886
   539
  in
berghofe@25886
   540
    (fn x =>
berghofe@25886
   541
       case AList.lookup op = (!tab) x of
berghofe@25886
   542
         NONE =>
berghofe@25886
   543
           let val p as (y, _) = bG i
berghofe@25886
   544
           in (tab := (x, p) :: !tab; y) end
berghofe@25886
   545
       | SOME (y, _) => y,
berghofe@25886
   546
     fn () => Basics.fold mk_upd (!tab) (Const ("arbitrary", aT --> bT)))
berghofe@25886
   547
  end;
berghofe@25886
   548
*}
berghofe@25886
   549
haftmann@21870
   550
code_const "op \<circ>"
haftmann@21870
   551
  (SML infixl 5 "o")
haftmann@21870
   552
  (Haskell infixr 9 ".")
haftmann@21870
   553
haftmann@21906
   554
code_const "id"
haftmann@21906
   555
  (Haskell "id")
haftmann@21906
   556
nipkow@2912
   557
end