src/HOL/Relation.thy
author wenzelm
Fri Mar 28 19:43:54 2008 +0100 (2008-03-28)
changeset 26462 dac4e2bce00d
parent 26297 74012d599204
child 28008 f945f8d9ad4d
permissions -rw-r--r--
avoid rebinding of existing facts;
wenzelm@10358
     1
(*  Title:      HOL/Relation.thy
nipkow@1128
     2
    ID:         $Id$
paulson@1983
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1983
     4
    Copyright   1996  University of Cambridge
nipkow@1128
     5
*)
nipkow@1128
     6
berghofe@12905
     7
header {* Relations *}
berghofe@12905
     8
nipkow@15131
     9
theory Relation
haftmann@24915
    10
imports Product_Type
nipkow@15131
    11
begin
paulson@5978
    12
wenzelm@12913
    13
subsection {* Definitions *}
wenzelm@12913
    14
wenzelm@19656
    15
definition
wenzelm@21404
    16
  converse :: "('a * 'b) set => ('b * 'a) set"
wenzelm@21404
    17
    ("(_^-1)" [1000] 999) where
wenzelm@10358
    18
  "r^-1 == {(y, x). (x, y) : r}"
paulson@7912
    19
wenzelm@21210
    20
notation (xsymbols)
wenzelm@19656
    21
  converse  ("(_\<inverse>)" [1000] 999)
wenzelm@19656
    22
wenzelm@19656
    23
definition
wenzelm@21404
    24
  rel_comp  :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set"
wenzelm@21404
    25
    (infixr "O" 75) where
wenzelm@12913
    26
  "r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}"
wenzelm@12913
    27
wenzelm@21404
    28
definition
wenzelm@21404
    29
  Image :: "[('a * 'b) set, 'a set] => 'b set"
wenzelm@21404
    30
    (infixl "``" 90) where
wenzelm@12913
    31
  "r `` s == {y. EX x:s. (x,y):r}"
paulson@7912
    32
wenzelm@21404
    33
definition
wenzelm@21404
    34
  Id :: "('a * 'a) set" where -- {* the identity relation *}
wenzelm@12913
    35
  "Id == {p. EX x. p = (x,x)}"
paulson@7912
    36
wenzelm@21404
    37
definition
wenzelm@21404
    38
  diag  :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
paulson@13830
    39
  "diag A == \<Union>x\<in>A. {(x,x)}"
wenzelm@12913
    40
wenzelm@21404
    41
definition
wenzelm@21404
    42
  Domain :: "('a * 'b) set => 'a set" where
wenzelm@12913
    43
  "Domain r == {x. EX y. (x,y):r}"
paulson@5978
    44
wenzelm@21404
    45
definition
wenzelm@21404
    46
  Range  :: "('a * 'b) set => 'b set" where
wenzelm@12913
    47
  "Range r == Domain(r^-1)"
paulson@5978
    48
wenzelm@21404
    49
definition
wenzelm@21404
    50
  Field :: "('a * 'a) set => 'a set" where
paulson@13830
    51
  "Field r == Domain r \<union> Range r"
paulson@10786
    52
wenzelm@21404
    53
definition
wenzelm@21404
    54
  refl :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
wenzelm@12913
    55
  "refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
paulson@6806
    56
nipkow@26297
    57
abbreviation
nipkow@26297
    58
  reflexive :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
nipkow@26297
    59
  "reflexive == refl UNIV"
nipkow@26297
    60
wenzelm@21404
    61
definition
wenzelm@21404
    62
  sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
wenzelm@12913
    63
  "sym r == ALL x y. (x,y): r --> (y,x): r"
paulson@6806
    64
wenzelm@21404
    65
definition
wenzelm@21404
    66
  antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
wenzelm@12913
    67
  "antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y"
paulson@6806
    68
wenzelm@21404
    69
definition
wenzelm@21404
    70
  trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
wenzelm@12913
    71
  "trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
paulson@5978
    72
wenzelm@21404
    73
definition
wenzelm@21404
    74
  single_valued :: "('a * 'b) set => bool" where
wenzelm@12913
    75
  "single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)"
berghofe@7014
    76
wenzelm@21404
    77
definition
wenzelm@21404
    78
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
wenzelm@12913
    79
  "inv_image r f == {(x, y). (f x, f y) : r}"
oheimb@11136
    80
berghofe@12905
    81
wenzelm@12913
    82
subsection {* The identity relation *}
berghofe@12905
    83
berghofe@12905
    84
lemma IdI [intro]: "(a, a) : Id"
nipkow@26271
    85
by (simp add: Id_def)
berghofe@12905
    86
berghofe@12905
    87
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
nipkow@26271
    88
by (unfold Id_def) (iprover elim: CollectE)
berghofe@12905
    89
berghofe@12905
    90
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
nipkow@26271
    91
by (unfold Id_def) blast
berghofe@12905
    92
berghofe@12905
    93
lemma reflexive_Id: "reflexive Id"
nipkow@26271
    94
by (simp add: refl_def)
berghofe@12905
    95
berghofe@12905
    96
lemma antisym_Id: "antisym Id"
berghofe@12905
    97
  -- {* A strange result, since @{text Id} is also symmetric. *}
nipkow@26271
    98
by (simp add: antisym_def)
berghofe@12905
    99
huffman@19228
   100
lemma sym_Id: "sym Id"
nipkow@26271
   101
by (simp add: sym_def)
huffman@19228
   102
berghofe@12905
   103
lemma trans_Id: "trans Id"
nipkow@26271
   104
by (simp add: trans_def)
berghofe@12905
   105
berghofe@12905
   106
wenzelm@12913
   107
subsection {* Diagonal: identity over a set *}
berghofe@12905
   108
paulson@13812
   109
lemma diag_empty [simp]: "diag {} = {}"
nipkow@26271
   110
by (simp add: diag_def) 
paulson@13812
   111
berghofe@12905
   112
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A"
nipkow@26271
   113
by (simp add: diag_def)
berghofe@12905
   114
paulson@24286
   115
lemma diagI [intro!,noatp]: "a : A ==> (a, a) : diag A"
nipkow@26271
   116
by (rule diag_eqI) (rule refl)
berghofe@12905
   117
berghofe@12905
   118
lemma diagE [elim!]:
berghofe@12905
   119
  "c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
wenzelm@12913
   120
  -- {* The general elimination rule. *}
nipkow@26271
   121
by (unfold diag_def) (iprover elim!: UN_E singletonE)
berghofe@12905
   122
berghofe@12905
   123
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)"
nipkow@26271
   124
by blast
berghofe@12905
   125
wenzelm@12913
   126
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A"
nipkow@26271
   127
by blast
berghofe@12905
   128
berghofe@12905
   129
berghofe@12905
   130
subsection {* Composition of two relations *}
berghofe@12905
   131
wenzelm@12913
   132
lemma rel_compI [intro]:
berghofe@12905
   133
  "(a, b) : s ==> (b, c) : r ==> (a, c) : r O s"
nipkow@26271
   134
by (unfold rel_comp_def) blast
berghofe@12905
   135
wenzelm@12913
   136
lemma rel_compE [elim!]: "xz : r O s ==>
berghofe@12905
   137
  (!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r  ==> P) ==> P"
nipkow@26271
   138
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)
berghofe@12905
   139
berghofe@12905
   140
lemma rel_compEpair:
berghofe@12905
   141
  "(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P"
nipkow@26271
   142
by (iprover elim: rel_compE Pair_inject ssubst)
berghofe@12905
   143
berghofe@12905
   144
lemma R_O_Id [simp]: "R O Id = R"
nipkow@26271
   145
by fast
berghofe@12905
   146
berghofe@12905
   147
lemma Id_O_R [simp]: "Id O R = R"
nipkow@26271
   148
by fast
berghofe@12905
   149
krauss@23185
   150
lemma rel_comp_empty1[simp]: "{} O R = {}"
nipkow@26271
   151
by blast
krauss@23185
   152
krauss@23185
   153
lemma rel_comp_empty2[simp]: "R O {} = {}"
nipkow@26271
   154
by blast
krauss@23185
   155
berghofe@12905
   156
lemma O_assoc: "(R O S) O T = R O (S O T)"
nipkow@26271
   157
by blast
berghofe@12905
   158
wenzelm@12913
   159
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"
nipkow@26271
   160
by (unfold trans_def) blast
berghofe@12905
   161
wenzelm@12913
   162
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"
nipkow@26271
   163
by blast
berghofe@12905
   164
berghofe@12905
   165
lemma rel_comp_subset_Sigma:
wenzelm@12913
   166
    "s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"
nipkow@26271
   167
by blast
berghofe@12905
   168
wenzelm@12913
   169
wenzelm@12913
   170
subsection {* Reflexivity *}
wenzelm@12913
   171
wenzelm@12913
   172
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r"
nipkow@26271
   173
by (unfold refl_def) (iprover intro!: ballI)
berghofe@12905
   174
berghofe@12905
   175
lemma reflD: "refl A r ==> a : A ==> (a, a) : r"
nipkow@26271
   176
by (unfold refl_def) blast
berghofe@12905
   177
huffman@19228
   178
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A"
nipkow@26271
   179
by (unfold refl_def) blast
huffman@19228
   180
huffman@19228
   181
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A"
nipkow@26271
   182
by (unfold refl_def) blast
huffman@19228
   183
huffman@19228
   184
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)"
nipkow@26271
   185
by (unfold refl_def) blast
huffman@19228
   186
huffman@19228
   187
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)"
nipkow@26271
   188
by (unfold refl_def) blast
huffman@19228
   189
huffman@19228
   190
lemma refl_INTER:
huffman@19228
   191
  "ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)"
nipkow@26271
   192
by (unfold refl_def) fast
huffman@19228
   193
huffman@19228
   194
lemma refl_UNION:
huffman@19228
   195
  "ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)"
nipkow@26271
   196
by (unfold refl_def) blast
huffman@19228
   197
nipkow@26297
   198
lemma refl_empty[simp]: "refl {} {}"
nipkow@26297
   199
by(simp add:refl_def)
nipkow@26297
   200
huffman@19228
   201
lemma refl_diag: "refl A (diag A)"
nipkow@26271
   202
by (rule reflI [OF diag_subset_Times diagI])
huffman@19228
   203
wenzelm@12913
   204
wenzelm@12913
   205
subsection {* Antisymmetry *}
berghofe@12905
   206
berghofe@12905
   207
lemma antisymI:
berghofe@12905
   208
  "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
nipkow@26271
   209
by (unfold antisym_def) iprover
berghofe@12905
   210
berghofe@12905
   211
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
nipkow@26271
   212
by (unfold antisym_def) iprover
berghofe@12905
   213
huffman@19228
   214
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"
nipkow@26271
   215
by (unfold antisym_def) blast
wenzelm@12913
   216
huffman@19228
   217
lemma antisym_empty [simp]: "antisym {}"
nipkow@26271
   218
by (unfold antisym_def) blast
huffman@19228
   219
huffman@19228
   220
lemma antisym_diag [simp]: "antisym (diag A)"
nipkow@26271
   221
by (unfold antisym_def) blast
huffman@19228
   222
huffman@19228
   223
huffman@19228
   224
subsection {* Symmetry *}
huffman@19228
   225
huffman@19228
   226
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"
nipkow@26271
   227
by (unfold sym_def) iprover
paulson@15177
   228
paulson@15177
   229
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"
nipkow@26271
   230
by (unfold sym_def, blast)
berghofe@12905
   231
huffman@19228
   232
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"
nipkow@26271
   233
by (fast intro: symI dest: symD)
huffman@19228
   234
huffman@19228
   235
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"
nipkow@26271
   236
by (fast intro: symI dest: symD)
huffman@19228
   237
huffman@19228
   238
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"
nipkow@26271
   239
by (fast intro: symI dest: symD)
huffman@19228
   240
huffman@19228
   241
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"
nipkow@26271
   242
by (fast intro: symI dest: symD)
huffman@19228
   243
huffman@19228
   244
lemma sym_diag [simp]: "sym (diag A)"
nipkow@26271
   245
by (rule symI) clarify
huffman@19228
   246
huffman@19228
   247
huffman@19228
   248
subsection {* Transitivity *}
huffman@19228
   249
berghofe@12905
   250
lemma transI:
berghofe@12905
   251
  "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"
nipkow@26271
   252
by (unfold trans_def) iprover
berghofe@12905
   253
berghofe@12905
   254
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"
nipkow@26271
   255
by (unfold trans_def) iprover
berghofe@12905
   256
huffman@19228
   257
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"
nipkow@26271
   258
by (fast intro: transI elim: transD)
huffman@19228
   259
huffman@19228
   260
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"
nipkow@26271
   261
by (fast intro: transI elim: transD)
huffman@19228
   262
huffman@19228
   263
lemma trans_diag [simp]: "trans (diag A)"
nipkow@26271
   264
by (fast intro: transI elim: transD)
huffman@19228
   265
berghofe@12905
   266
wenzelm@12913
   267
subsection {* Converse *}
wenzelm@12913
   268
wenzelm@12913
   269
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"
nipkow@26271
   270
by (simp add: converse_def)
berghofe@12905
   271
nipkow@13343
   272
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"
nipkow@26271
   273
by (simp add: converse_def)
berghofe@12905
   274
nipkow@13343
   275
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"
nipkow@26271
   276
by (simp add: converse_def)
berghofe@12905
   277
berghofe@12905
   278
lemma converseE [elim!]:
berghofe@12905
   279
  "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"
wenzelm@12913
   280
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
nipkow@26271
   281
by (unfold converse_def) (iprover elim!: CollectE splitE bexE)
berghofe@12905
   282
berghofe@12905
   283
lemma converse_converse [simp]: "(r^-1)^-1 = r"
nipkow@26271
   284
by (unfold converse_def) blast
berghofe@12905
   285
berghofe@12905
   286
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"
nipkow@26271
   287
by blast
berghofe@12905
   288
huffman@19228
   289
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"
nipkow@26271
   290
by blast
huffman@19228
   291
huffman@19228
   292
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"
nipkow@26271
   293
by blast
huffman@19228
   294
huffman@19228
   295
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"
nipkow@26271
   296
by fast
huffman@19228
   297
huffman@19228
   298
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"
nipkow@26271
   299
by blast
huffman@19228
   300
berghofe@12905
   301
lemma converse_Id [simp]: "Id^-1 = Id"
nipkow@26271
   302
by blast
berghofe@12905
   303
wenzelm@12913
   304
lemma converse_diag [simp]: "(diag A)^-1 = diag A"
nipkow@26271
   305
by blast
berghofe@12905
   306
huffman@19228
   307
lemma refl_converse [simp]: "refl A (converse r) = refl A r"
nipkow@26271
   308
by (unfold refl_def) auto
berghofe@12905
   309
huffman@19228
   310
lemma sym_converse [simp]: "sym (converse r) = sym r"
nipkow@26271
   311
by (unfold sym_def) blast
huffman@19228
   312
huffman@19228
   313
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
nipkow@26271
   314
by (unfold antisym_def) blast
berghofe@12905
   315
huffman@19228
   316
lemma trans_converse [simp]: "trans (converse r) = trans r"
nipkow@26271
   317
by (unfold trans_def) blast
berghofe@12905
   318
huffman@19228
   319
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"
nipkow@26271
   320
by (unfold sym_def) fast
huffman@19228
   321
huffman@19228
   322
lemma sym_Un_converse: "sym (r \<union> r^-1)"
nipkow@26271
   323
by (unfold sym_def) blast
huffman@19228
   324
huffman@19228
   325
lemma sym_Int_converse: "sym (r \<inter> r^-1)"
nipkow@26271
   326
by (unfold sym_def) blast
huffman@19228
   327
wenzelm@12913
   328
berghofe@12905
   329
subsection {* Domain *}
berghofe@12905
   330
paulson@24286
   331
declare Domain_def [noatp]
paulson@24286
   332
berghofe@12905
   333
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"
nipkow@26271
   334
by (unfold Domain_def) blast
berghofe@12905
   335
berghofe@12905
   336
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"
nipkow@26271
   337
by (iprover intro!: iffD2 [OF Domain_iff])
berghofe@12905
   338
berghofe@12905
   339
lemma DomainE [elim!]:
berghofe@12905
   340
  "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
nipkow@26271
   341
by (iprover dest!: iffD1 [OF Domain_iff])
berghofe@12905
   342
berghofe@12905
   343
lemma Domain_empty [simp]: "Domain {} = {}"
nipkow@26271
   344
by blast
berghofe@12905
   345
berghofe@12905
   346
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"
nipkow@26271
   347
by blast
berghofe@12905
   348
berghofe@12905
   349
lemma Domain_Id [simp]: "Domain Id = UNIV"
nipkow@26271
   350
by blast
berghofe@12905
   351
berghofe@12905
   352
lemma Domain_diag [simp]: "Domain (diag A) = A"
nipkow@26271
   353
by blast
berghofe@12905
   354
paulson@13830
   355
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"
nipkow@26271
   356
by blast
berghofe@12905
   357
paulson@13830
   358
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"
nipkow@26271
   359
by blast
berghofe@12905
   360
wenzelm@12913
   361
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"
nipkow@26271
   362
by blast
berghofe@12905
   363
paulson@13830
   364
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"
nipkow@26271
   365
by blast
nipkow@26271
   366
nipkow@26271
   367
lemma Domain_converse[simp]: "Domain(r^-1) = Range r"
nipkow@26271
   368
by(auto simp:Range_def)
berghofe@12905
   369
wenzelm@12913
   370
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"
nipkow@26271
   371
by blast
berghofe@12905
   372
paulson@22172
   373
lemma fst_eq_Domain: "fst ` R = Domain R";
nipkow@26271
   374
by (auto intro!:image_eqI)
paulson@22172
   375
berghofe@12905
   376
berghofe@12905
   377
subsection {* Range *}
berghofe@12905
   378
berghofe@12905
   379
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"
nipkow@26271
   380
by (simp add: Domain_def Range_def)
berghofe@12905
   381
berghofe@12905
   382
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"
nipkow@26271
   383
by (unfold Range_def) (iprover intro!: converseI DomainI)
berghofe@12905
   384
berghofe@12905
   385
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
nipkow@26271
   386
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)
berghofe@12905
   387
berghofe@12905
   388
lemma Range_empty [simp]: "Range {} = {}"
nipkow@26271
   389
by blast
berghofe@12905
   390
berghofe@12905
   391
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"
nipkow@26271
   392
by blast
berghofe@12905
   393
berghofe@12905
   394
lemma Range_Id [simp]: "Range Id = UNIV"
nipkow@26271
   395
by blast
berghofe@12905
   396
berghofe@12905
   397
lemma Range_diag [simp]: "Range (diag A) = A"
nipkow@26271
   398
by auto
berghofe@12905
   399
paulson@13830
   400
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"
nipkow@26271
   401
by blast
berghofe@12905
   402
paulson@13830
   403
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"
nipkow@26271
   404
by blast
berghofe@12905
   405
wenzelm@12913
   406
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"
nipkow@26271
   407
by blast
berghofe@12905
   408
paulson@13830
   409
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"
nipkow@26271
   410
by blast
nipkow@26271
   411
nipkow@26271
   412
lemma Range_converse[simp]: "Range(r^-1) = Domain r"
nipkow@26271
   413
by blast
berghofe@12905
   414
paulson@22172
   415
lemma snd_eq_Range: "snd ` R = Range R";
nipkow@26271
   416
by (auto intro!:image_eqI)
nipkow@26271
   417
nipkow@26271
   418
nipkow@26271
   419
subsection {* Field *}
nipkow@26271
   420
nipkow@26271
   421
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s"
nipkow@26271
   422
by(auto simp:Field_def Domain_def Range_def)
nipkow@26271
   423
nipkow@26271
   424
lemma Field_empty[simp]: "Field {} = {}"
nipkow@26271
   425
by(auto simp:Field_def)
nipkow@26271
   426
nipkow@26271
   427
lemma Field_insert[simp]: "Field (insert (a,b) r) = {a,b} \<union> Field r"
nipkow@26271
   428
by(auto simp:Field_def)
nipkow@26271
   429
nipkow@26271
   430
lemma Field_Un[simp]: "Field (r \<union> s) = Field r \<union> Field s"
nipkow@26271
   431
by(auto simp:Field_def)
nipkow@26271
   432
nipkow@26271
   433
lemma Field_Union[simp]: "Field (\<Union>R) = \<Union>(Field ` R)"
nipkow@26271
   434
by(auto simp:Field_def)
nipkow@26271
   435
nipkow@26271
   436
lemma Field_converse[simp]: "Field(r^-1) = Field r"
nipkow@26271
   437
by(auto simp:Field_def)
paulson@22172
   438
berghofe@12905
   439
berghofe@12905
   440
subsection {* Image of a set under a relation *}
berghofe@12905
   441
paulson@24286
   442
declare Image_def [noatp]
paulson@24286
   443
wenzelm@12913
   444
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
nipkow@26271
   445
by (simp add: Image_def)
berghofe@12905
   446
wenzelm@12913
   447
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
nipkow@26271
   448
by (simp add: Image_def)
berghofe@12905
   449
wenzelm@12913
   450
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
nipkow@26271
   451
by (rule Image_iff [THEN trans]) simp
berghofe@12905
   452
paulson@24286
   453
lemma ImageI [intro,noatp]: "(a, b) : r ==> a : A ==> b : r``A"
nipkow@26271
   454
by (unfold Image_def) blast
berghofe@12905
   455
berghofe@12905
   456
lemma ImageE [elim!]:
wenzelm@12913
   457
    "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
nipkow@26271
   458
by (unfold Image_def) (iprover elim!: CollectE bexE)
berghofe@12905
   459
berghofe@12905
   460
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
berghofe@12905
   461
  -- {* This version's more effective when we already have the required @{text a} *}
nipkow@26271
   462
by blast
berghofe@12905
   463
berghofe@12905
   464
lemma Image_empty [simp]: "R``{} = {}"
nipkow@26271
   465
by blast
berghofe@12905
   466
berghofe@12905
   467
lemma Image_Id [simp]: "Id `` A = A"
nipkow@26271
   468
by blast
berghofe@12905
   469
paulson@13830
   470
lemma Image_diag [simp]: "diag A `` B = A \<inter> B"
nipkow@26271
   471
by blast
paulson@13830
   472
paulson@13830
   473
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
nipkow@26271
   474
by blast
berghofe@12905
   475
paulson@13830
   476
lemma Image_Int_eq:
paulson@13830
   477
     "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
nipkow@26271
   478
by (simp add: single_valued_def, blast) 
berghofe@12905
   479
paulson@13830
   480
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
nipkow@26271
   481
by blast
berghofe@12905
   482
paulson@13812
   483
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
nipkow@26271
   484
by blast
paulson@13812
   485
wenzelm@12913
   486
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
nipkow@26271
   487
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
berghofe@12905
   488
paulson@13830
   489
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
berghofe@12905
   490
  -- {* NOT suitable for rewriting *}
nipkow@26271
   491
by blast
berghofe@12905
   492
wenzelm@12913
   493
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
nipkow@26271
   494
by blast
berghofe@12905
   495
paulson@13830
   496
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
nipkow@26271
   497
by blast
paulson@13830
   498
paulson@13830
   499
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
nipkow@26271
   500
by blast
berghofe@12905
   501
paulson@13830
   502
text{*Converse inclusion requires some assumptions*}
paulson@13830
   503
lemma Image_INT_eq:
paulson@13830
   504
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
paulson@13830
   505
apply (rule equalityI)
paulson@13830
   506
 apply (rule Image_INT_subset) 
paulson@13830
   507
apply  (simp add: single_valued_def, blast)
paulson@13830
   508
done
berghofe@12905
   509
wenzelm@12913
   510
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
nipkow@26271
   511
by blast
berghofe@12905
   512
berghofe@12905
   513
wenzelm@12913
   514
subsection {* Single valued relations *}
wenzelm@12913
   515
wenzelm@12913
   516
lemma single_valuedI:
berghofe@12905
   517
  "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
nipkow@26271
   518
by (unfold single_valued_def)
berghofe@12905
   519
berghofe@12905
   520
lemma single_valuedD:
berghofe@12905
   521
  "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
nipkow@26271
   522
by (simp add: single_valued_def)
berghofe@12905
   523
huffman@19228
   524
lemma single_valued_rel_comp:
huffman@19228
   525
  "single_valued r ==> single_valued s ==> single_valued (r O s)"
nipkow@26271
   526
by (unfold single_valued_def) blast
huffman@19228
   527
huffman@19228
   528
lemma single_valued_subset:
huffman@19228
   529
  "r \<subseteq> s ==> single_valued s ==> single_valued r"
nipkow@26271
   530
by (unfold single_valued_def) blast
huffman@19228
   531
huffman@19228
   532
lemma single_valued_Id [simp]: "single_valued Id"
nipkow@26271
   533
by (unfold single_valued_def) blast
huffman@19228
   534
huffman@19228
   535
lemma single_valued_diag [simp]: "single_valued (diag A)"
nipkow@26271
   536
by (unfold single_valued_def) blast
huffman@19228
   537
berghofe@12905
   538
berghofe@12905
   539
subsection {* Graphs given by @{text Collect} *}
berghofe@12905
   540
berghofe@12905
   541
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
nipkow@26271
   542
by auto
berghofe@12905
   543
berghofe@12905
   544
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
nipkow@26271
   545
by auto
berghofe@12905
   546
berghofe@12905
   547
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
nipkow@26271
   548
by auto
berghofe@12905
   549
berghofe@12905
   550
wenzelm@12913
   551
subsection {* Inverse image *}
berghofe@12905
   552
huffman@19228
   553
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"
nipkow@26271
   554
by (unfold sym_def inv_image_def) blast
huffman@19228
   555
wenzelm@12913
   556
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
berghofe@12905
   557
  apply (unfold trans_def inv_image_def)
berghofe@12905
   558
  apply (simp (no_asm))
berghofe@12905
   559
  apply blast
berghofe@12905
   560
  done
berghofe@12905
   561
haftmann@23709
   562
haftmann@23709
   563
subsection {* Version of @{text lfp_induct} for binary relations *}
haftmann@23709
   564
haftmann@23709
   565
lemmas lfp_induct2 = 
haftmann@23709
   566
  lfp_induct_set [of "(a, b)", split_format (complete)]
haftmann@23709
   567
nipkow@1128
   568
end