src/HOL/BNF_LFP.thy
author wenzelm
Thu Jul 24 11:54:15 2014 +0200 (2014-07-24)
changeset 57641 dc59f147b27d
parent 57493 554592fb795a
child 57698 afef6616cbae
permissions -rw-r--r--
more robust notation BNF_Def.convol, which is private to main HOL, but may cause syntax ambiguities nonetheless (e.g. List.thy);
desharna@57471
     1
blanchet@55059
     2
(*  Title:      HOL/BNF_LFP.thy
blanchet@48975
     3
    Author:     Dmitriy Traytel, TU Muenchen
blanchet@53305
     4
    Author:     Lorenz Panny, TU Muenchen
blanchet@53305
     5
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@53305
     6
    Copyright   2012, 2013
blanchet@48975
     7
blanchet@48975
     8
Least fixed point operation on bounded natural functors.
blanchet@48975
     9
*)
blanchet@48975
    10
blanchet@48975
    11
header {* Least Fixed Point Operation on Bounded Natural Functors *}
blanchet@48975
    12
blanchet@48975
    13
theory BNF_LFP
blanchet@53311
    14
imports BNF_FP_Base
blanchet@48975
    15
keywords
blanchet@53305
    16
  "datatype_new" :: thy_decl and
blanchet@55575
    17
  "datatype_compat" :: thy_decl
blanchet@48975
    18
begin
blanchet@48975
    19
blanchet@49312
    20
lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}"
blanchet@49312
    21
by blast
blanchet@49312
    22
blanchet@56346
    23
lemma image_Collect_subsetI: "(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B"
blanchet@49312
    24
by blast
blanchet@49312
    25
blanchet@49312
    26
lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X"
blanchet@49312
    27
by auto
blanchet@49312
    28
blanchet@49312
    29
lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x"
blanchet@49312
    30
by auto
blanchet@49312
    31
blanchet@55023
    32
lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> underS R j"
blanchet@55023
    33
unfolding underS_def by simp
blanchet@49312
    34
blanchet@55023
    35
lemma underS_E: "i \<in> underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R"
blanchet@55023
    36
unfolding underS_def by simp
blanchet@49312
    37
blanchet@55023
    38
lemma underS_Field: "i \<in> underS R j \<Longrightarrow> i \<in> Field R"
blanchet@55023
    39
unfolding underS_def Field_def by auto
blanchet@49312
    40
blanchet@49312
    41
lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R"
blanchet@49312
    42
unfolding Field_def by auto
blanchet@49312
    43
wenzelm@57641
    44
lemma fst_convol': "fst (\<langle>f, g\<rangle> x) = f x"
blanchet@49312
    45
using fst_convol unfolding convol_def by simp
blanchet@49312
    46
wenzelm@57641
    47
lemma snd_convol': "snd (\<langle>f, g\<rangle> x) = g x"
blanchet@49312
    48
using snd_convol unfolding convol_def by simp
blanchet@49312
    49
wenzelm@57641
    50
lemma convol_expand_snd: "fst o f = g \<Longrightarrow> \<langle>g, snd o f\<rangle> = f"
blanchet@49312
    51
unfolding convol_def by auto
blanchet@49312
    52
traytel@55811
    53
lemma convol_expand_snd':
traytel@55811
    54
  assumes "(fst o f = g)"
wenzelm@57641
    55
  shows "h = snd o f \<longleftrightarrow> \<langle>g, h\<rangle> = f"
traytel@55811
    56
proof -
wenzelm@57641
    57
  from assms have *: "\<langle>g, snd o f\<rangle> = f" by (rule convol_expand_snd)
wenzelm@57641
    58
  then have "h = snd o f \<longleftrightarrow> h = snd o \<langle>g, snd o f\<rangle>" by simp
traytel@55811
    59
  moreover have "\<dots> \<longleftrightarrow> h = snd o f" by (simp add: snd_convol)
wenzelm@57641
    60
  moreover have "\<dots> \<longleftrightarrow> \<langle>g, h\<rangle> = f" by (subst (2) *[symmetric]) (auto simp: convol_def fun_eq_iff)
traytel@55811
    61
  ultimately show ?thesis by simp
traytel@55811
    62
qed
blanchet@49312
    63
lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B"
blanchet@49312
    64
unfolding bij_betw_def by auto
blanchet@49312
    65
blanchet@49312
    66
lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B"
blanchet@49312
    67
unfolding bij_betw_def by auto
blanchet@49312
    68
traytel@56237
    69
lemma f_the_inv_into_f_bij_betw: "bij_betw f A B \<Longrightarrow>
traytel@56237
    70
  (bij_betw f A B \<Longrightarrow> x \<in> B) \<Longrightarrow> f (the_inv_into A f x) = x"
traytel@56237
    71
  unfolding bij_betw_def by (blast intro: f_the_inv_into_f)
blanchet@49312
    72
traytel@56237
    73
lemma ex_bij_betw: "|A| \<le>o (r :: 'b rel) \<Longrightarrow> \<exists>f B :: 'b set. bij_betw f B A"
traytel@56237
    74
  by (subst (asm) internalize_card_of_ordLeq)
traytel@56237
    75
    (auto dest!: iffD2[OF card_of_ordIso ordIso_symmetric])
blanchet@49312
    76
blanchet@49312
    77
lemma bij_betwI':
blanchet@49312
    78
  "\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y);
blanchet@49312
    79
    \<And>x. x \<in> X \<Longrightarrow> f x \<in> Y;
blanchet@49312
    80
    \<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y"
traytel@53695
    81
unfolding bij_betw_def inj_on_def by blast
blanchet@49312
    82
blanchet@49312
    83
lemma surj_fun_eq:
blanchet@49312
    84
  assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x"
blanchet@49312
    85
  shows "g1 = g2"
blanchet@49312
    86
proof (rule ext)
blanchet@49312
    87
  fix y
blanchet@49312
    88
  from surj_on obtain x where "x \<in> X" and "y = f x" by blast
blanchet@49312
    89
  thus "g1 y = g2 y" using eq_on by simp
blanchet@49312
    90
qed
blanchet@49312
    91
blanchet@49312
    92
lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r"
blanchet@49514
    93
unfolding wo_rel_def card_order_on_def by blast
blanchet@49312
    94
blanchet@49312
    95
lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow>
blanchet@49312
    96
  \<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r"
blanchet@49312
    97
unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit)
blanchet@49312
    98
blanchet@49312
    99
lemma Card_order_trans:
blanchet@49312
   100
  "\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r"
blanchet@49312
   101
unfolding card_order_on_def well_order_on_def linear_order_on_def
blanchet@49312
   102
  partial_order_on_def preorder_on_def trans_def antisym_def by blast
blanchet@49312
   103
blanchet@49312
   104
lemma Cinfinite_limit2:
blanchet@49312
   105
 assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r"
blanchet@49312
   106
 shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)"
blanchet@49312
   107
proof -
blanchet@49312
   108
  from r have trans: "trans r" and total: "Total r" and antisym: "antisym r"
blanchet@49312
   109
    unfolding card_order_on_def well_order_on_def linear_order_on_def
blanchet@49312
   110
      partial_order_on_def preorder_on_def by auto
blanchet@49312
   111
  obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r"
blanchet@49312
   112
    using Cinfinite_limit[OF x1 r] by blast
blanchet@49312
   113
  obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r"
blanchet@49312
   114
    using Cinfinite_limit[OF x2 r] by blast
blanchet@49312
   115
  show ?thesis
blanchet@49312
   116
  proof (cases "y1 = y2")
blanchet@49312
   117
    case True with y1 y2 show ?thesis by blast
blanchet@49312
   118
  next
blanchet@49312
   119
    case False
blanchet@49312
   120
    with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r"
blanchet@49312
   121
      unfolding total_on_def by auto
blanchet@49312
   122
    thus ?thesis
blanchet@49312
   123
    proof
blanchet@49312
   124
      assume *: "(y1, y2) \<in> r"
blanchet@49312
   125
      with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast
blanchet@49312
   126
      with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def)
blanchet@49312
   127
    next
blanchet@49312
   128
      assume *: "(y2, y1) \<in> r"
blanchet@49312
   129
      with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast
blanchet@49312
   130
      with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def)
blanchet@49312
   131
    qed
blanchet@49312
   132
  qed
blanchet@49312
   133
qed
blanchet@49312
   134
blanchet@49312
   135
lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk>
blanchet@49312
   136
 \<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)"
blanchet@49312
   137
proof (induct X rule: finite_induct)
blanchet@49312
   138
  case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto
blanchet@49312
   139
next
blanchet@49312
   140
  case (insert x X)
blanchet@49312
   141
  then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast
blanchet@49312
   142
  then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r"
blanchet@49312
   143
    using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast
blanchet@49326
   144
  show ?case
blanchet@49326
   145
    apply (intro bexI ballI)
blanchet@49326
   146
    apply (erule insertE)
blanchet@49326
   147
    apply hypsubst
blanchet@49326
   148
    apply (rule z(2))
blanchet@49326
   149
    using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3)
blanchet@49326
   150
    apply blast
blanchet@49326
   151
    apply (rule z(1))
blanchet@49326
   152
    done
blanchet@49312
   153
qed
blanchet@49312
   154
blanchet@49312
   155
lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A"
blanchet@49312
   156
by auto
blanchet@49312
   157
blanchet@49312
   158
(*helps resolution*)
blanchet@49312
   159
lemma well_order_induct_imp:
blanchet@49312
   160
  "wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow>
blanchet@49312
   161
     x \<in> Field r \<longrightarrow> P x"
blanchet@49312
   162
by (erule wo_rel.well_order_induct)
blanchet@49312
   163
blanchet@49312
   164
lemma meta_spec2:
blanchet@49312
   165
  assumes "(\<And>x y. PROP P x y)"
blanchet@49312
   166
  shows "PROP P x y"
blanchet@55084
   167
by (rule assms)
blanchet@49312
   168
traytel@54841
   169
lemma nchotomy_relcomppE:
traytel@55811
   170
  assumes "\<And>y. \<exists>x. y = f x" "(r OO s) a c" "\<And>b. r a (f b) \<Longrightarrow> s (f b) c \<Longrightarrow> P"
traytel@55811
   171
  shows P
traytel@55811
   172
proof (rule relcompp.cases[OF assms(2)], hypsubst)
traytel@55811
   173
  fix b assume "r a b" "s b c"
traytel@55811
   174
  moreover from assms(1) obtain b' where "b = f b'" by blast
traytel@55811
   175
  ultimately show P by (blast intro: assms(3))
traytel@55811
   176
qed
traytel@54841
   177
blanchet@55945
   178
lemma vimage2p_rel_fun: "rel_fun (vimage2p f g R) R f g"
blanchet@55945
   179
  unfolding rel_fun_def vimage2p_def by auto
traytel@52731
   180
traytel@52731
   181
lemma predicate2D_vimage2p: "\<lbrakk>R \<le> vimage2p f g S; R x y\<rbrakk> \<Longrightarrow> S (f x) (g y)"
traytel@52731
   182
  unfolding vimage2p_def by auto
traytel@52731
   183
blanchet@55945
   184
lemma id_transfer: "rel_fun A A id id"
blanchet@55945
   185
  unfolding rel_fun_def by simp
blanchet@55084
   186
traytel@55770
   187
lemma ssubst_Pair_rhs: "\<lbrakk>(r, s) \<in> R; s' = s\<rbrakk> \<Longrightarrow> (r, s') \<in> R"
blanchet@55851
   188
  by (rule ssubst)
traytel@55770
   189
blanchet@55062
   190
ML_file "Tools/BNF/bnf_lfp_util.ML"
blanchet@55062
   191
ML_file "Tools/BNF/bnf_lfp_tactics.ML"
blanchet@55062
   192
ML_file "Tools/BNF/bnf_lfp.ML"
blanchet@55062
   193
ML_file "Tools/BNF/bnf_lfp_compat.ML"
blanchet@55571
   194
ML_file "Tools/BNF/bnf_lfp_rec_sugar_more.ML"
blanchet@56643
   195
blanchet@55084
   196
hide_fact (open) id_transfer
blanchet@55084
   197
blanchet@48975
   198
end