src/Pure/tactic.ML
author paulson
Tue May 02 14:27:49 2006 +0200 (2006-05-02)
changeset 19532 dae447f2b0b4
parent 19482 9f11af8f7ef9
child 19743 0843210d3756
permissions -rw-r--r--
tidied and harmonized "params_of_state"
wenzelm@10805
     1
(*  Title:      Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@10805
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
wenzelm@10805
     6
Tactics.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@11774
     9
signature BASIC_TACTIC =
wenzelm@11774
    10
sig
wenzelm@10805
    11
  val ares_tac          : thm list -> int -> tactic
wenzelm@10805
    12
  val assume_tac        : int -> tactic
wenzelm@10805
    13
  val atac      : int ->tactic
wenzelm@10817
    14
  val bimatch_from_nets_tac:
paulson@1501
    15
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    16
  val bimatch_tac       : (bool*thm)list -> int -> tactic
wenzelm@10817
    17
  val biresolution_from_nets_tac:
wenzelm@10805
    18
        ('a list -> (bool * thm) list) ->
wenzelm@10805
    19
        bool -> 'a Net.net * 'a Net.net -> int -> tactic
wenzelm@10817
    20
  val biresolve_from_nets_tac:
paulson@1501
    21
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    22
  val biresolve_tac     : (bool*thm)list -> int -> tactic
wenzelm@10805
    23
  val build_net : thm list -> (int*thm) Net.net
paulson@1501
    24
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    25
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
wenzelm@10817
    26
  val compose_inst_tac  : (string*string)list -> (bool*thm*int) ->
paulson@3409
    27
                          int -> tactic
wenzelm@10817
    28
  val compose_tac       : (bool * thm * int) -> int -> tactic
wenzelm@10805
    29
  val cut_facts_tac     : thm list -> int -> tactic
paulson@13650
    30
  val cut_rules_tac     : thm list -> int -> tactic
wenzelm@10817
    31
  val cut_inst_tac      : (string*string)list -> thm -> int -> tactic
oheimb@7491
    32
  val datac             : thm -> int -> int -> tactic
wenzelm@10805
    33
  val defer_tac         : int -> tactic
wenzelm@10805
    34
  val distinct_subgoals_tac     : tactic
wenzelm@10805
    35
  val dmatch_tac        : thm list -> int -> tactic
wenzelm@10805
    36
  val dresolve_tac      : thm list -> int -> tactic
wenzelm@10817
    37
  val dres_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    38
  val dtac              : thm -> int ->tactic
oheimb@7491
    39
  val eatac             : thm -> int -> int -> tactic
wenzelm@10805
    40
  val etac              : thm -> int ->tactic
wenzelm@10817
    41
  val eq_assume_tac     : int -> tactic
wenzelm@10805
    42
  val ematch_tac        : thm list -> int -> tactic
wenzelm@10805
    43
  val eresolve_tac      : thm list -> int -> tactic
wenzelm@10805
    44
  val eres_inst_tac     : (string*string)list -> thm -> int -> tactic
oheimb@7491
    45
  val fatac             : thm -> int -> int -> tactic
wenzelm@10817
    46
  val filter_prems_tac  : (term -> bool) -> int -> tactic
wenzelm@10805
    47
  val filter_thms       : (term*term->bool) -> int*term*thm list -> thm list
wenzelm@10805
    48
  val filt_resolve_tac  : thm list -> int -> int -> tactic
wenzelm@10805
    49
  val flexflex_tac      : tactic
wenzelm@10805
    50
  val fold_goals_tac    : thm list -> tactic
wenzelm@10805
    51
  val fold_rule         : thm list -> thm -> thm
wenzelm@10805
    52
  val fold_tac          : thm list -> tactic
wenzelm@10817
    53
  val forward_tac       : thm list -> int -> tactic
wenzelm@10805
    54
  val forw_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    55
  val ftac              : thm -> int ->tactic
wenzelm@12320
    56
  val insert_tagged_brl : ('a * (bool * thm)) *
wenzelm@12320
    57
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    58
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@12320
    59
  val delete_tagged_brl : (bool * thm) *
wenzelm@12320
    60
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    61
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@10805
    62
  val is_fact           : thm -> bool
wenzelm@10805
    63
  val lessb             : (bool * thm) * (bool * thm) -> bool
wenzelm@10805
    64
  val lift_inst_rule    : thm * int * (string*string)list * thm -> thm
wenzelm@10805
    65
  val make_elim         : thm -> thm
wenzelm@10805
    66
  val match_from_net_tac        : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    67
  val match_tac : thm list -> int -> tactic
wenzelm@10805
    68
  val metacut_tac       : thm -> int -> tactic
wenzelm@10805
    69
  val net_bimatch_tac   : (bool*thm) list -> int -> tactic
wenzelm@10805
    70
  val net_biresolve_tac : (bool*thm) list -> int -> tactic
wenzelm@10805
    71
  val net_match_tac     : thm list -> int -> tactic
wenzelm@10805
    72
  val net_resolve_tac   : thm list -> int -> tactic
wenzelm@10805
    73
  val norm_hhf_tac      : int -> tactic
wenzelm@10805
    74
  val prune_params_tac  : tactic
wenzelm@10805
    75
  val rename_params_tac : string list -> int -> tactic
wenzelm@10805
    76
  val rename_tac        : string -> int -> tactic
wenzelm@10805
    77
  val rename_last_tac   : string -> string list -> int -> tactic
wenzelm@10805
    78
  val resolve_from_net_tac      : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    79
  val resolve_tac       : thm list -> int -> tactic
wenzelm@10817
    80
  val res_inst_tac      : (string*string)list -> thm -> int -> tactic
wenzelm@10444
    81
  val rewrite_goal_tac  : thm list -> int -> tactic
wenzelm@3575
    82
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@10805
    83
  val rewrite_rule      : thm list -> thm -> thm
wenzelm@10805
    84
  val rewrite_goals_tac : thm list -> tactic
wenzelm@10805
    85
  val rewrite_tac       : thm list -> tactic
wenzelm@17968
    86
  val asm_rewrite_goal_tac: bool * bool * bool -> (simpset -> tactic) -> simpset -> int -> tactic
wenzelm@10805
    87
  val rewtac            : thm -> tactic
wenzelm@10805
    88
  val rotate_tac        : int -> int -> tactic
wenzelm@10805
    89
  val rtac              : thm -> int -> tactic
wenzelm@10805
    90
  val rule_by_tactic    : tactic -> thm -> thm
wenzelm@10805
    91
  val solve_tac         : thm list -> int -> tactic
wenzelm@10805
    92
  val subgoal_tac       : string -> int -> tactic
wenzelm@10805
    93
  val subgoals_tac      : string list -> int -> tactic
wenzelm@10805
    94
  val subgoals_of_brl   : bool * thm -> int
wenzelm@10805
    95
  val term_lift_inst_rule       :
berghofe@15797
    96
      thm * int * ((indexname * sort) * typ) list * ((indexname * typ) * term) list * thm
nipkow@1975
    97
      -> thm
oheimb@10347
    98
  val instantiate_tac   : (string * string) list -> tactic
wenzelm@10805
    99
  val thin_tac          : string -> int -> tactic
wenzelm@10805
   100
  val trace_goalno_tac  : (int -> tactic) -> int -> tactic
wenzelm@18500
   101
  val CONJUNCTS: tactic -> int -> tactic
wenzelm@18500
   102
  val PRECISE_CONJUNCTS: int -> tactic -> int -> tactic
wenzelm@11774
   103
end;
clasohm@0
   104
wenzelm@11774
   105
signature TACTIC =
wenzelm@11774
   106
sig
wenzelm@11774
   107
  include BASIC_TACTIC
wenzelm@11929
   108
  val innermost_params: int -> thm -> (string * typ) list
wenzelm@11774
   109
  val untaglist: (int * 'a) list -> 'a list
wenzelm@16809
   110
  val eq_kbrl: ('a * (bool * thm)) * ('a * (bool * thm)) -> bool
wenzelm@11774
   111
  val orderlist: (int * 'a) list -> 'a list
wenzelm@11774
   112
  val rewrite: bool -> thm list -> cterm -> thm
wenzelm@11774
   113
  val simplify: bool -> thm list -> thm -> thm
wenzelm@18471
   114
  val conjunction_tac: int -> tactic
wenzelm@18471
   115
  val precise_conjunction_tac: int -> int -> tactic
berghofe@15442
   116
  val compose_inst_tac' : (indexname * string) list -> (bool * thm * int) ->
berghofe@15442
   117
                          int -> tactic
berghofe@15442
   118
  val lift_inst_rule'   : thm * int * (indexname * string) list * thm -> thm
berghofe@15464
   119
  val eres_inst_tac'    : (indexname * string) list -> thm -> int -> tactic
berghofe@15442
   120
  val res_inst_tac'     : (indexname * string) list -> thm -> int -> tactic
berghofe@15797
   121
  val instantiate_tac'  : (indexname * string) list -> tactic
wenzelm@11774
   122
end;
clasohm@0
   123
wenzelm@11774
   124
structure Tactic: TACTIC =
clasohm@0
   125
struct
clasohm@0
   126
paulson@1501
   127
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
wenzelm@10817
   128
fun trace_goalno_tac tac i st =
wenzelm@4270
   129
    case Seq.pull(tac i st) of
skalberg@15531
   130
        NONE    => Seq.empty
wenzelm@12262
   131
      | seqcell => (tracing ("Subgoal " ^ string_of_int i ^ " selected");
wenzelm@10805
   132
                         Seq.make(fn()=> seqcell));
clasohm@0
   133
clasohm@0
   134
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   135
fun rule_by_tactic tac rl =
paulson@2688
   136
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
wenzelm@4270
   137
  in case Seq.pull (tac st)  of
skalberg@15531
   138
        NONE        => raise THM("rule_by_tactic", 0, [rl])
skalberg@15531
   139
      | SOME(st',_) => Thm.varifyT (thaw st')
paulson@2688
   140
  end;
wenzelm@10817
   141
clasohm@0
   142
(*** Basic tactics ***)
clasohm@0
   143
clasohm@0
   144
(*** The following fail if the goal number is out of range:
clasohm@0
   145
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   146
clasohm@0
   147
(*Solve subgoal i by assumption*)
clasohm@0
   148
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   149
clasohm@0
   150
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   151
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   152
clasohm@0
   153
(** Resolution/matching tactics **)
clasohm@0
   154
clasohm@0
   155
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   156
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   157
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   158
clasohm@0
   159
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   160
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   161
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   162
clasohm@0
   163
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   164
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   165
clasohm@0
   166
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   167
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   168
clasohm@0
   169
(*Resolution with elimination rules only*)
clasohm@0
   170
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   171
clasohm@0
   172
(*Forward reasoning using destruction rules.*)
clasohm@0
   173
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   174
clasohm@0
   175
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   176
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   177
clasohm@0
   178
(*Shorthand versions: for resolution with a single theorem*)
oheimb@7491
   179
val atac    =   assume_tac;
oheimb@7491
   180
fun rtac rl =  resolve_tac [rl];
oheimb@7491
   181
fun dtac rl = dresolve_tac [rl];
clasohm@1460
   182
fun etac rl = eresolve_tac [rl];
oheimb@7491
   183
fun ftac rl =  forward_tac [rl];
oheimb@7491
   184
fun datac thm j = EVERY' (dtac thm::replicate j atac);
oheimb@7491
   185
fun eatac thm j = EVERY' (etac thm::replicate j atac);
oheimb@7491
   186
fun fatac thm j = EVERY' (ftac thm::replicate j atac);
clasohm@0
   187
clasohm@0
   188
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   189
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   190
wenzelm@5263
   191
fun solve_tac rules = resolve_tac rules THEN_ALL_NEW assume_tac;
wenzelm@5263
   192
clasohm@0
   193
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   194
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   195
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   196
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   197
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   198
clasohm@0
   199
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   200
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   201
wenzelm@19056
   202
(*Remove duplicate subgoals.*)
wenzelm@10817
   203
fun distinct_subgoals_tac state =
wenzelm@19056
   204
  let
wenzelm@19056
   205
    val perm_tac = PRIMITIVE oo Thm.permute_prems;
paulson@3409
   206
wenzelm@19056
   207
    fun distinct_tac (i, k) =
wenzelm@19056
   208
      perm_tac 0 (i - 1) THEN
wenzelm@19056
   209
      perm_tac 1 (k - 1) THEN
wenzelm@19056
   210
      DETERM (PRIMSEQ (fn st =>
wenzelm@19056
   211
        Thm.compose_no_flatten false (st, 0) 1
wenzelm@19056
   212
          (Drule.incr_indexes st Drule.distinct_prems_rl))) THEN
wenzelm@19056
   213
      perm_tac 1 (1 - k) THEN
wenzelm@19056
   214
      perm_tac 0 (1 - i);
wenzelm@19056
   215
wenzelm@19056
   216
    fun distinct_subgoal_tac i st =
wenzelm@19056
   217
      (case Library.drop (i - 1, Thm.prems_of st) of
wenzelm@19056
   218
        [] => no_tac st
wenzelm@19056
   219
      | A :: Bs =>
wenzelm@19056
   220
          st |> EVERY (fold (fn (B, k) =>
wenzelm@19056
   221
            if A aconv B then cons (distinct_tac (i, k)) else I) (Bs ~~ (1 upto length Bs)) []));
wenzelm@19056
   222
wenzelm@19056
   223
    val goals = Thm.prems_of state;
wenzelm@19056
   224
    val dups = distinct (eq_fst (op aconv)) (goals ~~ (1 upto length goals));
wenzelm@19056
   225
  in EVERY (rev (map (distinct_subgoal_tac o snd) dups)) state end;
paulson@3409
   226
wenzelm@11929
   227
(*Determine print names of goal parameters (reversed)*)
wenzelm@11929
   228
fun innermost_params i st =
wenzelm@11929
   229
  let val (_, _, Bi, _) = dest_state (st, i)
wenzelm@11929
   230
  in rename_wrt_term Bi (Logic.strip_params Bi) end;
wenzelm@11929
   231
paulson@15453
   232
(*params of subgoal i as they are printed*)
paulson@19532
   233
fun params_of_state i st = rev (innermost_params i st);
wenzelm@16425
   234
paulson@15453
   235
(*read instantiations with respect to subgoal i of proof state st*)
paulson@15453
   236
fun read_insts_in_state (st, i, sinsts, rule) =
wenzelm@16425
   237
  let val thy = Thm.theory_of_thm st
paulson@19532
   238
      and params = params_of_state i st
wenzelm@16425
   239
      and rts = types_sorts rule and (types,sorts) = types_sorts st
haftmann@17271
   240
      fun types'(a, ~1) = (case AList.lookup (op =) params a of NONE => types (a, ~1) | sm => sm)
wenzelm@16425
   241
        | types' ixn = types ixn;
wenzelm@16425
   242
      val used = Drule.add_used rule (Drule.add_used st []);
wenzelm@16425
   243
  in read_insts thy rts (types',sorts) used sinsts end;
paulson@15453
   244
clasohm@0
   245
(*Lift and instantiate a rule wrt the given state and subgoal number *)
berghofe@15442
   246
fun lift_inst_rule' (st, i, sinsts, rule) =
paulson@15453
   247
let val (Tinsts,insts) = read_insts_in_state (st, i, sinsts, rule)
paulson@15453
   248
    and {maxidx,...} = rep_thm st
paulson@19532
   249
    and params = params_of_state i st
clasohm@0
   250
    val paramTs = map #2 params
clasohm@0
   251
    and inc = maxidx+1
wenzelm@16876
   252
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> Logic.incr_tvar inc T)
clasohm@0
   253
      | liftvar t = raise TERM("Variable expected", [t]);
wenzelm@10817
   254
    fun liftterm t = list_abs_free (params,
wenzelm@10805
   255
                                    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   256
    (*Lifts instantiation pair over params*)
lcp@230
   257
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
wenzelm@16876
   258
    val lifttvar = pairself (ctyp_fun (Logic.incr_tvar inc))
paulson@8129
   259
in Drule.instantiate (map lifttvar Tinsts, map liftpair insts)
wenzelm@18145
   260
                     (Thm.lift_rule (Thm.cprem_of st i) rule)
clasohm@0
   261
end;
clasohm@0
   262
berghofe@15442
   263
fun lift_inst_rule (st, i, sinsts, rule) = lift_inst_rule'
berghofe@15442
   264
  (st, i, map (apfst Syntax.indexname) sinsts, rule);
berghofe@15442
   265
nipkow@3984
   266
(*
nipkow@3984
   267
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   268
Bounds referring to parameters of the subgoal.
nipkow@3984
   269
nipkow@3984
   270
insts: [...,(vj,tj),...]
nipkow@3984
   271
nipkow@3984
   272
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   273
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   274
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   275
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   276
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   277
nipkow@3984
   278
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   279
    i.e. Tinsts is not applied to insts.
nipkow@3984
   280
*)
nipkow@1975
   281
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
wenzelm@16425
   282
let val {maxidx,thy,...} = rep_thm st
paulson@19532
   283
    val paramTs = map #2 (params_of_state i st)
nipkow@1966
   284
    and inc = maxidx+1
wenzelm@16876
   285
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> Logic.incr_tvar inc T)
nipkow@1975
   286
    (*lift only Var, not term, which must be lifted already*)
wenzelm@16425
   287
    fun liftpair (v,t) = (cterm_of thy (liftvar v), cterm_of thy t)
berghofe@15797
   288
    fun liftTpair (((a, i), S), T) =
wenzelm@16425
   289
      (ctyp_of thy (TVar ((a, i + inc), S)),
wenzelm@16876
   290
       ctyp_of thy (Logic.incr_tvar inc T))
paulson@8129
   291
in Drule.instantiate (map liftTpair Tinsts, map liftpair insts)
wenzelm@18145
   292
                     (Thm.lift_rule (Thm.cprem_of st i) rule)
nipkow@1966
   293
end;
clasohm@0
   294
clasohm@0
   295
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   296
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   297
clasohm@0
   298
(*compose version: arguments are as for bicompose.*)
berghofe@15442
   299
fun gen_compose_inst_tac instf sinsts (bires_flg, rule, nsubgoal) i st =
paulson@8977
   300
  if i > nprems_of st then no_tac st
paulson@8977
   301
  else st |>
berghofe@15442
   302
    (compose_tac (bires_flg, instf (st, i, sinsts, rule), nsubgoal) i
wenzelm@12262
   303
     handle TERM (msg,_)   => (warning msg;  no_tac)
wenzelm@12262
   304
          | THM  (msg,_,_) => (warning msg;  no_tac));
clasohm@0
   305
berghofe@15442
   306
val compose_inst_tac = gen_compose_inst_tac lift_inst_rule;
berghofe@15442
   307
val compose_inst_tac' = gen_compose_inst_tac lift_inst_rule';
berghofe@15442
   308
lcp@761
   309
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   310
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   311
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   312
paulson@2029
   313
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   314
  were introduced during type inference and still remain in the term at the
nipkow@952
   315
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   316
  goals.
lcp@761
   317
*)
clasohm@0
   318
fun res_inst_tac sinsts rule i =
clasohm@0
   319
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   320
berghofe@15442
   321
fun res_inst_tac' sinsts rule i =
berghofe@15442
   322
    compose_inst_tac' sinsts (false, rule, nprems_of rule) i;
berghofe@15442
   323
paulson@1501
   324
(*eresolve elimination version*)
clasohm@0
   325
fun eres_inst_tac sinsts rule i =
clasohm@0
   326
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   327
berghofe@15464
   328
fun eres_inst_tac' sinsts rule i =
berghofe@15464
   329
    compose_inst_tac' sinsts (true, rule, nprems_of rule) i;
berghofe@15464
   330
lcp@270
   331
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   332
  increment revcut_rl instead.*)
wenzelm@10817
   333
fun make_elim_preserve rl =
lcp@270
   334
  let val {maxidx,...} = rep_thm rl
wenzelm@16425
   335
      fun cvar ixn = cterm_of ProtoPure.thy (Var(ixn,propT));
wenzelm@10817
   336
      val revcut_rl' =
wenzelm@10805
   337
          instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
wenzelm@10805
   338
                             (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   339
      val arg = (false, rl, nprems_of rl)
wenzelm@4270
   340
      val [th] = Seq.list_of (bicompose false arg 1 revcut_rl')
clasohm@0
   341
  in  th  end
clasohm@0
   342
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   343
lcp@270
   344
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   345
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   346
lcp@270
   347
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   348
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   349
lcp@270
   350
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   351
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   352
oheimb@10347
   353
(*instantiate variables in the whole state*)
oheimb@10347
   354
val instantiate_tac = PRIMITIVE o read_instantiate;
oheimb@10347
   355
berghofe@15797
   356
val instantiate_tac' = PRIMITIVE o Drule.read_instantiate';
berghofe@15797
   357
paulson@1951
   358
(*Deletion of an assumption*)
paulson@1951
   359
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   360
lcp@270
   361
(*** Applications of cut_rl ***)
clasohm@0
   362
clasohm@0
   363
(*Used by metacut_tac*)
clasohm@0
   364
fun bires_cut_tac arg i =
clasohm@1460
   365
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   366
clasohm@0
   367
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   368
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   369
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   370
clasohm@0
   371
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   372
fun is_fact rl =
clasohm@0
   373
    case prems_of rl of
wenzelm@10805
   374
        [] => true  |  _::_ => false;
clasohm@0
   375
paulson@13650
   376
(*"Cut" a list of rules into the goal.  Their premises will become new
paulson@13650
   377
  subgoals.*)
paulson@13650
   378
fun cut_rules_tac ths i = EVERY (map (fn th => metacut_tac th i) ths);
paulson@13650
   379
paulson@13650
   380
(*As above, but inserts only facts (unconditional theorems);
paulson@13650
   381
  generates no additional subgoals. *)
skalberg@15570
   382
fun cut_facts_tac ths = cut_rules_tac  (List.filter is_fact ths);
clasohm@0
   383
clasohm@0
   384
(*Introduce the given proposition as a lemma and subgoal*)
wenzelm@12847
   385
fun subgoal_tac sprop =
wenzelm@12847
   386
  DETERM o res_inst_tac [("psi", sprop)] cut_rl THEN' SUBGOAL (fn (prop, _) =>
wenzelm@12847
   387
    let val concl' = Logic.strip_assums_concl prop in
paulson@4178
   388
      if null (term_tvars concl') then ()
paulson@4178
   389
      else warning"Type variables in new subgoal: add a type constraint?";
wenzelm@12847
   390
      all_tac
wenzelm@12847
   391
  end);
clasohm@0
   392
lcp@439
   393
(*Introduce a list of lemmas and subgoals*)
lcp@439
   394
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   395
clasohm@0
   396
clasohm@0
   397
(**** Indexing and filtering of theorems ****)
clasohm@0
   398
clasohm@0
   399
(*Returns the list of potentially resolvable theorems for the goal "prem",
wenzelm@10805
   400
        using the predicate  could(subgoal,concl).
clasohm@0
   401
  Resulting list is no longer than "limit"*)
clasohm@0
   402
fun filter_thms could (limit, prem, ths) =
clasohm@0
   403
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   404
      fun filtr (limit, []) = []
wenzelm@10805
   405
        | filtr (limit, th::ths) =
wenzelm@10805
   406
            if limit=0 then  []
wenzelm@10805
   407
            else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
wenzelm@10805
   408
            else filtr(limit,ths)
clasohm@0
   409
  in  filtr(limit,ths)  end;
clasohm@0
   410
clasohm@0
   411
clasohm@0
   412
(*** biresolution and resolution using nets ***)
clasohm@0
   413
clasohm@0
   414
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   415
clasohm@0
   416
(*insert tags*)
clasohm@0
   417
fun taglist k [] = []
clasohm@0
   418
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   419
clasohm@0
   420
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   421
fun untaglist [] = []
clasohm@0
   422
  | untaglist [(k:int,x)] = [x]
clasohm@0
   423
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   424
      if k=k' then untaglist rest
clasohm@0
   425
      else    x :: untaglist rest;
clasohm@0
   426
clasohm@0
   427
(*return list elements in original order*)
wenzelm@10817
   428
fun orderlist kbrls = untaglist (sort (int_ord o pairself fst) kbrls);
clasohm@0
   429
clasohm@0
   430
(*insert one tagged brl into the pair of nets*)
wenzelm@12320
   431
fun insert_tagged_brl (kbrl as (k, (eres, th)), (inet, enet)) =
wenzelm@12320
   432
  if eres then
wenzelm@12320
   433
    (case try Thm.major_prem_of th of
wenzelm@16809
   434
      SOME prem => (inet, Net.insert_term (K false) (prem, kbrl) enet)
skalberg@15531
   435
    | NONE => error "insert_tagged_brl: elimination rule with no premises")
wenzelm@16809
   436
  else (Net.insert_term (K false) (concl_of th, kbrl) inet, enet);
clasohm@0
   437
clasohm@0
   438
(*build a pair of nets for biresolution*)
wenzelm@10817
   439
fun build_netpair netpair brls =
skalberg@15574
   440
    foldr insert_tagged_brl netpair (taglist 1 brls);
clasohm@0
   441
wenzelm@12320
   442
(*delete one kbrl from the pair of nets*)
wenzelm@16809
   443
fun eq_kbrl ((_, (_, th)), (_, (_, th'))) = Drule.eq_thm_prop (th, th')
wenzelm@16809
   444
wenzelm@12320
   445
fun delete_tagged_brl (brl as (eres, th), (inet, enet)) =
paulson@13925
   446
  (if eres then
wenzelm@12320
   447
    (case try Thm.major_prem_of th of
wenzelm@16809
   448
      SOME prem => (inet, Net.delete_term eq_kbrl (prem, ((), brl)) enet)
skalberg@15531
   449
    | NONE => (inet, enet))  (*no major premise: ignore*)
wenzelm@16809
   450
  else (Net.delete_term eq_kbrl (Thm.concl_of th, ((), brl)) inet, enet))
paulson@13925
   451
  handle Net.DELETE => (inet,enet);
paulson@1801
   452
paulson@1801
   453
wenzelm@10817
   454
(*biresolution using a pair of nets rather than rules.
paulson@3706
   455
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   456
    boolean "match" indicates matching or unification.*)
paulson@3706
   457
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   458
  SUBGOAL
clasohm@0
   459
    (fn (prem,i) =>
clasohm@0
   460
      let val hyps = Logic.strip_assums_hyp prem
wenzelm@10817
   461
          and concl = Logic.strip_assums_concl prem
wenzelm@19482
   462
          val kbrls = Net.unify_term inet concl @ maps (Net.unify_term enet) hyps
paulson@3706
   463
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   464
paulson@3706
   465
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   466
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   467
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   468
clasohm@0
   469
(*fast versions using nets internally*)
lcp@670
   470
val net_biresolve_tac =
lcp@670
   471
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   472
lcp@670
   473
val net_bimatch_tac =
lcp@670
   474
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   475
clasohm@0
   476
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   477
clasohm@0
   478
(*insert one tagged rl into the net*)
clasohm@0
   479
fun insert_krl (krl as (k,th), net) =
wenzelm@16809
   480
    Net.insert_term (K false) (concl_of th, krl) net;
clasohm@0
   481
clasohm@0
   482
(*build a net of rules for resolution*)
wenzelm@10817
   483
fun build_net rls =
skalberg@15574
   484
    foldr insert_krl Net.empty (taglist 1 rls);
clasohm@0
   485
clasohm@0
   486
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   487
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   488
  SUBGOAL
clasohm@0
   489
    (fn (prem,i) =>
clasohm@0
   490
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
wenzelm@10817
   491
      in
wenzelm@10817
   492
         if pred krls
clasohm@0
   493
         then PRIMSEQ
wenzelm@10805
   494
                (biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   495
         else no_tac
clasohm@0
   496
      end);
clasohm@0
   497
clasohm@0
   498
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   499
   which means more than maxr rules are unifiable.      *)
wenzelm@10817
   500
fun filt_resolve_tac rules maxr =
clasohm@0
   501
    let fun pred krls = length krls <= maxr
clasohm@0
   502
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   503
clasohm@0
   504
(*versions taking pre-built nets*)
clasohm@0
   505
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   506
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   507
clasohm@0
   508
(*fast versions using nets internally*)
clasohm@0
   509
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   510
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   511
clasohm@0
   512
clasohm@0
   513
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   514
clasohm@0
   515
(*The number of new subgoals produced by the brule*)
lcp@1077
   516
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   517
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   518
clasohm@0
   519
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   520
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   521
clasohm@0
   522
clasohm@0
   523
(*** Meta-Rewriting Tactics ***)
clasohm@0
   524
wenzelm@3575
   525
val simple_prover =
wenzelm@15021
   526
  SINGLE o (fn ss => ALLGOALS (resolve_tac (MetaSimplifier.prems_of_ss ss)));
wenzelm@3575
   527
wenzelm@11768
   528
val rewrite = MetaSimplifier.rewrite_aux simple_prover;
wenzelm@11768
   529
val simplify = MetaSimplifier.simplify_aux simple_prover;
wenzelm@11768
   530
val rewrite_rule = simplify true;
berghofe@10415
   531
val rewrite_goals_rule = MetaSimplifier.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   532
wenzelm@17968
   533
(*Rewrite subgoal i only.  SELECT_GOAL avoids inefficiencies in goals_conv.*)
wenzelm@17968
   534
fun asm_rewrite_goal_tac mode prover_tac ss =
wenzelm@17968
   535
  SELECT_GOAL
wenzelm@17968
   536
    (PRIMITIVE (MetaSimplifier.rewrite_goal_rule mode (SINGLE o prover_tac) ss 1));
wenzelm@17968
   537
wenzelm@10444
   538
fun rewrite_goal_tac rews =
wenzelm@17892
   539
  let val ss = MetaSimplifier.empty_ss addsimps rews in
wenzelm@17968
   540
    fn i => fn st => asm_rewrite_goal_tac (true, false, false) (K no_tac)
wenzelm@17892
   541
      (MetaSimplifier.theory_context (Thm.theory_of_thm st) ss) i st
wenzelm@17892
   542
  end;
wenzelm@10444
   543
lcp@69
   544
(*Rewrite throughout proof state. *)
lcp@69
   545
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   546
clasohm@0
   547
(*Rewrite subgoals only, not main goal. *)
lcp@69
   548
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@1460
   549
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   550
wenzelm@12782
   551
val norm_hhf_tac =
wenzelm@12782
   552
  rtac Drule.asm_rl  (*cheap approximation -- thanks to builtin Logic.flatten_params*)
wenzelm@12782
   553
  THEN' SUBGOAL (fn (t, i) =>
wenzelm@12801
   554
    if Drule.is_norm_hhf t then all_tac
wenzelm@12782
   555
    else rewrite_goal_tac [Drule.norm_hhf_eq] i);
wenzelm@10805
   556
clasohm@0
   557
paulson@1501
   558
(*** for folding definitions, handling critical pairs ***)
lcp@69
   559
lcp@69
   560
(*The depth of nesting in a term*)
lcp@69
   561
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   562
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   563
  | term_depth _ = 0;
lcp@69
   564
wenzelm@12801
   565
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
lcp@69
   566
lcp@69
   567
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   568
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   569
fun sort_lhs_depths defs =
haftmann@17496
   570
  let val keylist = AList.make (term_depth o lhs_of_thm) defs
wenzelm@19056
   571
      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
haftmann@17496
   572
  in map (AList.find (op =) keylist) keys end;
lcp@69
   573
wenzelm@7596
   574
val rev_defs = sort_lhs_depths o map symmetric;
lcp@69
   575
wenzelm@19473
   576
fun fold_rule defs = fold rewrite_rule (rev_defs defs);
wenzelm@7596
   577
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@7596
   578
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
lcp@69
   579
lcp@69
   580
lcp@69
   581
(*** Renaming of parameters in a subgoal
lcp@69
   582
     Names may contain letters, digits or primes and must be
lcp@69
   583
     separated by blanks ***)
clasohm@0
   584
wenzelm@9535
   585
fun rename_params_tac xs i =
wenzelm@14673
   586
  case Library.find_first (not o Syntax.is_identifier) xs of
skalberg@15531
   587
      SOME x => error ("Not an identifier: " ^ x)
wenzelm@16425
   588
    | NONE =>
paulson@13559
   589
       (if !Logic.auto_rename
wenzelm@16425
   590
         then (warning "Resetting Logic.auto_rename";
wenzelm@16425
   591
             Logic.auto_rename := false)
wenzelm@16425
   592
        else (); PRIMITIVE (rename_params_rule (xs, i)));
wenzelm@9535
   593
wenzelm@10817
   594
fun rename_tac str i =
wenzelm@10817
   595
  let val cs = Symbol.explode str in
wenzelm@4693
   596
  case #2 (take_prefix (Symbol.is_letdig orf Symbol.is_blank) cs) of
wenzelm@9535
   597
      [] => rename_params_tac (scanwords Symbol.is_letdig cs) i
clasohm@0
   598
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   599
  end;
clasohm@0
   600
paulson@1501
   601
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   602
  provided the string a, which represents a term, is an identifier. *)
wenzelm@10817
   603
fun rename_last_tac a sufs i =
clasohm@0
   604
  let val names = map (curry op^ a) sufs
clasohm@0
   605
  in  if Syntax.is_identifier a
clasohm@0
   606
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   607
      else all_tac
clasohm@0
   608
  end;
clasohm@0
   609
paulson@2043
   610
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   611
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   612
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   613
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   614
paulson@1501
   615
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   616
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   617
fun rotate_tac 0 i = all_tac
paulson@2672
   618
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   619
paulson@7248
   620
(*Rotates the given subgoal to be the last.*)
paulson@7248
   621
fun defer_tac i = PRIMITIVE (permute_prems (i-1) 1);
paulson@7248
   622
nipkow@5974
   623
(* remove premises that do not satisfy p; fails if all prems satisfy p *)
nipkow@5974
   624
fun filter_prems_tac p =
skalberg@15531
   625
  let fun Then NONE tac = SOME tac
skalberg@15531
   626
        | Then (SOME tac) tac' = SOME(tac THEN' tac');
wenzelm@19473
   627
      fun thins H (tac,n) =
nipkow@5974
   628
        if p H then (tac,n+1)
nipkow@5974
   629
        else (Then tac (rotate_tac n THEN' etac thin_rl),0);
nipkow@5974
   630
  in SUBGOAL(fn (subg,n) =>
nipkow@5974
   631
       let val Hs = Logic.strip_assums_hyp subg
wenzelm@19473
   632
       in case fst(fold thins Hs (NONE,0)) of
skalberg@15531
   633
            NONE => no_tac | SOME tac => tac n
nipkow@5974
   634
       end)
nipkow@5974
   635
  end;
nipkow@5974
   636
wenzelm@11961
   637
wenzelm@18471
   638
(* meta-level conjunction *)
wenzelm@18471
   639
wenzelm@18471
   640
val conj_tac = SUBGOAL (fn (goal, i) =>
wenzelm@19423
   641
  if can Logic.dest_conjunction goal then rtac Conjunction.conjunctionI i
wenzelm@18471
   642
  else no_tac);
wenzelm@18471
   643
wenzelm@18471
   644
val conjunction_tac = TRY o REPEAT_ALL_NEW conj_tac;
wenzelm@16425
   645
wenzelm@18471
   646
val precise_conjunction_tac =
wenzelm@18471
   647
  let
wenzelm@18471
   648
    fun tac 0 i = eq_assume_tac i
wenzelm@18471
   649
      | tac 1 i = SUBGOAL (K all_tac) i
wenzelm@18471
   650
      | tac n i = conj_tac i THEN TRY (fn st => tac (n - 1) (i + 1) st);
wenzelm@18471
   651
  in TRY oo tac end;
wenzelm@12139
   652
wenzelm@18500
   653
fun CONJUNCTS tac =
wenzelm@18500
   654
  SELECT_GOAL (conjunction_tac 1
wenzelm@18500
   655
    THEN tac
wenzelm@19423
   656
    THEN PRIMITIVE (Conjunction.uncurry ~1));
wenzelm@18500
   657
wenzelm@18500
   658
fun PRECISE_CONJUNCTS n tac =
wenzelm@18471
   659
  SELECT_GOAL (precise_conjunction_tac n 1
wenzelm@18209
   660
    THEN tac
wenzelm@19423
   661
    THEN PRIMITIVE (Conjunction.uncurry ~1));
wenzelm@18209
   662
clasohm@0
   663
end;
paulson@1501
   664
wenzelm@11774
   665
structure BasicTactic: BASIC_TACTIC = Tactic;
wenzelm@11774
   666
open BasicTactic;