src/HOL/Complete_Lattice.thy
author huffman
Mon Aug 08 11:47:41 2011 -0700 (2011-08-08)
changeset 44068 dc0a73004c94
parent 44067 5feac96f0e78
child 44084 caac24afcadb
permissions -rw-r--r--
add lemmas INF_image, SUP_image
haftmann@32139
     1
(*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
wenzelm@11979
     2
haftmann@32139
     3
header {* Complete lattices, with special focus on sets *}
haftmann@32077
     4
haftmann@32139
     5
theory Complete_Lattice
haftmann@32139
     6
imports Set
haftmann@32139
     7
begin
haftmann@32077
     8
haftmann@32077
     9
notation
haftmann@34007
    10
  less_eq (infix "\<sqsubseteq>" 50) and
haftmann@32077
    11
  less (infix "\<sqsubset>" 50) and
haftmann@34007
    12
  inf (infixl "\<sqinter>" 70) and
haftmann@34007
    13
  sup (infixl "\<squnion>" 65) and
haftmann@32678
    14
  top ("\<top>") and
haftmann@32678
    15
  bot ("\<bottom>")
haftmann@32077
    16
haftmann@32139
    17
haftmann@32879
    18
subsection {* Syntactic infimum and supremum operations *}
haftmann@32879
    19
haftmann@32879
    20
class Inf =
haftmann@32879
    21
  fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
haftmann@32879
    22
haftmann@32879
    23
class Sup =
haftmann@32879
    24
  fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
haftmann@32879
    25
haftmann@32139
    26
subsection {* Abstract complete lattices *}
haftmann@32139
    27
haftmann@34007
    28
class complete_lattice = bounded_lattice + Inf + Sup +
haftmann@32077
    29
  assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
haftmann@32077
    30
     and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
haftmann@32077
    31
  assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
haftmann@32077
    32
     and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
haftmann@32077
    33
begin
haftmann@32077
    34
haftmann@32678
    35
lemma dual_complete_lattice:
haftmann@43868
    36
  "class.complete_lattice Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
haftmann@36635
    37
  by (auto intro!: class.complete_lattice.intro dual_bounded_lattice)
haftmann@34007
    38
    (unfold_locales, (fact bot_least top_greatest
haftmann@34007
    39
        Sup_upper Sup_least Inf_lower Inf_greatest)+)
haftmann@32678
    40
haftmann@44040
    41
definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@44040
    42
  INF_def: "INFI A f = \<Sqinter>(f ` A)"
haftmann@44040
    43
haftmann@44040
    44
definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@44040
    45
  SUP_def: "SUPR A f = \<Squnion>(f ` A)"
haftmann@44040
    46
haftmann@44040
    47
text {*
haftmann@44040
    48
  Note: must use names @{const INFI} and @{const SUPR} here instead of
haftmann@44040
    49
  @{text INF} and @{text SUP} to allow the following syntax coexist
haftmann@44040
    50
  with the plain constant names.
haftmann@44040
    51
*}
haftmann@44040
    52
haftmann@44040
    53
end
haftmann@44040
    54
haftmann@44040
    55
syntax
haftmann@44040
    56
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
haftmann@44040
    57
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
haftmann@44040
    58
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
haftmann@44040
    59
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
haftmann@44040
    60
haftmann@44040
    61
syntax (xsymbols)
haftmann@44040
    62
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
haftmann@44040
    63
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@44040
    64
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
haftmann@44040
    65
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@44040
    66
haftmann@44040
    67
translations
haftmann@44040
    68
  "INF x y. B"   == "INF x. INF y. B"
haftmann@44040
    69
  "INF x. B"     == "CONST INFI CONST UNIV (%x. B)"
haftmann@44040
    70
  "INF x. B"     == "INF x:CONST UNIV. B"
haftmann@44040
    71
  "INF x:A. B"   == "CONST INFI A (%x. B)"
haftmann@44040
    72
  "SUP x y. B"   == "SUP x. SUP y. B"
haftmann@44040
    73
  "SUP x. B"     == "CONST SUPR CONST UNIV (%x. B)"
haftmann@44040
    74
  "SUP x. B"     == "SUP x:CONST UNIV. B"
haftmann@44040
    75
  "SUP x:A. B"   == "CONST SUPR A (%x. B)"
haftmann@44040
    76
haftmann@44040
    77
print_translation {*
haftmann@44040
    78
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
haftmann@44040
    79
    Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
haftmann@44040
    80
*} -- {* to avoid eta-contraction of body *}
haftmann@44040
    81
haftmann@44040
    82
context complete_lattice
haftmann@44040
    83
begin
haftmann@32077
    84
haftmann@44040
    85
lemma INF_foundation_dual [no_atp]:
haftmann@44040
    86
  "complete_lattice.SUPR Inf = INFI"
haftmann@44040
    87
proof (rule ext)+
haftmann@44040
    88
  interpret dual: complete_lattice Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
haftmann@44040
    89
    by (fact dual_complete_lattice)
haftmann@44040
    90
  fix f :: "'b \<Rightarrow> 'a" and A
haftmann@44040
    91
  show "complete_lattice.SUPR Inf A f = (\<Sqinter>a\<in>A. f a)"
haftmann@44040
    92
    by (simp only: dual.SUP_def INF_def)
haftmann@44040
    93
qed
haftmann@44040
    94
haftmann@44040
    95
lemma SUP_foundation_dual [no_atp]:
haftmann@44040
    96
  "complete_lattice.INFI Sup = SUPR"
haftmann@44040
    97
proof (rule ext)+
haftmann@44040
    98
  interpret dual: complete_lattice Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
haftmann@44040
    99
    by (fact dual_complete_lattice)
haftmann@44040
   100
  fix f :: "'b \<Rightarrow> 'a" and A
haftmann@44040
   101
  show "complete_lattice.INFI Sup A f = (\<Squnion>a\<in>A. f a)"
haftmann@44040
   102
    by (simp only: dual.INF_def SUP_def)
haftmann@44040
   103
qed
haftmann@44040
   104
haftmann@44040
   105
lemma INF_leI: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> f i"
haftmann@44040
   106
  by (auto simp add: INF_def intro: Inf_lower)
haftmann@44040
   107
haftmann@44040
   108
lemma le_SUP_I: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
haftmann@44040
   109
  by (auto simp add: SUP_def intro: Sup_upper)
haftmann@44040
   110
haftmann@44040
   111
lemma le_INF_I: "(\<And>i. i \<in> A \<Longrightarrow> u \<sqsubseteq> f i) \<Longrightarrow> u \<sqsubseteq> (\<Sqinter>i\<in>A. f i)"
haftmann@44040
   112
  by (auto simp add: INF_def intro: Inf_greatest)
haftmann@44040
   113
haftmann@44040
   114
lemma SUP_leI: "(\<And>i. i \<in> A \<Longrightarrow> f i \<sqsubseteq> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<sqsubseteq> u"
haftmann@44040
   115
  by (auto simp add: SUP_def intro: Sup_least)
haftmann@44040
   116
haftmann@44040
   117
lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<sqsubseteq> v \<Longrightarrow> \<Sqinter>A \<sqsubseteq> v"
haftmann@44040
   118
  using Inf_lower [of u A] by auto
haftmann@44040
   119
haftmann@44040
   120
lemma INF_leI2: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> u"
haftmann@44040
   121
  using INF_leI [of i A f] by auto
haftmann@44040
   122
haftmann@44040
   123
lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<sqsubseteq> u \<Longrightarrow> v \<sqsubseteq> \<Squnion>A"
haftmann@44040
   124
  using Sup_upper [of u A] by auto
haftmann@44040
   125
haftmann@44040
   126
lemma le_SUP_I2: "i \<in> A \<Longrightarrow> u \<sqsubseteq> f i \<Longrightarrow> u \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
haftmann@44040
   127
  using le_SUP_I [of i A f] by auto
haftmann@44040
   128
haftmann@44040
   129
lemma le_Inf_iff: "b \<sqsubseteq> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
haftmann@44040
   130
  by (auto intro: Inf_greatest dest: Inf_lower)
haftmann@44040
   131
haftmann@44040
   132
lemma le_INF_iff: "u \<sqsubseteq> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i \<in> A. u \<sqsubseteq> f i)"
haftmann@44040
   133
  by (auto simp add: INF_def le_Inf_iff)
haftmann@44040
   134
haftmann@44040
   135
lemma Sup_le_iff: "\<Squnion>A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
haftmann@44040
   136
  by (auto intro: Sup_least dest: Sup_upper)
haftmann@44040
   137
haftmann@44040
   138
lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i \<in> A. f i \<sqsubseteq> u)"
haftmann@44040
   139
  by (auto simp add: SUP_def Sup_le_iff)
haftmann@32077
   140
haftmann@41080
   141
lemma Inf_empty [simp]:
haftmann@34007
   142
  "\<Sqinter>{} = \<top>"
haftmann@34007
   143
  by (auto intro: antisym Inf_greatest)
haftmann@32077
   144
huffman@44067
   145
lemma INF_empty [simp]: "(\<Sqinter>x\<in>{}. f x) = \<top>"
haftmann@44040
   146
  by (simp add: INF_def)
haftmann@44040
   147
haftmann@41080
   148
lemma Sup_empty [simp]:
haftmann@34007
   149
  "\<Squnion>{} = \<bottom>"
haftmann@34007
   150
  by (auto intro: antisym Sup_least)
haftmann@32077
   151
huffman@44067
   152
lemma SUP_empty [simp]: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
haftmann@44040
   153
  by (simp add: SUP_def)
haftmann@44040
   154
haftmann@41080
   155
lemma Inf_UNIV [simp]:
haftmann@41080
   156
  "\<Sqinter>UNIV = \<bottom>"
haftmann@44040
   157
  by (auto intro!: antisym Inf_lower)
haftmann@41080
   158
haftmann@41080
   159
lemma Sup_UNIV [simp]:
haftmann@41080
   160
  "\<Squnion>UNIV = \<top>"
haftmann@44040
   161
  by (auto intro!: antisym Sup_upper)
haftmann@41080
   162
haftmann@32077
   163
lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
haftmann@32077
   164
  by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
haftmann@32077
   165
haftmann@44040
   166
lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFI A f"
haftmann@44040
   167
  by (simp add: INF_def Inf_insert)
haftmann@44040
   168
haftmann@32077
   169
lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
haftmann@32077
   170
  by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
haftmann@32077
   171
haftmann@44040
   172
lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPR A f"
haftmann@44040
   173
  by (simp add: SUP_def Sup_insert)
haftmann@44040
   174
huffman@44068
   175
lemma INF_image: "(\<Sqinter>x\<in>f`A. g x) = (\<Sqinter>x\<in>A. g (f x))"
huffman@44068
   176
  by (simp add: INF_def image_image)
huffman@44068
   177
huffman@44068
   178
lemma SUP_image: "(\<Squnion>x\<in>f`A. g x) = (\<Squnion>x\<in>A. g (f x))"
huffman@44068
   179
  by (simp add: SUP_def image_image)
huffman@44068
   180
haftmann@44040
   181
lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
haftmann@44040
   182
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@44040
   183
haftmann@44040
   184
lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
haftmann@44040
   185
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@44040
   186
haftmann@32077
   187
lemma Inf_singleton [simp]:
haftmann@32077
   188
  "\<Sqinter>{a} = a"
haftmann@32077
   189
  by (auto intro: antisym Inf_lower Inf_greatest)
haftmann@32077
   190
haftmann@32077
   191
lemma Sup_singleton [simp]:
haftmann@32077
   192
  "\<Squnion>{a} = a"
haftmann@32077
   193
  by (auto intro: antisym Sup_upper Sup_least)
haftmann@32077
   194
haftmann@32077
   195
lemma Inf_binary:
haftmann@32077
   196
  "\<Sqinter>{a, b} = a \<sqinter> b"
haftmann@43831
   197
  by (simp add: Inf_insert)
haftmann@32077
   198
haftmann@32077
   199
lemma Sup_binary:
haftmann@32077
   200
  "\<Squnion>{a, b} = a \<squnion> b"
haftmann@43831
   201
  by (simp add: Sup_insert)
haftmann@32077
   202
haftmann@43899
   203
lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Sqinter>B"
haftmann@43899
   204
  by (auto intro: Inf_greatest Inf_lower)
haftmann@43899
   205
haftmann@43899
   206
lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<sqsubseteq> \<Squnion>B"
haftmann@43899
   207
  by (auto intro: Sup_least Sup_upper)
haftmann@43899
   208
haftmann@44041
   209
lemma INF_cong:
haftmann@44041
   210
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Sqinter>x\<in>A. C x) = (\<Sqinter>x\<in>B. D x)"
haftmann@44041
   211
  by (simp add: INF_def image_def)
haftmann@44041
   212
haftmann@44041
   213
lemma SUP_cong:
haftmann@44041
   214
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Squnion>x\<in>A. C x) = (\<Squnion>x\<in>B. D x)"
haftmann@44041
   215
  by (simp add: SUP_def image_def)
haftmann@44041
   216
hoelzl@38705
   217
lemma Inf_mono:
hoelzl@41971
   218
  assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<sqsubseteq> b"
haftmann@43741
   219
  shows "\<Sqinter>A \<sqsubseteq> \<Sqinter>B"
hoelzl@38705
   220
proof (rule Inf_greatest)
hoelzl@38705
   221
  fix b assume "b \<in> B"
hoelzl@41971
   222
  with assms obtain a where "a \<in> A" and "a \<sqsubseteq> b" by blast
haftmann@43741
   223
  from `a \<in> A` have "\<Sqinter>A \<sqsubseteq> a" by (rule Inf_lower)
haftmann@43741
   224
  with `a \<sqsubseteq> b` show "\<Sqinter>A \<sqsubseteq> b" by auto
hoelzl@38705
   225
qed
hoelzl@38705
   226
haftmann@44041
   227
lemma INF_mono:
haftmann@44041
   228
  "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<sqsubseteq> (\<Sqinter>n\<in>B. g n)"
haftmann@44041
   229
  by (force intro!: Inf_mono simp: INF_def)
haftmann@44041
   230
haftmann@41082
   231
lemma Sup_mono:
hoelzl@41971
   232
  assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<sqsubseteq> b"
haftmann@43741
   233
  shows "\<Squnion>A \<sqsubseteq> \<Squnion>B"
haftmann@41082
   234
proof (rule Sup_least)
haftmann@41082
   235
  fix a assume "a \<in> A"
hoelzl@41971
   236
  with assms obtain b where "b \<in> B" and "a \<sqsubseteq> b" by blast
haftmann@43741
   237
  from `b \<in> B` have "b \<sqsubseteq> \<Squnion>B" by (rule Sup_upper)
haftmann@43741
   238
  with `a \<sqsubseteq> b` show "a \<sqsubseteq> \<Squnion>B" by auto
haftmann@41082
   239
qed
haftmann@32077
   240
haftmann@44041
   241
lemma SUP_mono:
haftmann@44041
   242
  "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<sqsubseteq> (\<Squnion>n\<in>B. g n)"
haftmann@44041
   243
  by (force intro!: Sup_mono simp: SUP_def)
haftmann@44041
   244
haftmann@44041
   245
lemma INF_superset_mono:
haftmann@44041
   246
  "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<sqsubseteq> (\<Sqinter>x\<in>B. g x)"
haftmann@44041
   247
  -- {* The last inclusion is POSITIVE! *}
haftmann@44041
   248
  by (blast intro: INF_mono dest: subsetD)
haftmann@44041
   249
haftmann@44041
   250
lemma SUP_subset_mono:
haftmann@44041
   251
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<sqsubseteq> (\<Squnion>x\<in>B. g x)"
haftmann@44041
   252
  by (blast intro: SUP_mono dest: subsetD)
haftmann@44041
   253
haftmann@43868
   254
lemma Inf_less_eq:
haftmann@43868
   255
  assumes "\<And>v. v \<in> A \<Longrightarrow> v \<sqsubseteq> u"
haftmann@43868
   256
    and "A \<noteq> {}"
haftmann@43868
   257
  shows "\<Sqinter>A \<sqsubseteq> u"
haftmann@43868
   258
proof -
haftmann@43868
   259
  from `A \<noteq> {}` obtain v where "v \<in> A" by blast
haftmann@43868
   260
  moreover with assms have "v \<sqsubseteq> u" by blast
haftmann@43868
   261
  ultimately show ?thesis by (rule Inf_lower2)
haftmann@43868
   262
qed
haftmann@43868
   263
haftmann@43868
   264
lemma less_eq_Sup:
haftmann@43868
   265
  assumes "\<And>v. v \<in> A \<Longrightarrow> u \<sqsubseteq> v"
haftmann@43868
   266
    and "A \<noteq> {}"
haftmann@43868
   267
  shows "u \<sqsubseteq> \<Squnion>A"
haftmann@43868
   268
proof -
haftmann@43868
   269
  from `A \<noteq> {}` obtain v where "v \<in> A" by blast
haftmann@43868
   270
  moreover with assms have "u \<sqsubseteq> v" by blast
haftmann@43868
   271
  ultimately show ?thesis by (rule Sup_upper2)
haftmann@43868
   272
qed
haftmann@43868
   273
haftmann@43899
   274
lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<sqsubseteq> \<Sqinter>(A \<inter> B)"
haftmann@43868
   275
  by (auto intro: Inf_greatest Inf_lower)
haftmann@43868
   276
haftmann@43899
   277
lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<sqsubseteq> \<Squnion>A \<sqinter> \<Squnion>B "
haftmann@43868
   278
  by (auto intro: Sup_least Sup_upper)
haftmann@43868
   279
haftmann@43868
   280
lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
haftmann@43868
   281
  by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2)
haftmann@43868
   282
haftmann@44041
   283
lemma INF_union:
haftmann@44041
   284
  "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)"
haftmann@44041
   285
  by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 le_INF_I INF_leI)
haftmann@44041
   286
haftmann@43868
   287
lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B"
haftmann@43868
   288
  by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2)
haftmann@43868
   289
haftmann@44041
   290
lemma SUP_union:
haftmann@44041
   291
  "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)"
haftmann@44041
   292
  by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_leI le_SUP_I)
haftmann@44041
   293
haftmann@44041
   294
lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)"
haftmann@44041
   295
  by (rule antisym) (rule le_INF_I, auto intro: le_infI1 le_infI2 INF_leI INF_mono)
haftmann@44041
   296
haftmann@44041
   297
lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)"
haftmann@44041
   298
  by (rule antisym) (auto intro: le_supI1 le_supI2 le_SUP_I SUP_mono,
haftmann@44041
   299
    rule SUP_leI, auto intro: le_supI1 le_supI2 le_SUP_I SUP_mono)
haftmann@44041
   300
haftmann@43868
   301
lemma Inf_top_conv [no_atp]:
haftmann@43868
   302
  "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   303
  "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   304
proof -
haftmann@43868
   305
  show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   306
  proof
haftmann@43868
   307
    assume "\<forall>x\<in>A. x = \<top>"
haftmann@43868
   308
    then have "A = {} \<or> A = {\<top>}" by auto
haftmann@43868
   309
    then show "\<Sqinter>A = \<top>" by auto
haftmann@43868
   310
  next
haftmann@43868
   311
    assume "\<Sqinter>A = \<top>"
haftmann@43868
   312
    show "\<forall>x\<in>A. x = \<top>"
haftmann@43868
   313
    proof (rule ccontr)
haftmann@43868
   314
      assume "\<not> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   315
      then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast
haftmann@43868
   316
      then obtain B where "A = insert x B" by blast
haftmann@43868
   317
      with `\<Sqinter>A = \<top>` `x \<noteq> \<top>` show False by (simp add: Inf_insert)
haftmann@43868
   318
    qed
haftmann@43868
   319
  qed
haftmann@43868
   320
  then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto
haftmann@43868
   321
qed
haftmann@43868
   322
haftmann@44041
   323
lemma INF_top_conv:
haftmann@44041
   324
 "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
haftmann@44041
   325
 "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
haftmann@44041
   326
  by (auto simp add: INF_def Inf_top_conv)
haftmann@44041
   327
haftmann@43868
   328
lemma Sup_bot_conv [no_atp]:
haftmann@43868
   329
  "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?P)
haftmann@43868
   330
  "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?Q)
haftmann@43868
   331
proof -
haftmann@43868
   332
  interpret dual: complete_lattice Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
haftmann@43868
   333
    by (fact dual_complete_lattice)
haftmann@43868
   334
  from dual.Inf_top_conv show ?P and ?Q by simp_all
haftmann@43868
   335
qed
haftmann@43868
   336
haftmann@44041
   337
lemma SUP_bot_conv:
haftmann@44041
   338
 "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
haftmann@44041
   339
 "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
haftmann@44041
   340
  by (auto simp add: SUP_def Sup_bot_conv)
haftmann@44041
   341
haftmann@43865
   342
lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
haftmann@43872
   343
  by (auto intro: antisym INF_leI le_INF_I)
haftmann@32077
   344
haftmann@43870
   345
lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
haftmann@43872
   346
  by (auto intro: antisym SUP_leI le_SUP_I)
haftmann@43870
   347
haftmann@43900
   348
lemma INF_top: "(\<Sqinter>x\<in>A. \<top>) = \<top>"
haftmann@43900
   349
  by (cases "A = {}") (simp_all add: INF_empty)
haftmann@43900
   350
haftmann@43900
   351
lemma SUP_bot: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>"
haftmann@43900
   352
  by (cases "A = {}") (simp_all add: SUP_empty)
haftmann@43900
   353
haftmann@43865
   354
lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)"
haftmann@43872
   355
  by (iprover intro: INF_leI le_INF_I order_trans antisym)
haftmann@43865
   356
haftmann@43870
   357
lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)"
haftmann@43872
   358
  by (iprover intro: SUP_leI le_SUP_I order_trans antisym)
haftmann@43870
   359
haftmann@43871
   360
lemma INF_absorb:
haftmann@43868
   361
  assumes "k \<in> I"
haftmann@43868
   362
  shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)"
haftmann@43868
   363
proof -
haftmann@43868
   364
  from assms obtain J where "I = insert k J" by blast
haftmann@43868
   365
  then show ?thesis by (simp add: INF_insert)
haftmann@43868
   366
qed
haftmann@43868
   367
haftmann@43871
   368
lemma SUP_absorb:
haftmann@43871
   369
  assumes "k \<in> I"
haftmann@43871
   370
  shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)"
haftmann@43871
   371
proof -
haftmann@43871
   372
  from assms obtain J where "I = insert k J" by blast
haftmann@43871
   373
  then show ?thesis by (simp add: SUP_insert)
haftmann@43871
   374
qed
haftmann@43871
   375
haftmann@43871
   376
lemma INF_constant:
haftmann@43868
   377
  "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
haftmann@43868
   378
  by (simp add: INF_empty)
haftmann@43868
   379
haftmann@43871
   380
lemma SUP_constant:
haftmann@43871
   381
  "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
haftmann@43871
   382
  by (simp add: SUP_empty)
haftmann@43871
   383
haftmann@43871
   384
lemma INF_eq:
haftmann@43868
   385
  "(\<Sqinter>x\<in>A. B x) = \<Sqinter>({Y. \<exists>x\<in>A. Y = B x})"
haftmann@43872
   386
  by (simp add: INF_def image_def)
haftmann@43868
   387
haftmann@43871
   388
lemma SUP_eq:
haftmann@43871
   389
  "(\<Squnion>x\<in>A. B x) = \<Squnion>({Y. \<exists>x\<in>A. Y = B x})"
haftmann@43872
   390
  by (simp add: SUP_def image_def)
haftmann@43871
   391
haftmann@43943
   392
lemma less_INF_D:
haftmann@43943
   393
  assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" shows "y < f i"
haftmann@43943
   394
proof -
haftmann@43943
   395
  note `y < (\<Sqinter>i\<in>A. f i)`
haftmann@43943
   396
  also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using `i \<in> A`
haftmann@43943
   397
    by (rule INF_leI)
haftmann@43943
   398
  finally show "y < f i" .
haftmann@43943
   399
qed
haftmann@43943
   400
haftmann@43943
   401
lemma SUP_lessD:
haftmann@43943
   402
  assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" shows "f i < y"
haftmann@43943
   403
proof -
haftmann@43943
   404
  have "f i \<le> (\<Squnion>i\<in>A. f i)" using `i \<in> A`
haftmann@43943
   405
    by (rule le_SUP_I)
haftmann@43943
   406
  also note `(\<Squnion>i\<in>A. f i) < y`
haftmann@43943
   407
  finally show "f i < y" .
haftmann@43943
   408
qed
haftmann@43943
   409
haftmann@43873
   410
lemma INF_UNIV_range:
haftmann@43871
   411
  "(\<Sqinter>x. f x) = \<Sqinter>range f"
haftmann@43872
   412
  by (fact INF_def)
haftmann@43871
   413
haftmann@43873
   414
lemma SUP_UNIV_range:
haftmann@43871
   415
  "(\<Squnion>x. f x) = \<Squnion>range f"
haftmann@43872
   416
  by (fact SUP_def)
haftmann@43871
   417
haftmann@43873
   418
lemma INF_UNIV_bool_expand:
haftmann@43868
   419
  "(\<Sqinter>b. A b) = A True \<sqinter> A False"
haftmann@43868
   420
  by (simp add: UNIV_bool INF_empty INF_insert inf_commute)
haftmann@43868
   421
haftmann@43873
   422
lemma SUP_UNIV_bool_expand:
haftmann@43871
   423
  "(\<Squnion>b. A b) = A True \<squnion> A False"
haftmann@43871
   424
  by (simp add: UNIV_bool SUP_empty SUP_insert sup_commute)
haftmann@43871
   425
haftmann@32077
   426
end
haftmann@32077
   427
haftmann@44024
   428
class complete_distrib_lattice = complete_lattice +
haftmann@44039
   429
  assumes sup_Inf: "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
haftmann@44024
   430
  assumes inf_Sup: "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
haftmann@44024
   431
begin
haftmann@44024
   432
haftmann@44039
   433
lemma sup_INF:
haftmann@44039
   434
  "a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)"
haftmann@44039
   435
  by (simp add: INF_def sup_Inf image_image)
haftmann@44039
   436
haftmann@44039
   437
lemma inf_SUP:
haftmann@44039
   438
  "a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)"
haftmann@44039
   439
  by (simp add: SUP_def inf_Sup image_image)
haftmann@44039
   440
haftmann@44032
   441
lemma dual_complete_distrib_lattice:
haftmann@44024
   442
  "class.complete_distrib_lattice Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
haftmann@44024
   443
  apply (rule class.complete_distrib_lattice.intro)
haftmann@44024
   444
  apply (fact dual_complete_lattice)
haftmann@44024
   445
  apply (rule class.complete_distrib_lattice_axioms.intro)
haftmann@44032
   446
  apply (simp_all only: INF_foundation_dual SUP_foundation_dual inf_Sup sup_Inf)
haftmann@44032
   447
  done
haftmann@44024
   448
haftmann@44024
   449
subclass distrib_lattice proof -- {* Question: is it sufficient to include @{class distrib_lattice}
haftmann@44029
   450
  and prove @{text inf_Sup} and @{text sup_Inf} from that? *}
haftmann@44024
   451
  fix a b c
haftmann@44024
   452
  from sup_Inf have "a \<squnion> \<Sqinter>{b, c} = (\<Sqinter>d\<in>{b, c}. a \<squnion> d)" .
haftmann@44024
   453
  then show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" by (simp add: INF_def Inf_binary)
haftmann@44024
   454
qed
haftmann@44024
   455
haftmann@44039
   456
lemma Inf_sup:
haftmann@44039
   457
  "\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)"
haftmann@44039
   458
  by (simp add: sup_Inf sup_commute)
haftmann@44039
   459
haftmann@44039
   460
lemma Sup_inf:
haftmann@44039
   461
  "\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)"
haftmann@44039
   462
  by (simp add: inf_Sup inf_commute)
haftmann@44039
   463
haftmann@44039
   464
lemma INF_sup: 
haftmann@44039
   465
  "(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)"
haftmann@44039
   466
  by (simp add: sup_INF sup_commute)
haftmann@44039
   467
haftmann@44039
   468
lemma SUP_inf:
haftmann@44039
   469
  "(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)"
haftmann@44039
   470
  by (simp add: inf_SUP inf_commute)
haftmann@44039
   471
haftmann@44039
   472
lemma Inf_sup_eq_top_iff:
haftmann@44039
   473
  "(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)"
haftmann@44039
   474
  by (simp only: Inf_sup INF_top_conv)
haftmann@44039
   475
haftmann@44039
   476
lemma Sup_inf_eq_bot_iff:
haftmann@44039
   477
  "(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)"
haftmann@44039
   478
  by (simp only: Sup_inf SUP_bot_conv)
haftmann@44039
   479
haftmann@44039
   480
lemma INF_sup_distrib2:
haftmann@44039
   481
  "(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)"
haftmann@44039
   482
  by (subst INF_commute) (simp add: sup_INF INF_sup)
haftmann@44039
   483
haftmann@44039
   484
lemma SUP_inf_distrib2:
haftmann@44039
   485
  "(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)"
haftmann@44039
   486
  by (subst SUP_commute) (simp add: inf_SUP SUP_inf)
haftmann@44039
   487
haftmann@44024
   488
end
haftmann@44024
   489
haftmann@44032
   490
class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice
haftmann@43873
   491
begin
haftmann@43873
   492
haftmann@43943
   493
lemma dual_complete_boolean_algebra:
haftmann@43943
   494
  "class.complete_boolean_algebra Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus"
haftmann@44032
   495
  by (rule class.complete_boolean_algebra.intro, rule dual_complete_distrib_lattice, rule dual_boolean_algebra)
haftmann@43943
   496
haftmann@43873
   497
lemma uminus_Inf:
haftmann@43873
   498
  "- (\<Sqinter>A) = \<Squnion>(uminus ` A)"
haftmann@43873
   499
proof (rule antisym)
haftmann@43873
   500
  show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)"
haftmann@43873
   501
    by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp
haftmann@43873
   502
  show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A"
haftmann@43873
   503
    by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto
haftmann@43873
   504
qed
haftmann@43873
   505
haftmann@44041
   506
lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)"
haftmann@44041
   507
  by (simp add: INF_def SUP_def uminus_Inf image_image)
haftmann@44041
   508
haftmann@43873
   509
lemma uminus_Sup:
haftmann@43873
   510
  "- (\<Squnion>A) = \<Sqinter>(uminus ` A)"
haftmann@43873
   511
proof -
haftmann@43873
   512
  have "\<Squnion>A = - \<Sqinter>(uminus ` A)" by (simp add: image_image uminus_Inf)
haftmann@43873
   513
  then show ?thesis by simp
haftmann@43873
   514
qed
haftmann@43873
   515
  
haftmann@43873
   516
lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)"
haftmann@43873
   517
  by (simp add: INF_def SUP_def uminus_Sup image_image)
haftmann@43873
   518
haftmann@43873
   519
end
haftmann@43873
   520
haftmann@43940
   521
class complete_linorder = linorder + complete_lattice
haftmann@43940
   522
begin
haftmann@43940
   523
haftmann@43943
   524
lemma dual_complete_linorder:
haftmann@43943
   525
  "class.complete_linorder Sup Inf (op \<ge>) (op >) sup inf \<top> \<bottom>"
haftmann@43943
   526
  by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder)
haftmann@43943
   527
haftmann@43940
   528
lemma Inf_less_iff:
haftmann@43940
   529
  "\<Sqinter>S \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>S. x \<sqsubset> a)"
haftmann@43940
   530
  unfolding not_le [symmetric] le_Inf_iff by auto
haftmann@43940
   531
haftmann@44041
   532
lemma INF_less_iff:
haftmann@44041
   533
  "(\<Sqinter>i\<in>A. f i) \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>A. f x \<sqsubset> a)"
haftmann@44041
   534
  unfolding INF_def Inf_less_iff by auto
haftmann@44041
   535
haftmann@43940
   536
lemma less_Sup_iff:
haftmann@43940
   537
  "a \<sqsubset> \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a \<sqsubset> x)"
haftmann@43940
   538
  unfolding not_le [symmetric] Sup_le_iff by auto
haftmann@43940
   539
haftmann@43940
   540
lemma less_SUP_iff:
haftmann@43940
   541
  "a \<sqsubset> (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a \<sqsubset> f x)"
haftmann@43940
   542
  unfolding SUP_def less_Sup_iff by auto
haftmann@43940
   543
haftmann@43943
   544
lemma Sup_eq_top_iff:
haftmann@43943
   545
  "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)"
haftmann@43943
   546
proof
haftmann@43943
   547
  assume *: "\<Squnion>A = \<top>"
haftmann@43943
   548
  show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" unfolding * [symmetric]
haftmann@43943
   549
  proof (intro allI impI)
haftmann@43943
   550
    fix x assume "x < \<Squnion>A" then show "\<exists>i\<in>A. x < i"
haftmann@43943
   551
      unfolding less_Sup_iff by auto
haftmann@43943
   552
  qed
haftmann@43943
   553
next
haftmann@43943
   554
  assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i"
haftmann@43943
   555
  show "\<Squnion>A = \<top>"
haftmann@43943
   556
  proof (rule ccontr)
haftmann@43943
   557
    assume "\<Squnion>A \<noteq> \<top>"
haftmann@43943
   558
    with top_greatest [of "\<Squnion>A"]
haftmann@43943
   559
    have "\<Squnion>A < \<top>" unfolding le_less by auto
haftmann@43943
   560
    then have "\<Squnion>A < \<Squnion>A"
haftmann@43943
   561
      using * unfolding less_Sup_iff by auto
haftmann@43943
   562
    then show False by auto
haftmann@43943
   563
  qed
haftmann@43943
   564
qed
haftmann@43943
   565
haftmann@44041
   566
lemma SUP_eq_top_iff:
haftmann@44041
   567
  "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)"
haftmann@44041
   568
  unfolding SUP_def Sup_eq_top_iff by auto
haftmann@44041
   569
haftmann@43943
   570
lemma Inf_eq_bot_iff:
haftmann@43943
   571
  "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)"
haftmann@43943
   572
proof -
haftmann@43943
   573
  interpret dual: complete_linorder Sup Inf "op \<ge>" "op >" sup inf \<top> \<bottom>
haftmann@43943
   574
    by (fact dual_complete_linorder)
haftmann@43943
   575
  from dual.Sup_eq_top_iff show ?thesis .
haftmann@43943
   576
qed
haftmann@43943
   577
haftmann@43967
   578
lemma INF_eq_bot_iff:
haftmann@43967
   579
  "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)"
haftmann@43967
   580
  unfolding INF_def Inf_eq_bot_iff by auto
haftmann@43967
   581
haftmann@43940
   582
end
haftmann@43940
   583
haftmann@43873
   584
haftmann@32139
   585
subsection {* @{typ bool} and @{typ "_ \<Rightarrow> _"} as complete lattice *}
haftmann@32077
   586
haftmann@44024
   587
instantiation bool :: complete_lattice
haftmann@32077
   588
begin
haftmann@32077
   589
haftmann@32077
   590
definition
haftmann@41080
   591
  "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
haftmann@32077
   592
haftmann@32077
   593
definition
haftmann@41080
   594
  "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
haftmann@32077
   595
haftmann@32077
   596
instance proof
haftmann@43852
   597
qed (auto simp add: Inf_bool_def Sup_bool_def)
haftmann@32077
   598
haftmann@32077
   599
end
haftmann@32077
   600
haftmann@43873
   601
lemma INF_bool_eq [simp]:
haftmann@32120
   602
  "INFI = Ball"
haftmann@32120
   603
proof (rule ext)+
haftmann@32120
   604
  fix A :: "'a set"
haftmann@32120
   605
  fix P :: "'a \<Rightarrow> bool"
haftmann@43753
   606
  show "(\<Sqinter>x\<in>A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P x)"
haftmann@43872
   607
    by (auto simp add: Ball_def INF_def Inf_bool_def)
haftmann@32120
   608
qed
haftmann@32120
   609
haftmann@43873
   610
lemma SUP_bool_eq [simp]:
haftmann@32120
   611
  "SUPR = Bex"
haftmann@32120
   612
proof (rule ext)+
haftmann@32120
   613
  fix A :: "'a set"
haftmann@32120
   614
  fix P :: "'a \<Rightarrow> bool"
haftmann@43753
   615
  show "(\<Squnion>x\<in>A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P x)"
haftmann@43872
   616
    by (auto simp add: Bex_def SUP_def Sup_bool_def)
haftmann@32120
   617
qed
haftmann@32120
   618
haftmann@44032
   619
instance bool :: complete_boolean_algebra proof
haftmann@44024
   620
qed (auto simp add: Inf_bool_def Sup_bool_def)
haftmann@44024
   621
haftmann@32077
   622
instantiation "fun" :: (type, complete_lattice) complete_lattice
haftmann@32077
   623
begin
haftmann@32077
   624
haftmann@32077
   625
definition
haftmann@44024
   626
  "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)"
haftmann@41080
   627
haftmann@41080
   628
lemma Inf_apply:
haftmann@44024
   629
  "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)"
haftmann@41080
   630
  by (simp add: Inf_fun_def)
haftmann@32077
   631
haftmann@32077
   632
definition
haftmann@44024
   633
  "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)"
haftmann@41080
   634
haftmann@41080
   635
lemma Sup_apply:
haftmann@44024
   636
  "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)"
haftmann@41080
   637
  by (simp add: Sup_fun_def)
haftmann@32077
   638
haftmann@32077
   639
instance proof
haftmann@44024
   640
qed (auto simp add: le_fun_def Inf_apply Sup_apply intro: INF_leI le_SUP_I le_INF_I SUP_leI)
haftmann@32077
   641
haftmann@32077
   642
end
haftmann@32077
   643
haftmann@43873
   644
lemma INF_apply:
haftmann@41080
   645
  "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)"
haftmann@43872
   646
  by (auto intro: arg_cong [of _ _ Inf] simp add: INF_def Inf_apply)
hoelzl@38705
   647
haftmann@43873
   648
lemma SUP_apply:
haftmann@41080
   649
  "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)"
haftmann@43872
   650
  by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def Sup_apply)
haftmann@32077
   651
haftmann@44024
   652
instance "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice proof
haftmann@44024
   653
qed (auto simp add: inf_apply sup_apply Inf_apply Sup_apply INF_def SUP_def inf_Sup sup_Inf image_image)
haftmann@44024
   654
haftmann@43873
   655
instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
haftmann@43873
   656
haftmann@32077
   657
haftmann@41082
   658
subsection {* Inter *}
haftmann@41082
   659
haftmann@41082
   660
abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
haftmann@41082
   661
  "Inter S \<equiv> \<Sqinter>S"
haftmann@41082
   662
  
haftmann@41082
   663
notation (xsymbols)
haftmann@41082
   664
  Inter  ("\<Inter>_" [90] 90)
haftmann@41082
   665
haftmann@41082
   666
lemma Inter_eq:
haftmann@41082
   667
  "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
haftmann@41082
   668
proof (rule set_eqI)
haftmann@41082
   669
  fix x
haftmann@41082
   670
  have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
haftmann@41082
   671
    by auto
haftmann@41082
   672
  then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
haftmann@41082
   673
    by (simp add: Inf_fun_def Inf_bool_def) (simp add: mem_def)
haftmann@41082
   674
qed
haftmann@41082
   675
haftmann@43741
   676
lemma Inter_iff [simp,no_atp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)"
haftmann@41082
   677
  by (unfold Inter_eq) blast
haftmann@41082
   678
haftmann@43741
   679
lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C"
haftmann@41082
   680
  by (simp add: Inter_eq)
haftmann@41082
   681
haftmann@41082
   682
text {*
haftmann@41082
   683
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
haftmann@43741
   684
  contains @{term A} as an element, but @{prop "A \<in> X"} can hold when
haftmann@43741
   685
  @{prop "X \<in> C"} does not!  This rule is analogous to @{text spec}.
haftmann@41082
   686
*}
haftmann@41082
   687
haftmann@43741
   688
lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X"
haftmann@41082
   689
  by auto
haftmann@41082
   690
haftmann@43741
   691
lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@41082
   692
  -- {* ``Classical'' elimination rule -- does not require proving
haftmann@43741
   693
    @{prop "X \<in> C"}. *}
haftmann@41082
   694
  by (unfold Inter_eq) blast
haftmann@41082
   695
haftmann@43741
   696
lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B"
haftmann@43740
   697
  by (fact Inf_lower)
haftmann@43740
   698
haftmann@41082
   699
lemma Inter_subset:
haftmann@43755
   700
  "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
haftmann@43740
   701
  by (fact Inf_less_eq)
haftmann@41082
   702
haftmann@43755
   703
lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> Inter A"
haftmann@43740
   704
  by (fact Inf_greatest)
haftmann@41082
   705
haftmann@41082
   706
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
haftmann@43739
   707
  by (fact Inf_binary [symmetric])
haftmann@41082
   708
huffman@44067
   709
lemma Inter_empty: "\<Inter>{} = UNIV"
huffman@44067
   710
  by (fact Inf_empty) (* already simp *)
haftmann@41082
   711
huffman@44067
   712
lemma Inter_UNIV: "\<Inter>UNIV = {}"
huffman@44067
   713
  by (fact Inf_UNIV) (* already simp *)
haftmann@41082
   714
haftmann@41082
   715
lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
haftmann@43739
   716
  by (fact Inf_insert)
haftmann@41082
   717
haftmann@41082
   718
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
haftmann@43899
   719
  by (fact less_eq_Inf_inter)
haftmann@41082
   720
haftmann@41082
   721
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
haftmann@43756
   722
  by (fact Inf_union_distrib)
haftmann@43756
   723
haftmann@43868
   724
lemma Inter_UNIV_conv [simp, no_atp]:
haftmann@43741
   725
  "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
haftmann@43741
   726
  "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
haftmann@43801
   727
  by (fact Inf_top_conv)+
haftmann@41082
   728
haftmann@43741
   729
lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B"
haftmann@43899
   730
  by (fact Inf_superset_mono)
haftmann@41082
   731
haftmann@41082
   732
haftmann@41082
   733
subsection {* Intersections of families *}
haftmann@41082
   734
haftmann@41082
   735
abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@41082
   736
  "INTER \<equiv> INFI"
haftmann@41082
   737
haftmann@43872
   738
text {*
haftmann@43872
   739
  Note: must use name @{const INTER} here instead of @{text INT}
haftmann@43872
   740
  to allow the following syntax coexist with the plain constant name.
haftmann@43872
   741
*}
haftmann@43872
   742
haftmann@41082
   743
syntax
haftmann@41082
   744
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
haftmann@41082
   745
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
haftmann@41082
   746
haftmann@41082
   747
syntax (xsymbols)
haftmann@41082
   748
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
haftmann@41082
   749
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41082
   750
haftmann@41082
   751
syntax (latex output)
haftmann@41082
   752
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
haftmann@41082
   753
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@41082
   754
haftmann@41082
   755
translations
haftmann@41082
   756
  "INT x y. B"  == "INT x. INT y. B"
haftmann@41082
   757
  "INT x. B"    == "CONST INTER CONST UNIV (%x. B)"
haftmann@41082
   758
  "INT x. B"    == "INT x:CONST UNIV. B"
haftmann@41082
   759
  "INT x:A. B"  == "CONST INTER A (%x. B)"
haftmann@41082
   760
haftmann@41082
   761
print_translation {*
wenzelm@42284
   762
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
haftmann@41082
   763
*} -- {* to avoid eta-contraction of body *}
haftmann@41082
   764
haftmann@41082
   765
lemma INTER_eq_Inter_image:
haftmann@41082
   766
  "(\<Inter>x\<in>A. B x) = \<Inter>(B`A)"
haftmann@43872
   767
  by (fact INF_def)
haftmann@41082
   768
  
haftmann@41082
   769
lemma Inter_def:
haftmann@41082
   770
  "\<Inter>S = (\<Inter>x\<in>S. x)"
haftmann@41082
   771
  by (simp add: INTER_eq_Inter_image image_def)
haftmann@41082
   772
haftmann@41082
   773
lemma INTER_def:
haftmann@41082
   774
  "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
haftmann@41082
   775
  by (auto simp add: INTER_eq_Inter_image Inter_eq)
haftmann@41082
   776
haftmann@41082
   777
lemma Inter_image_eq [simp]:
haftmann@41082
   778
  "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
haftmann@43872
   779
  by (rule sym) (fact INF_def)
haftmann@41082
   780
haftmann@43817
   781
lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)"
haftmann@41082
   782
  by (unfold INTER_def) blast
haftmann@41082
   783
haftmann@43817
   784
lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)"
haftmann@41082
   785
  by (unfold INTER_def) blast
haftmann@41082
   786
haftmann@43852
   787
lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a"
haftmann@41082
   788
  by auto
haftmann@41082
   789
haftmann@43852
   790
lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@43852
   791
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a\<in>A"}. *}
haftmann@41082
   792
  by (unfold INTER_def) blast
haftmann@41082
   793
haftmann@41082
   794
lemma INT_cong [cong]:
haftmann@43854
   795
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Inter>x\<in>A. C x) = (\<Inter>x\<in>B. D x)"
haftmann@43865
   796
  by (fact INF_cong)
haftmann@41082
   797
haftmann@41082
   798
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
haftmann@41082
   799
  by blast
haftmann@41082
   800
haftmann@41082
   801
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
haftmann@41082
   802
  by blast
haftmann@41082
   803
haftmann@43817
   804
lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a"
haftmann@41082
   805
  by (fact INF_leI)
haftmann@41082
   806
haftmann@43817
   807
lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)"
haftmann@43872
   808
  by (fact le_INF_I)
haftmann@41082
   809
huffman@44067
   810
lemma INT_empty: "(\<Inter>x\<in>{}. B x) = UNIV"
huffman@44067
   811
  by (fact INF_empty) (* already simp *)
haftmann@43854
   812
haftmann@43817
   813
lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
haftmann@43872
   814
  by (fact INF_absorb)
haftmann@41082
   815
haftmann@43854
   816
lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)"
haftmann@41082
   817
  by (fact le_INF_iff)
haftmann@41082
   818
haftmann@41082
   819
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
haftmann@43865
   820
  by (fact INF_insert)
haftmann@43865
   821
haftmann@43865
   822
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
haftmann@43865
   823
  by (fact INF_union)
haftmann@43865
   824
haftmann@43865
   825
lemma INT_insert_distrib:
haftmann@43865
   826
  "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
haftmann@43865
   827
  by blast
haftmann@43854
   828
haftmann@41082
   829
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
haftmann@43865
   830
  by (fact INF_constant)
haftmann@43865
   831
haftmann@41082
   832
lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
haftmann@41082
   833
  -- {* Look: it has an \emph{existential} quantifier *}
haftmann@43865
   834
  by (fact INF_eq)
haftmann@43865
   835
haftmann@43854
   836
lemma INTER_UNIV_conv [simp]:
haftmann@43817
   837
 "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
haftmann@43817
   838
 "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
haftmann@43865
   839
  by (fact INF_top_conv)+
haftmann@43865
   840
haftmann@43865
   841
lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False"
haftmann@43873
   842
  by (fact INF_UNIV_bool_expand)
haftmann@43865
   843
haftmann@43865
   844
lemma INT_anti_mono:
haftmann@43900
   845
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
haftmann@43865
   846
  -- {* The last inclusion is POSITIVE! *}
haftmann@43940
   847
  by (fact INF_superset_mono)
haftmann@41082
   848
haftmann@41082
   849
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
haftmann@41082
   850
  by blast
haftmann@41082
   851
haftmann@43817
   852
lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)"
haftmann@41082
   853
  by blast
haftmann@41082
   854
haftmann@41082
   855
haftmann@32139
   856
subsection {* Union *}
haftmann@32115
   857
haftmann@32587
   858
abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
haftmann@32587
   859
  "Union S \<equiv> \<Squnion>S"
haftmann@32115
   860
haftmann@32115
   861
notation (xsymbols)
haftmann@32115
   862
  Union  ("\<Union>_" [90] 90)
haftmann@32115
   863
haftmann@32135
   864
lemma Union_eq:
haftmann@32135
   865
  "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
nipkow@39302
   866
proof (rule set_eqI)
haftmann@32115
   867
  fix x
haftmann@32135
   868
  have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
haftmann@32115
   869
    by auto
haftmann@32135
   870
  then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
haftmann@32587
   871
    by (simp add: Sup_fun_def Sup_bool_def) (simp add: mem_def)
haftmann@32115
   872
qed
haftmann@32115
   873
blanchet@35828
   874
lemma Union_iff [simp, no_atp]:
haftmann@32115
   875
  "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
haftmann@32115
   876
  by (unfold Union_eq) blast
haftmann@32115
   877
haftmann@32115
   878
lemma UnionI [intro]:
haftmann@32115
   879
  "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
haftmann@32115
   880
  -- {* The order of the premises presupposes that @{term C} is rigid;
haftmann@32115
   881
    @{term A} may be flexible. *}
haftmann@32115
   882
  by auto
haftmann@32115
   883
haftmann@32115
   884
lemma UnionE [elim!]:
haftmann@43817
   885
  "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@32115
   886
  by auto
haftmann@32115
   887
haftmann@43817
   888
lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A"
haftmann@43901
   889
  by (fact Sup_upper)
haftmann@32135
   890
haftmann@43817
   891
lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C"
haftmann@43901
   892
  by (fact Sup_least)
haftmann@32135
   893
haftmann@32135
   894
lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
haftmann@32135
   895
  by blast
haftmann@32135
   896
haftmann@43817
   897
lemma Union_empty [simp]: "\<Union>{} = {}"
haftmann@43901
   898
  by (fact Sup_empty)
haftmann@32135
   899
haftmann@43817
   900
lemma Union_UNIV [simp]: "\<Union>UNIV = UNIV"
haftmann@43901
   901
  by (fact Sup_UNIV)
haftmann@32135
   902
haftmann@43817
   903
lemma Union_insert [simp]: "\<Union>insert a B = a \<union> \<Union>B"
haftmann@43901
   904
  by (fact Sup_insert)
haftmann@32135
   905
haftmann@43817
   906
lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B"
haftmann@43901
   907
  by (fact Sup_union_distrib)
haftmann@32135
   908
haftmann@32135
   909
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
haftmann@43901
   910
  by (fact Sup_inter_less_eq)
haftmann@32135
   911
haftmann@43817
   912
lemma Union_empty_conv [simp,no_atp]: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
haftmann@43901
   913
  by (fact Sup_bot_conv)
haftmann@32135
   914
haftmann@43817
   915
lemma empty_Union_conv [simp,no_atp]: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
haftmann@43901
   916
  by (fact Sup_bot_conv)
haftmann@32135
   917
haftmann@32135
   918
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
haftmann@32135
   919
  by blast
haftmann@32135
   920
haftmann@32135
   921
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
haftmann@32135
   922
  by blast
haftmann@32135
   923
haftmann@43817
   924
lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B"
haftmann@43901
   925
  by (fact Sup_subset_mono)
haftmann@32135
   926
haftmann@32115
   927
haftmann@32139
   928
subsection {* Unions of families *}
haftmann@32077
   929
haftmann@32606
   930
abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@32606
   931
  "UNION \<equiv> SUPR"
haftmann@32077
   932
haftmann@43872
   933
text {*
haftmann@43872
   934
  Note: must use name @{const UNION} here instead of @{text UN}
haftmann@43872
   935
  to allow the following syntax coexist with the plain constant name.
haftmann@43872
   936
*}
haftmann@43872
   937
haftmann@32077
   938
syntax
wenzelm@35115
   939
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
huffman@36364
   940
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
haftmann@32077
   941
haftmann@32077
   942
syntax (xsymbols)
wenzelm@35115
   943
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
huffman@36364
   944
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@32077
   945
haftmann@32077
   946
syntax (latex output)
wenzelm@35115
   947
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
huffman@36364
   948
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@32077
   949
haftmann@32077
   950
translations
haftmann@32077
   951
  "UN x y. B"   == "UN x. UN y. B"
haftmann@32077
   952
  "UN x. B"     == "CONST UNION CONST UNIV (%x. B)"
haftmann@32077
   953
  "UN x. B"     == "UN x:CONST UNIV. B"
haftmann@32077
   954
  "UN x:A. B"   == "CONST UNION A (%x. B)"
haftmann@32077
   955
haftmann@32077
   956
text {*
haftmann@32077
   957
  Note the difference between ordinary xsymbol syntax of indexed
haftmann@32077
   958
  unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
haftmann@32077
   959
  and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
haftmann@32077
   960
  former does not make the index expression a subscript of the
haftmann@32077
   961
  union/intersection symbol because this leads to problems with nested
haftmann@32077
   962
  subscripts in Proof General.
haftmann@32077
   963
*}
haftmann@32077
   964
wenzelm@35115
   965
print_translation {*
wenzelm@42284
   966
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
wenzelm@35115
   967
*} -- {* to avoid eta-contraction of body *}
haftmann@32077
   968
haftmann@32135
   969
lemma UNION_eq_Union_image:
haftmann@43817
   970
  "(\<Union>x\<in>A. B x) = \<Union>(B ` A)"
haftmann@43872
   971
  by (fact SUP_def)
haftmann@32115
   972
haftmann@32115
   973
lemma Union_def:
haftmann@32117
   974
  "\<Union>S = (\<Union>x\<in>S. x)"
haftmann@32115
   975
  by (simp add: UNION_eq_Union_image image_def)
haftmann@32115
   976
blanchet@35828
   977
lemma UNION_def [no_atp]:
haftmann@32135
   978
  "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
haftmann@32117
   979
  by (auto simp add: UNION_eq_Union_image Union_eq)
haftmann@32115
   980
  
haftmann@32115
   981
lemma Union_image_eq [simp]:
haftmann@43817
   982
  "\<Union>(B ` A) = (\<Union>x\<in>A. B x)"
haftmann@32115
   983
  by (rule sym) (fact UNION_eq_Union_image)
haftmann@32115
   984
  
haftmann@43852
   985
lemma UN_iff [simp]: "(b \<in> (\<Union>x\<in>A. B x)) = (\<exists>x\<in>A. b \<in> B x)"
wenzelm@11979
   986
  by (unfold UNION_def) blast
wenzelm@11979
   987
haftmann@43852
   988
lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)"
wenzelm@11979
   989
  -- {* The order of the premises presupposes that @{term A} is rigid;
wenzelm@11979
   990
    @{term b} may be flexible. *}
wenzelm@11979
   991
  by auto
wenzelm@11979
   992
haftmann@43852
   993
lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R"
wenzelm@11979
   994
  by (unfold UNION_def) blast
clasohm@923
   995
wenzelm@11979
   996
lemma UN_cong [cong]:
haftmann@43900
   997
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
haftmann@43900
   998
  by (fact SUP_cong)
wenzelm@11979
   999
berghofe@29691
  1000
lemma strong_UN_cong:
haftmann@43900
  1001
  "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
haftmann@43900
  1002
  by (unfold simp_implies_def) (fact UN_cong)
berghofe@29691
  1003
haftmann@43817
  1004
lemma image_eq_UN: "f ` A = (\<Union>x\<in>A. {f x})"
haftmann@32077
  1005
  by blast
haftmann@32077
  1006
haftmann@43817
  1007
lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)"
haftmann@43872
  1008
  by (fact le_SUP_I)
haftmann@32135
  1009
haftmann@43817
  1010
lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C"
haftmann@43900
  1011
  by (fact SUP_leI)
haftmann@32135
  1012
blanchet@35828
  1013
lemma Collect_bex_eq [no_atp]: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
haftmann@32135
  1014
  by blast
haftmann@32135
  1015
haftmann@43817
  1016
lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
haftmann@32135
  1017
  by blast
haftmann@32135
  1018
huffman@44067
  1019
lemma UN_empty [no_atp]: "(\<Union>x\<in>{}. B x) = {}"
huffman@44067
  1020
  by (fact SUP_empty) (* already simp *)
haftmann@32135
  1021
haftmann@32135
  1022
lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
haftmann@43900
  1023
  by (fact SUP_bot)
haftmann@32135
  1024
haftmann@32135
  1025
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
haftmann@32135
  1026
  by blast
haftmann@32135
  1027
haftmann@43817
  1028
lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
haftmann@43900
  1029
  by (fact SUP_absorb)
haftmann@32135
  1030
haftmann@32135
  1031
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
haftmann@43900
  1032
  by (fact SUP_insert)
haftmann@32135
  1033
haftmann@32135
  1034
lemma UN_Un[simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
haftmann@43900
  1035
  by (fact SUP_union)
haftmann@32135
  1036
haftmann@43967
  1037
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
haftmann@32135
  1038
  by blast
haftmann@32135
  1039
haftmann@32135
  1040
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
huffman@35629
  1041
  by (fact SUP_le_iff)
haftmann@32135
  1042
haftmann@32135
  1043
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
haftmann@43900
  1044
  by (fact SUP_constant)
haftmann@32135
  1045
haftmann@32135
  1046
lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
haftmann@43900
  1047
  by (fact SUP_eq)
haftmann@43900
  1048
haftmann@43944
  1049
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
haftmann@32135
  1050
  by blast
haftmann@32135
  1051
haftmann@32135
  1052
lemma UNION_empty_conv[simp]:
haftmann@43817
  1053
  "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
haftmann@43817
  1054
  "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
haftmann@43900
  1055
  by (fact SUP_bot_conv)+
haftmann@32135
  1056
blanchet@35828
  1057
lemma Collect_ex_eq [no_atp]: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
haftmann@32135
  1058
  by blast
haftmann@32135
  1059
haftmann@43900
  1060
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
haftmann@32135
  1061
  by blast
haftmann@32135
  1062
haftmann@43900
  1063
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
haftmann@32135
  1064
  by blast
haftmann@32135
  1065
haftmann@32135
  1066
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
haftmann@32135
  1067
  by (auto simp add: split_if_mem2)
haftmann@32135
  1068
haftmann@43817
  1069
lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)"
haftmann@43900
  1070
  by (fact SUP_UNIV_bool_expand)
haftmann@32135
  1071
haftmann@32135
  1072
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
haftmann@32135
  1073
  by blast
haftmann@32135
  1074
haftmann@32135
  1075
lemma UN_mono:
haftmann@43817
  1076
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow>
haftmann@32135
  1077
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
haftmann@43940
  1078
  by (fact SUP_subset_mono)
haftmann@32135
  1079
haftmann@43817
  1080
lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)"
haftmann@32135
  1081
  by blast
haftmann@32135
  1082
haftmann@43817
  1083
lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)"
haftmann@32135
  1084
  by blast
haftmann@32135
  1085
haftmann@43817
  1086
lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
haftmann@32135
  1087
  -- {* NOT suitable for rewriting *}
haftmann@32135
  1088
  by blast
haftmann@32135
  1089
haftmann@43817
  1090
lemma image_UN: "f ` UNION A B = (\<Union>x\<in>A. f ` B x)"
haftmann@43817
  1091
  by blast
haftmann@32135
  1092
wenzelm@11979
  1093
haftmann@32139
  1094
subsection {* Distributive laws *}
wenzelm@12897
  1095
wenzelm@12897
  1096
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
haftmann@44032
  1097
  by (fact inf_Sup)
wenzelm@12897
  1098
haftmann@44039
  1099
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
haftmann@44039
  1100
  by (fact sup_Inf)
haftmann@44039
  1101
wenzelm@12897
  1102
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
haftmann@44039
  1103
  by (fact Sup_inf)
haftmann@44039
  1104
haftmann@44039
  1105
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
haftmann@44039
  1106
  by (rule sym) (rule INF_inf_distrib)
haftmann@44039
  1107
haftmann@44039
  1108
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
haftmann@44039
  1109
  by (rule sym) (rule SUP_sup_distrib)
haftmann@44039
  1110
haftmann@44039
  1111
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)"
haftmann@44039
  1112
  by (simp only: INT_Int_distrib INF_def)
wenzelm@12897
  1113
haftmann@43817
  1114
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)"
wenzelm@12897
  1115
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
wenzelm@12897
  1116
  -- {* Union of a family of unions *}
haftmann@44039
  1117
  by (simp only: UN_Un_distrib SUP_def)
wenzelm@12897
  1118
haftmann@44039
  1119
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
haftmann@44039
  1120
  by (fact sup_INF)
wenzelm@12897
  1121
wenzelm@12897
  1122
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
wenzelm@12897
  1123
  -- {* Halmos, Naive Set Theory, page 35. *}
haftmann@44039
  1124
  by (fact inf_SUP)
wenzelm@12897
  1125
wenzelm@12897
  1126
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
haftmann@44039
  1127
  by (fact SUP_inf_distrib2)
wenzelm@12897
  1128
wenzelm@12897
  1129
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
haftmann@44039
  1130
  by (fact INF_sup_distrib2)
haftmann@44039
  1131
haftmann@44039
  1132
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
haftmann@44039
  1133
  by (fact Sup_inf_eq_bot_iff)
wenzelm@12897
  1134
wenzelm@12897
  1135
haftmann@32139
  1136
subsection {* Complement *}
haftmann@32135
  1137
haftmann@43873
  1138
lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
haftmann@43873
  1139
  by (fact uminus_INF)
wenzelm@12897
  1140
haftmann@43873
  1141
lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
haftmann@43873
  1142
  by (fact uminus_SUP)
wenzelm@12897
  1143
wenzelm@12897
  1144
haftmann@32139
  1145
subsection {* Miniscoping and maxiscoping *}
wenzelm@12897
  1146
paulson@13860
  1147
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
paulson@13860
  1148
           and Intersections. *}
wenzelm@12897
  1149
wenzelm@12897
  1150
lemma UN_simps [simp]:
haftmann@43817
  1151
  "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
haftmann@44032
  1152
  "\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
haftmann@43852
  1153
  "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
haftmann@44032
  1154
  "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)"
haftmann@43852
  1155
  "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))"
haftmann@43852
  1156
  "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)"
haftmann@43852
  1157
  "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))"
haftmann@43852
  1158
  "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)"
haftmann@43852
  1159
  "\<And>A B C. (\<Union>z\<in>UNION A B. C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)"
haftmann@43831
  1160
  "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))"
wenzelm@12897
  1161
  by auto
wenzelm@12897
  1162
wenzelm@12897
  1163
lemma INT_simps [simp]:
haftmann@44032
  1164
  "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
haftmann@43831
  1165
  "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
haftmann@43852
  1166
  "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
haftmann@43852
  1167
  "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
haftmann@43817
  1168
  "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)"
haftmann@43852
  1169
  "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)"
haftmann@43852
  1170
  "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))"
haftmann@43852
  1171
  "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)"
haftmann@43852
  1172
  "\<And>A B C. (\<Inter>z\<in>UNION A B. C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)"
haftmann@43852
  1173
  "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))"
wenzelm@12897
  1174
  by auto
wenzelm@12897
  1175
haftmann@43967
  1176
lemma UN_ball_bex_simps [simp, no_atp]:
haftmann@43852
  1177
  "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)"
haftmann@43967
  1178
  "\<And>A B P. (\<forall>x\<in>UNION A B. P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)"
haftmann@43852
  1179
  "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)"
haftmann@43852
  1180
  "\<And>A B P. (\<exists>x\<in>UNION A B. P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)"
wenzelm@12897
  1181
  by auto
wenzelm@12897
  1182
haftmann@43943
  1183
paulson@13860
  1184
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
paulson@13860
  1185
paulson@13860
  1186
lemma UN_extend_simps:
haftmann@43817
  1187
  "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
haftmann@44032
  1188
  "\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
haftmann@43852
  1189
  "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
haftmann@43852
  1190
  "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)"
haftmann@43852
  1191
  "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)"
haftmann@43817
  1192
  "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)"
haftmann@43817
  1193
  "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)"
haftmann@43852
  1194
  "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)"
haftmann@43852
  1195
  "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>UNION A B. C z)"
haftmann@43831
  1196
  "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)"
paulson@13860
  1197
  by auto
paulson@13860
  1198
paulson@13860
  1199
lemma INT_extend_simps:
haftmann@43852
  1200
  "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
haftmann@43852
  1201
  "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
haftmann@43852
  1202
  "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
haftmann@43852
  1203
  "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
haftmann@43817
  1204
  "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))"
haftmann@43852
  1205
  "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)"
haftmann@43852
  1206
  "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)"
haftmann@43852
  1207
  "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)"
haftmann@43852
  1208
  "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>UNION A B. C z)"
haftmann@43852
  1209
  "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)"
paulson@13860
  1210
  by auto
paulson@13860
  1211
paulson@13860
  1212
haftmann@43872
  1213
text {* Legacy names *}
haftmann@43872
  1214
haftmann@43872
  1215
lemmas (in complete_lattice) INFI_def = INF_def
haftmann@43872
  1216
lemmas (in complete_lattice) SUPR_def = SUP_def
haftmann@43872
  1217
lemmas (in complete_lattice) le_SUPI = le_SUP_I
haftmann@43872
  1218
lemmas (in complete_lattice) le_SUPI2 = le_SUP_I2
haftmann@43872
  1219
lemmas (in complete_lattice) le_INFI = le_INF_I
haftmann@43943
  1220
lemmas (in complete_lattice) less_INFD = less_INF_D
haftmann@43940
  1221
haftmann@43940
  1222
lemma (in complete_lattice) INF_subset:
haftmann@43940
  1223
  "B \<subseteq> A \<Longrightarrow> INFI A f \<sqsubseteq> INFI B f"
haftmann@43940
  1224
  by (rule INF_superset_mono) auto
haftmann@43940
  1225
haftmann@43873
  1226
lemmas INFI_apply = INF_apply
haftmann@43873
  1227
lemmas SUPR_apply = SUP_apply
haftmann@43872
  1228
haftmann@43872
  1229
text {* Finally *}
haftmann@43872
  1230
haftmann@32135
  1231
no_notation
haftmann@32135
  1232
  less_eq  (infix "\<sqsubseteq>" 50) and
haftmann@32135
  1233
  less (infix "\<sqsubset>" 50) and
haftmann@41082
  1234
  bot ("\<bottom>") and
haftmann@41082
  1235
  top ("\<top>") and
haftmann@32135
  1236
  inf  (infixl "\<sqinter>" 70) and
haftmann@32135
  1237
  sup  (infixl "\<squnion>" 65) and
haftmann@32135
  1238
  Inf  ("\<Sqinter>_" [900] 900) and
haftmann@41082
  1239
  Sup  ("\<Squnion>_" [900] 900)
haftmann@32135
  1240
haftmann@41080
  1241
no_syntax (xsymbols)
haftmann@41082
  1242
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
haftmann@41082
  1243
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41080
  1244
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
haftmann@41080
  1245
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41080
  1246
haftmann@30596
  1247
lemmas mem_simps =
haftmann@30596
  1248
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
haftmann@30596
  1249
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
haftmann@30596
  1250
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
wenzelm@21669
  1251
wenzelm@11979
  1252
end