src/HOL/Hilbert_Choice.thy
author paulson
Thu Sep 26 10:51:29 2002 +0200 (2002-09-26)
changeset 13585 db4005b40cc6
parent 12372 cd3a09c7dac9
child 13763 f94b569cd610
permissions -rw-r--r--
Converted Fun to Isar style.
Moved Pi, funcset, restrict from Fun.thy to Library/FuncSet.thy.
Renamed constant "Fun.op o" to "Fun.comp"
paulson@11451
     1
(*  Title:      HOL/Hilbert_Choice.thy
paulson@11451
     2
    ID:         $Id$
paulson@11451
     3
    Author:     Lawrence C Paulson
paulson@11451
     4
    Copyright   2001  University of Cambridge
wenzelm@12023
     5
*)
paulson@11451
     6
wenzelm@12023
     7
header {* Hilbert's epsilon-operator and everything to do with the Axiom of Choice *}
paulson@11451
     8
paulson@11451
     9
theory Hilbert_Choice = NatArith
paulson@11451
    10
files ("Hilbert_Choice_lemmas.ML") ("meson_lemmas.ML") ("Tools/meson.ML"):
paulson@11451
    11
wenzelm@12298
    12
wenzelm@12298
    13
subsection {* Hilbert's epsilon *}
wenzelm@12298
    14
paulson@11451
    15
consts
paulson@11451
    16
  Eps           :: "('a => bool) => 'a"
paulson@11451
    17
paulson@11451
    18
syntax (input)
wenzelm@12298
    19
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<epsilon>_./ _)" [0, 10] 10)
paulson@11451
    20
syntax (HOL)
wenzelm@12298
    21
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
paulson@11451
    22
syntax
wenzelm@12298
    23
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
paulson@11451
    24
translations
wenzelm@12298
    25
  "SOME x. P" == "Eps (%x. P)"
paulson@11451
    26
wenzelm@12298
    27
axioms
wenzelm@12298
    28
  someI: "P (x::'a) ==> P (SOME x. P x)"
paulson@11451
    29
paulson@11451
    30
wenzelm@12298
    31
constdefs
wenzelm@12298
    32
  inv :: "('a => 'b) => ('b => 'a)"
wenzelm@12298
    33
  "inv(f :: 'a => 'b) == %y. SOME x. f x = y"
paulson@11454
    34
wenzelm@12298
    35
  Inv :: "'a set => ('a => 'b) => ('b => 'a)"
wenzelm@12298
    36
  "Inv A f == %x. SOME y. y : A & f y = x"
paulson@11451
    37
paulson@11451
    38
paulson@11451
    39
use "Hilbert_Choice_lemmas.ML"
wenzelm@12372
    40
declare someI_ex [elim?];
wenzelm@12372
    41
paulson@13585
    42
lemma Inv_mem: "[| f ` A = B;  x \<in> B |] ==> Inv A f x \<in> A"
paulson@13585
    43
apply (unfold Inv_def)
paulson@13585
    44
apply (fast intro: someI2)
paulson@13585
    45
done
paulson@11451
    46
wenzelm@12298
    47
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"
wenzelm@12298
    48
  -- {* dynamically-scoped fact for TFL *}
wenzelm@12298
    49
  by (blast intro: someI)
paulson@11451
    50
wenzelm@12298
    51
wenzelm@12298
    52
subsection {* Least value operator *}
paulson@11451
    53
paulson@11451
    54
constdefs
wenzelm@12298
    55
  LeastM :: "['a => 'b::ord, 'a => bool] => 'a"
wenzelm@12298
    56
  "LeastM m P == SOME x. P x & (ALL y. P y --> m x <= m y)"
paulson@11451
    57
paulson@11451
    58
syntax
wenzelm@12298
    59
  "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
    60
translations
wenzelm@12298
    61
  "LEAST x WRT m. P" == "LeastM m (%x. P)"
paulson@11451
    62
paulson@11451
    63
lemma LeastMI2:
wenzelm@12298
    64
  "P x ==> (!!y. P y ==> m x <= m y)
wenzelm@12298
    65
    ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x)
wenzelm@12298
    66
    ==> Q (LeastM m P)"
wenzelm@12298
    67
  apply (unfold LeastM_def)
wenzelm@12298
    68
  apply (rule someI2_ex)
wenzelm@12298
    69
   apply blast
wenzelm@12298
    70
  apply blast
wenzelm@12298
    71
  done
paulson@11451
    72
paulson@11451
    73
lemma LeastM_equality:
wenzelm@12298
    74
  "P k ==> (!!x. P x ==> m k <= m x)
wenzelm@12298
    75
    ==> m (LEAST x WRT m. P x) = (m k::'a::order)"
wenzelm@12298
    76
  apply (rule LeastMI2)
wenzelm@12298
    77
    apply assumption
wenzelm@12298
    78
   apply blast
wenzelm@12298
    79
  apply (blast intro!: order_antisym)
wenzelm@12298
    80
  done
paulson@11451
    81
paulson@11454
    82
lemma wf_linord_ex_has_least:
wenzelm@12298
    83
  "wf r ==> ALL x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k
wenzelm@12298
    84
    ==> EX x. P x & (!y. P y --> (m x,m y):r^*)"
wenzelm@12298
    85
  apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])
wenzelm@12298
    86
  apply (drule_tac x = "m`Collect P" in spec)
wenzelm@12298
    87
  apply force
wenzelm@12298
    88
  done
paulson@11454
    89
paulson@11454
    90
lemma ex_has_least_nat:
wenzelm@12298
    91
    "P k ==> EX x. P x & (ALL y. P y --> m x <= (m y::nat))"
wenzelm@12298
    92
  apply (simp only: pred_nat_trancl_eq_le [symmetric])
wenzelm@12298
    93
  apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])
wenzelm@12298
    94
   apply (simp add: less_eq not_le_iff_less pred_nat_trancl_eq_le)
wenzelm@12298
    95
  apply assumption
wenzelm@12298
    96
  done
paulson@11454
    97
wenzelm@12298
    98
lemma LeastM_nat_lemma:
wenzelm@12298
    99
    "P k ==> P (LeastM m P) & (ALL y. P y --> m (LeastM m P) <= (m y::nat))"
wenzelm@12298
   100
  apply (unfold LeastM_def)
wenzelm@12298
   101
  apply (rule someI_ex)
wenzelm@12298
   102
  apply (erule ex_has_least_nat)
wenzelm@12298
   103
  done
paulson@11454
   104
paulson@11454
   105
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard]
paulson@11454
   106
paulson@11454
   107
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)"
wenzelm@12298
   108
  apply (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp])
wenzelm@12298
   109
   apply assumption
wenzelm@12298
   110
  apply assumption
wenzelm@12298
   111
  done
paulson@11454
   112
paulson@11451
   113
wenzelm@12298
   114
subsection {* Greatest value operator *}
paulson@11451
   115
paulson@11451
   116
constdefs
wenzelm@12298
   117
  GreatestM :: "['a => 'b::ord, 'a => bool] => 'a"
wenzelm@12298
   118
  "GreatestM m P == SOME x. P x & (ALL y. P y --> m y <= m x)"
wenzelm@12298
   119
wenzelm@12298
   120
  Greatest :: "('a::ord => bool) => 'a"    (binder "GREATEST " 10)
wenzelm@12298
   121
  "Greatest == GreatestM (%x. x)"
paulson@11451
   122
paulson@11451
   123
syntax
wenzelm@12298
   124
  "_GreatestM" :: "[pttrn, 'a=>'b::ord, bool] => 'a"
wenzelm@12298
   125
      ("GREATEST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   126
paulson@11451
   127
translations
wenzelm@12298
   128
  "GREATEST x WRT m. P" == "GreatestM m (%x. P)"
paulson@11451
   129
paulson@11451
   130
lemma GreatestMI2:
wenzelm@12298
   131
  "P x ==> (!!y. P y ==> m y <= m x)
wenzelm@12298
   132
    ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x)
wenzelm@12298
   133
    ==> Q (GreatestM m P)"
wenzelm@12298
   134
  apply (unfold GreatestM_def)
wenzelm@12298
   135
  apply (rule someI2_ex)
wenzelm@12298
   136
   apply blast
wenzelm@12298
   137
  apply blast
wenzelm@12298
   138
  done
paulson@11451
   139
paulson@11451
   140
lemma GreatestM_equality:
wenzelm@12298
   141
 "P k ==> (!!x. P x ==> m x <= m k)
wenzelm@12298
   142
    ==> m (GREATEST x WRT m. P x) = (m k::'a::order)"
wenzelm@12298
   143
  apply (rule_tac m = m in GreatestMI2)
wenzelm@12298
   144
    apply assumption
wenzelm@12298
   145
   apply blast
wenzelm@12298
   146
  apply (blast intro!: order_antisym)
wenzelm@12298
   147
  done
paulson@11451
   148
paulson@11451
   149
lemma Greatest_equality:
wenzelm@12298
   150
  "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k"
wenzelm@12298
   151
  apply (unfold Greatest_def)
wenzelm@12298
   152
  apply (erule GreatestM_equality)
wenzelm@12298
   153
  apply blast
wenzelm@12298
   154
  done
paulson@11451
   155
paulson@11451
   156
lemma ex_has_greatest_nat_lemma:
wenzelm@12298
   157
  "P k ==> ALL x. P x --> (EX y. P y & ~ ((m y::nat) <= m x))
wenzelm@12298
   158
    ==> EX y. P y & ~ (m y < m k + n)"
wenzelm@12298
   159
  apply (induct_tac n)
wenzelm@12298
   160
   apply force
wenzelm@12298
   161
  apply (force simp add: le_Suc_eq)
wenzelm@12298
   162
  done
paulson@11451
   163
wenzelm@12298
   164
lemma ex_has_greatest_nat:
wenzelm@12298
   165
  "P k ==> ALL y. P y --> m y < b
wenzelm@12298
   166
    ==> EX x. P x & (ALL y. P y --> (m y::nat) <= m x)"
wenzelm@12298
   167
  apply (rule ccontr)
wenzelm@12298
   168
  apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)
wenzelm@12298
   169
    apply (subgoal_tac [3] "m k <= b")
wenzelm@12298
   170
     apply auto
wenzelm@12298
   171
  done
paulson@11451
   172
wenzelm@12298
   173
lemma GreatestM_nat_lemma:
wenzelm@12298
   174
  "P k ==> ALL y. P y --> m y < b
wenzelm@12298
   175
    ==> P (GreatestM m P) & (ALL y. P y --> (m y::nat) <= m (GreatestM m P))"
wenzelm@12298
   176
  apply (unfold GreatestM_def)
wenzelm@12298
   177
  apply (rule someI_ex)
wenzelm@12298
   178
  apply (erule ex_has_greatest_nat)
wenzelm@12298
   179
  apply assumption
wenzelm@12298
   180
  done
paulson@11451
   181
paulson@11451
   182
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard]
paulson@11451
   183
wenzelm@12298
   184
lemma GreatestM_nat_le:
wenzelm@12298
   185
  "P x ==> ALL y. P y --> m y < b
wenzelm@12298
   186
    ==> (m x::nat) <= m (GreatestM m P)"
wenzelm@12298
   187
  apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec])
wenzelm@12298
   188
  done
wenzelm@12298
   189
wenzelm@12298
   190
wenzelm@12298
   191
text {* \medskip Specialization to @{text GREATEST}. *}
wenzelm@12298
   192
wenzelm@12298
   193
lemma GreatestI: "P (k::nat) ==> ALL y. P y --> y < b ==> P (GREATEST x. P x)"
wenzelm@12298
   194
  apply (unfold Greatest_def)
wenzelm@12298
   195
  apply (rule GreatestM_natI)
wenzelm@12298
   196
   apply auto
wenzelm@12298
   197
  done
paulson@11451
   198
wenzelm@12298
   199
lemma Greatest_le:
wenzelm@12298
   200
    "P x ==> ALL y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)"
wenzelm@12298
   201
  apply (unfold Greatest_def)
wenzelm@12298
   202
  apply (rule GreatestM_nat_le)
wenzelm@12298
   203
   apply auto
wenzelm@12298
   204
  done
wenzelm@12298
   205
wenzelm@12298
   206
wenzelm@12298
   207
subsection {* The Meson proof procedure *}
paulson@11451
   208
wenzelm@12298
   209
subsubsection {* Negation Normal Form *}
wenzelm@12298
   210
wenzelm@12298
   211
text {* de Morgan laws *}
wenzelm@12298
   212
wenzelm@12298
   213
lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q"
wenzelm@12298
   214
  and meson_not_disjD: "~(P|Q) ==> ~P & ~Q"
wenzelm@12298
   215
  and meson_not_notD: "~~P ==> P"
wenzelm@12298
   216
  and meson_not_allD: "!!P. ~(ALL x. P(x)) ==> EX x. ~P(x)"
wenzelm@12298
   217
  and meson_not_exD: "!!P. ~(EX x. P(x)) ==> ALL x. ~P(x)"
wenzelm@12298
   218
  by fast+
paulson@11451
   219
wenzelm@12298
   220
text {* Removal of @{text "-->"} and @{text "<->"} (positive and
wenzelm@12298
   221
negative occurrences) *}
wenzelm@12298
   222
wenzelm@12298
   223
lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q"
wenzelm@12298
   224
  and meson_not_impD: "~(P-->Q) ==> P & ~Q"
wenzelm@12298
   225
  and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
wenzelm@12298
   226
  and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
wenzelm@12298
   227
    -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
wenzelm@12298
   228
  by fast+
wenzelm@12298
   229
wenzelm@12298
   230
wenzelm@12298
   231
subsubsection {* Pulling out the existential quantifiers *}
wenzelm@12298
   232
wenzelm@12298
   233
text {* Conjunction *}
wenzelm@12298
   234
wenzelm@12298
   235
lemma meson_conj_exD1: "!!P Q. (EX x. P(x)) & Q ==> EX x. P(x) & Q"
wenzelm@12298
   236
  and meson_conj_exD2: "!!P Q. P & (EX x. Q(x)) ==> EX x. P & Q(x)"
wenzelm@12298
   237
  by fast+
wenzelm@12298
   238
paulson@11451
   239
wenzelm@12298
   240
text {* Disjunction *}
wenzelm@12298
   241
wenzelm@12298
   242
lemma meson_disj_exD: "!!P Q. (EX x. P(x)) | (EX x. Q(x)) ==> EX x. P(x) | Q(x)"
wenzelm@12298
   243
  -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
wenzelm@12298
   244
  -- {* With ex-Skolemization, makes fewer Skolem constants *}
wenzelm@12298
   245
  and meson_disj_exD1: "!!P Q. (EX x. P(x)) | Q ==> EX x. P(x) | Q"
wenzelm@12298
   246
  and meson_disj_exD2: "!!P Q. P | (EX x. Q(x)) ==> EX x. P | Q(x)"
wenzelm@12298
   247
  by fast+
wenzelm@12298
   248
paulson@11451
   249
wenzelm@12298
   250
subsubsection {* Generating clauses for the Meson Proof Procedure *}
wenzelm@12298
   251
wenzelm@12298
   252
text {* Disjunctions *}
wenzelm@12298
   253
wenzelm@12298
   254
lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)"
wenzelm@12298
   255
  and meson_disj_comm: "P|Q ==> Q|P"
wenzelm@12298
   256
  and meson_disj_FalseD1: "False|P ==> P"
wenzelm@12298
   257
  and meson_disj_FalseD2: "P|False ==> P"
wenzelm@12298
   258
  by fast+
paulson@11451
   259
paulson@11451
   260
use "meson_lemmas.ML"
paulson@11451
   261
use "Tools/meson.ML"
paulson@11451
   262
setup meson_setup
paulson@11451
   263
paulson@11451
   264
end