src/HOL/simpdata.ML
author wenzelm
Fri Mar 28 19:43:54 2008 +0100 (2008-03-28)
changeset 26462 dac4e2bce00d
parent 26110 06eacfd8dd9f
child 26711 3a478bfa1650
permissions -rw-r--r--
avoid rebinding of existing facts;
haftmann@21163
     1
(*  Title:      HOL/simpdata.ML
haftmann@21163
     2
    ID:         $Id$
haftmann@21163
     3
    Author:     Tobias Nipkow
haftmann@21163
     4
    Copyright   1991  University of Cambridge
haftmann@21163
     5
haftmann@21163
     6
Instantiation of the generic simplifier for HOL.
haftmann@21163
     7
*)
haftmann@21163
     8
haftmann@21163
     9
(** tools setup **)
haftmann@21163
    10
haftmann@21163
    11
structure Quantifier1 = Quantifier1Fun
haftmann@21163
    12
(struct
haftmann@21163
    13
  (*abstract syntax*)
haftmann@21163
    14
  fun dest_eq ((c as Const("op =",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    15
    | dest_eq _ = NONE;
haftmann@21163
    16
  fun dest_conj ((c as Const("op &",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    17
    | dest_conj _ = NONE;
haftmann@21163
    18
  fun dest_imp ((c as Const("op -->",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    19
    | dest_imp _ = NONE;
haftmann@21163
    20
  val conj = HOLogic.conj
haftmann@21163
    21
  val imp  = HOLogic.imp
haftmann@21163
    22
  (*rules*)
wenzelm@22147
    23
  val iff_reflection = @{thm eq_reflection}
wenzelm@22147
    24
  val iffI = @{thm iffI}
wenzelm@22147
    25
  val iff_trans = @{thm trans}
wenzelm@22147
    26
  val conjI= @{thm conjI}
wenzelm@22147
    27
  val conjE= @{thm conjE}
wenzelm@22147
    28
  val impI = @{thm impI}
wenzelm@22147
    29
  val mp   = @{thm mp}
wenzelm@22147
    30
  val uncurry = @{thm uncurry}
wenzelm@22147
    31
  val exI  = @{thm exI}
wenzelm@22147
    32
  val exE  = @{thm exE}
wenzelm@22147
    33
  val iff_allI = @{thm iff_allI}
wenzelm@22147
    34
  val iff_exI = @{thm iff_exI}
wenzelm@22147
    35
  val all_comm = @{thm all_comm}
wenzelm@22147
    36
  val ex_comm = @{thm ex_comm}
haftmann@21163
    37
end);
haftmann@21163
    38
haftmann@21551
    39
structure Simpdata =
haftmann@21163
    40
struct
haftmann@21163
    41
wenzelm@22147
    42
fun mk_meta_eq r = r RS @{thm eq_reflection};
haftmann@21163
    43
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r;
haftmann@21163
    44
wenzelm@22147
    45
fun mk_eq th = case concl_of th
haftmann@21163
    46
  (*expects Trueprop if not == *)
haftmann@21551
    47
  of Const ("==",_) $ _ $ _ => th
haftmann@21551
    48
   | _ $ (Const ("op =", _) $ _ $ _) => mk_meta_eq th
wenzelm@22147
    49
   | _ $ (Const ("Not", _) $ _) => th RS @{thm Eq_FalseI}
wenzelm@22147
    50
   | _ => th RS @{thm Eq_TrueI}
haftmann@21163
    51
wenzelm@22147
    52
fun mk_eq_True r =
wenzelm@22147
    53
  SOME (r RS @{thm meta_eq_to_obj_eq} RS @{thm Eq_TrueI}) handle Thm.THM _ => NONE;
haftmann@21163
    54
haftmann@21163
    55
(* Produce theorems of the form
haftmann@21163
    56
  (P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y)
haftmann@21163
    57
*)
haftmann@22838
    58
wenzelm@22147
    59
fun lift_meta_eq_to_obj_eq i st =
haftmann@21163
    60
  let
haftmann@21163
    61
    fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q
haftmann@21163
    62
      | count_imp _ = 0;
haftmann@21163
    63
    val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1)))
wenzelm@22147
    64
  in if j = 0 then @{thm meta_eq_to_obj_eq}
haftmann@21163
    65
    else
haftmann@21163
    66
      let
haftmann@21163
    67
        val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
haftmann@21163
    68
        fun mk_simp_implies Q = foldr (fn (R, S) =>
haftmann@21163
    69
          Const ("HOL.simp_implies", propT --> propT --> propT) $ R $ S) Q Ps
haftmann@21163
    70
        val aT = TFree ("'a", HOLogic.typeS);
haftmann@21163
    71
        val x = Free ("x", aT);
haftmann@21163
    72
        val y = Free ("y", aT)
haftmann@21163
    73
      in Goal.prove_global (Thm.theory_of_thm st) []
haftmann@21163
    74
        [mk_simp_implies (Logic.mk_equals (x, y))]
haftmann@21163
    75
        (mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y))))
haftmann@21163
    76
        (fn prems => EVERY
wenzelm@22147
    77
         [rewrite_goals_tac @{thms simp_implies_def},
wenzelm@22147
    78
          REPEAT (ares_tac (@{thm meta_eq_to_obj_eq} ::
wenzelm@22147
    79
            map (rewrite_rule @{thms simp_implies_def}) prems) 1)])
haftmann@21163
    80
      end
haftmann@21163
    81
  end;
haftmann@21163
    82
haftmann@21163
    83
(*Congruence rules for = (instead of ==)*)
haftmann@21163
    84
fun mk_meta_cong rl = zero_var_indexes
haftmann@21163
    85
  (let val rl' = Seq.hd (TRYALL (fn i => fn st =>
haftmann@21163
    86
     rtac (lift_meta_eq_to_obj_eq i st) i st) rl)
haftmann@21163
    87
   in mk_meta_eq rl' handle THM _ =>
haftmann@21163
    88
     if can Logic.dest_equals (concl_of rl') then rl'
haftmann@21163
    89
     else error "Conclusion of congruence rules must be =-equality"
haftmann@21163
    90
   end);
haftmann@21163
    91
haftmann@21163
    92
fun mk_atomize pairs =
haftmann@21163
    93
  let
wenzelm@21313
    94
    fun atoms thm =
wenzelm@21313
    95
      let
wenzelm@21313
    96
        fun res th = map (fn rl => th RS rl);   (*exception THM*)
wenzelm@21313
    97
        fun res_fixed rls =
wenzelm@21313
    98
          if Thm.maxidx_of (Thm.adjust_maxidx_thm ~1 thm) = ~1 then res thm rls
wenzelm@21313
    99
          else Variable.trade (K (fn [thm'] => res thm' rls)) (Variable.thm_context thm) [thm];
wenzelm@21313
   100
      in
wenzelm@21313
   101
        case concl_of thm
wenzelm@21313
   102
          of Const ("Trueprop", _) $ p => (case head_of p
wenzelm@21313
   103
            of Const (a, _) => (case AList.lookup (op =) pairs a
wenzelm@21313
   104
              of SOME rls => (maps atoms (res_fixed rls) handle THM _ => [thm])
wenzelm@21313
   105
              | NONE => [thm])
wenzelm@21313
   106
            | _ => [thm])
wenzelm@21313
   107
          | _ => [thm]
wenzelm@21313
   108
      end;
haftmann@21163
   109
  in atoms end;
haftmann@21163
   110
haftmann@21163
   111
fun mksimps pairs =
wenzelm@21313
   112
  map_filter (try mk_eq) o mk_atomize pairs o gen_all;
haftmann@21163
   113
wenzelm@22147
   114
fun unsafe_solver_tac prems =
wenzelm@22147
   115
  (fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
wenzelm@22147
   116
  FIRST' [resolve_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems), atac,
wenzelm@22147
   117
    etac @{thm FalseE}];
wenzelm@22147
   118
haftmann@21163
   119
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
haftmann@21163
   120
haftmann@22838
   121
haftmann@21163
   122
(*No premature instantiation of variables during simplification*)
wenzelm@22147
   123
fun safe_solver_tac prems =
wenzelm@22147
   124
  (fn i => REPEAT_DETERM (match_tac @{thms simp_impliesI} i)) THEN'
wenzelm@22147
   125
  FIRST' [match_tac (reflexive_thm :: @{thm TrueI} :: @{thm refl} :: prems),
wenzelm@22147
   126
         eq_assume_tac, ematch_tac @{thms FalseE}];
wenzelm@22147
   127
haftmann@21163
   128
val safe_solver = mk_solver "HOL safe" safe_solver_tac;
haftmann@21163
   129
haftmann@21163
   130
structure SplitterData =
haftmann@21163
   131
struct
haftmann@21163
   132
  structure Simplifier = Simplifier
haftmann@21551
   133
  val mk_eq           = mk_eq
wenzelm@22147
   134
  val meta_eq_to_iff  = @{thm meta_eq_to_obj_eq}
wenzelm@22147
   135
  val iffD            = @{thm iffD2}
wenzelm@22147
   136
  val disjE           = @{thm disjE}
wenzelm@22147
   137
  val conjE           = @{thm conjE}
wenzelm@22147
   138
  val exE             = @{thm exE}
wenzelm@22147
   139
  val contrapos       = @{thm contrapos_nn}
wenzelm@22147
   140
  val contrapos2      = @{thm contrapos_pp}
wenzelm@22147
   141
  val notnotD         = @{thm notnotD}
haftmann@21163
   142
end;
haftmann@21163
   143
haftmann@21163
   144
structure Splitter = SplitterFun(SplitterData);
haftmann@21163
   145
wenzelm@21674
   146
val split_tac        = Splitter.split_tac;
wenzelm@21674
   147
val split_inside_tac = Splitter.split_inside_tac;
wenzelm@21674
   148
wenzelm@21674
   149
val op addsplits     = Splitter.addsplits;
wenzelm@21674
   150
val op delsplits     = Splitter.delsplits;
wenzelm@21674
   151
val Addsplits        = Splitter.Addsplits;
wenzelm@21674
   152
val Delsplits        = Splitter.Delsplits;
wenzelm@21674
   153
wenzelm@21674
   154
haftmann@21163
   155
(* integration of simplifier with classical reasoner *)
haftmann@21163
   156
haftmann@21163
   157
structure Clasimp = ClasimpFun
haftmann@21163
   158
 (structure Simplifier = Simplifier and Splitter = Splitter
haftmann@21163
   159
  and Classical  = Classical and Blast = Blast
wenzelm@22147
   160
  val iffD1 = @{thm iffD1} val iffD2 = @{thm iffD2} val notE = @{thm notE});
wenzelm@21674
   161
open Clasimp;
haftmann@21163
   162
wenzelm@22128
   163
val _ = ML_Context.value_antiq "clasimpset"
wenzelm@22128
   164
  (Scan.succeed ("clasimpset", "Clasimp.local_clasimpset_of (ML_Context.the_local_context ())"));
wenzelm@22128
   165
haftmann@21163
   166
val mksimps_pairs =
wenzelm@22147
   167
  [("op -->", [@{thm mp}]), ("op &", [@{thm conjunct1}, @{thm conjunct2}]),
wenzelm@22147
   168
   ("All", [@{thm spec}]), ("True", []), ("False", []),
wenzelm@22147
   169
   ("HOL.If", [@{thm if_bool_eq_conj} RS @{thm iffD1}])];
haftmann@21163
   170
wenzelm@21674
   171
val HOL_basic_ss =
wenzelm@22147
   172
  Simplifier.theory_context @{theory} empty_ss
haftmann@21163
   173
    setsubgoaler asm_simp_tac
haftmann@21163
   174
    setSSolver safe_solver
haftmann@21163
   175
    setSolver unsafe_solver
haftmann@21163
   176
    setmksimps (mksimps mksimps_pairs)
haftmann@21163
   177
    setmkeqTrue mk_eq_True
haftmann@21163
   178
    setmkcong mk_meta_cong;
haftmann@21163
   179
wenzelm@21674
   180
fun hol_simplify rews = Simplifier.full_simplify (HOL_basic_ss addsimps rews);
haftmann@21163
   181
haftmann@21163
   182
fun unfold_tac ths =
wenzelm@21674
   183
  let val ss0 = Simplifier.clear_ss HOL_basic_ss addsimps ths
haftmann@21163
   184
  in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end;
haftmann@21163
   185
haftmann@21163
   186
val defALL_regroup =
wenzelm@22147
   187
  Simplifier.simproc @{theory}
haftmann@21163
   188
    "defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all;
haftmann@21163
   189
haftmann@21163
   190
val defEX_regroup =
wenzelm@22147
   191
  Simplifier.simproc @{theory}
haftmann@21163
   192
    "defined EX" ["EX x. P x"] Quantifier1.rearrange_ex;
haftmann@21163
   193
haftmann@21163
   194
wenzelm@24035
   195
val simpset_simprocs = HOL_basic_ss addsimprocs [defALL_regroup, defEX_regroup]
haftmann@21163
   196
wenzelm@21313
   197
end;
haftmann@21551
   198
haftmann@21551
   199
structure Splitter = Simpdata.Splitter;
haftmann@21551
   200
structure Clasimp = Simpdata.Clasimp;