src/HOL/UNITY/WFair.thy
author paulson <lp15@cam.ac.uk>
Thu Dec 10 13:38:40 2015 +0000 (2015-12-10)
changeset 61824 dcbe9f756ae0
parent 60773 d09c66a0ea10
child 61952 546958347e05
permissions -rw-r--r--
not_leE -> not_le_imp_less and other tidying
wenzelm@37936
     1
(*  Title:      HOL/UNITY/WFair.thy
paulson@4776
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@4776
     3
    Copyright   1998  University of Cambridge
paulson@4776
     4
paulson@13812
     5
Conditional Fairness versions of transient, ensures, leadsTo.
paulson@4776
     6
paulson@4776
     7
From Misra, "A Logic for Concurrent Programming", 1994
paulson@4776
     8
*)
paulson@4776
     9
wenzelm@58889
    10
section{*Progress*}
paulson@13798
    11
haftmann@16417
    12
theory WFair imports UNITY begin
paulson@4776
    13
paulson@13812
    14
text{*The original version of this theory was based on weak fairness.  (Thus,
paulson@13812
    15
the entire UNITY development embodied this assumption, until February 2003.)
paulson@13812
    16
Weak fairness states that if a command is enabled continuously, then it is
paulson@13812
    17
eventually executed.  Ernie Cohen suggested that I instead adopt unconditional
paulson@13812
    18
fairness: every command is executed infinitely often.  
paulson@13812
    19
paulson@13812
    20
In fact, Misra's paper on "Progress" seems to be ambiguous about the correct
paulson@13812
    21
interpretation, and says that the two forms of fairness are equivalent.  They
paulson@13812
    22
differ only on their treatment of partial transitions, which under
paulson@13812
    23
unconditional fairness behave magically.  That is because if there are partial
paulson@13812
    24
transitions then there may be no fair executions, making all leads-to
paulson@13812
    25
properties hold vacuously.
paulson@13812
    26
paulson@13812
    27
Unconditional fairness has some great advantages.  By distinguishing partial
paulson@13812
    28
transitions from total ones that are the identity on part of their domain, it
paulson@13812
    29
is more expressive.  Also, by simplifying the definition of the transient
paulson@13812
    30
property, it simplifies many proofs.  A drawback is that some laws only hold
paulson@13812
    31
under the assumption that all transitions are total.  The best-known of these
paulson@13812
    32
is the impossibility law for leads-to.
paulson@13812
    33
*}
paulson@13812
    34
haftmann@35416
    35
definition
paulson@4776
    36
paulson@13812
    37
  --{*This definition specifies conditional fairness.  The rest of the theory
paulson@13812
    38
      is generic to all forms of fairness.  To get weak fairness, conjoin
paulson@13812
    39
      the inclusion below with @{term "A \<subseteq> Domain act"}, which specifies 
paulson@13812
    40
      that the action is enabled over all of @{term A}.*}
haftmann@35416
    41
  transient :: "'a set => 'a program set" where
paulson@13812
    42
    "transient A == {F. \<exists>act\<in>Acts F. act``A \<subseteq> -A}"
paulson@4776
    43
haftmann@35416
    44
definition
haftmann@35416
    45
  ensures :: "['a set, 'a set] => 'a program set"       (infixl "ensures" 60) where
paulson@13805
    46
    "A ensures B == (A-B co A \<union> B) \<inter> transient (A-B)"
paulson@8006
    47
paulson@6536
    48
berghofe@23767
    49
inductive_set
paulson@6801
    50
  leads :: "'a program => ('a set * 'a set) set"
paulson@13812
    51
    --{*LEADS-TO constant for the inductive definition*}
berghofe@23767
    52
  for F :: "'a program"
berghofe@23767
    53
  where
paulson@4776
    54
paulson@13805
    55
    Basis:  "F \<in> A ensures B ==> (A,B) \<in> leads F"
paulson@4776
    56
berghofe@23767
    57
  | Trans:  "[| (A,B) \<in> leads F;  (B,C) \<in> leads F |] ==> (A,C) \<in> leads F"
paulson@4776
    58
berghofe@23767
    59
  | Union:  "\<forall>A \<in> S. (A,B) \<in> leads F ==> (Union S, B) \<in> leads F"
paulson@4776
    60
paulson@5155
    61
haftmann@35416
    62
definition leadsTo :: "['a set, 'a set] => 'a program set" (infixl "leadsTo" 60) where
paulson@13812
    63
     --{*visible version of the LEADS-TO relation*}
paulson@13805
    64
    "A leadsTo B == {F. (A,B) \<in> leads F}"
paulson@5648
    65
  
haftmann@35416
    66
definition wlt :: "['a program, 'a set] => 'a set" where
paulson@13812
    67
     --{*predicate transformer: the largest set that leads to @{term B}*}
paulson@13805
    68
    "wlt F B == Union {A. F \<in> A leadsTo B}"
paulson@4776
    69
wenzelm@60773
    70
notation leadsTo  (infixl "\<longmapsto>" 60)
paulson@13797
    71
paulson@13797
    72
paulson@13798
    73
subsection{*transient*}
paulson@13797
    74
paulson@13812
    75
lemma stable_transient: 
paulson@13812
    76
    "[| F \<in> stable A; F \<in> transient A |] ==> \<exists>act\<in>Acts F. A \<subseteq> - (Domain act)"
paulson@13812
    77
apply (simp add: stable_def constrains_def transient_def, clarify)
paulson@13812
    78
apply (rule rev_bexI, auto)  
paulson@13812
    79
done
paulson@13812
    80
paulson@13797
    81
lemma stable_transient_empty: 
paulson@13812
    82
    "[| F \<in> stable A; F \<in> transient A; all_total F |] ==> A = {}"
paulson@13812
    83
apply (drule stable_transient, assumption)
paulson@13812
    84
apply (simp add: all_total_def)
paulson@13812
    85
done
paulson@13797
    86
paulson@13797
    87
lemma transient_strengthen: 
paulson@13805
    88
    "[| F \<in> transient A; B \<subseteq> A |] ==> F \<in> transient B"
paulson@13797
    89
apply (unfold transient_def, clarify)
paulson@13797
    90
apply (blast intro!: rev_bexI)
paulson@13797
    91
done
paulson@13797
    92
paulson@13797
    93
lemma transientI: 
paulson@13812
    94
    "[| act: Acts F;  act``A \<subseteq> -A |] ==> F \<in> transient A"
paulson@13797
    95
by (unfold transient_def, blast)
paulson@13797
    96
paulson@13797
    97
lemma transientE: 
paulson@13805
    98
    "[| F \<in> transient A;   
paulson@13812
    99
        !!act. [| act: Acts F;  act``A \<subseteq> -A |] ==> P |]  
paulson@13797
   100
     ==> P"
paulson@13797
   101
by (unfold transient_def, blast)
paulson@13797
   102
paulson@13797
   103
lemma transient_empty [simp]: "transient {} = UNIV"
paulson@13797
   104
by (unfold transient_def, auto)
paulson@13797
   105
paulson@13797
   106
paulson@13812
   107
text{*This equation recovers the notion of weak fairness.  A totalized
paulson@13812
   108
      program satisfies a transient assertion just if the original program
paulson@13812
   109
      contains a suitable action that is also enabled.*}
paulson@13812
   110
lemma totalize_transient_iff:
paulson@13812
   111
   "(totalize F \<in> transient A) = (\<exists>act\<in>Acts F. A \<subseteq> Domain act & act``A \<subseteq> -A)"
paulson@13812
   112
apply (simp add: totalize_def totalize_act_def transient_def 
haftmann@32693
   113
                 Un_Image, safe)
paulson@13812
   114
apply (blast intro!: rev_bexI)+
paulson@13812
   115
done
paulson@13812
   116
paulson@13812
   117
lemma totalize_transientI: 
paulson@13812
   118
    "[| act: Acts F;  A \<subseteq> Domain act;  act``A \<subseteq> -A |] 
paulson@13812
   119
     ==> totalize F \<in> transient A"
paulson@13812
   120
by (simp add: totalize_transient_iff, blast)
paulson@13812
   121
paulson@13798
   122
subsection{*ensures*}
paulson@13797
   123
paulson@13797
   124
lemma ensuresI: 
paulson@13805
   125
    "[| F \<in> (A-B) co (A \<union> B); F \<in> transient (A-B) |] ==> F \<in> A ensures B"
paulson@13797
   126
by (unfold ensures_def, blast)
paulson@13797
   127
paulson@13797
   128
lemma ensuresD: 
paulson@13805
   129
    "F \<in> A ensures B ==> F \<in> (A-B) co (A \<union> B) & F \<in> transient (A-B)"
paulson@13797
   130
by (unfold ensures_def, blast)
paulson@13797
   131
paulson@13797
   132
lemma ensures_weaken_R: 
paulson@13805
   133
    "[| F \<in> A ensures A'; A'<=B' |] ==> F \<in> A ensures B'"
paulson@13797
   134
apply (unfold ensures_def)
paulson@13797
   135
apply (blast intro: constrains_weaken transient_strengthen)
paulson@13797
   136
done
paulson@13797
   137
paulson@13812
   138
text{*The L-version (precondition strengthening) fails, but we have this*}
paulson@13797
   139
lemma stable_ensures_Int: 
paulson@13805
   140
    "[| F \<in> stable C;  F \<in> A ensures B |]    
paulson@13805
   141
    ==> F \<in> (C \<inter> A) ensures (C \<inter> B)"
paulson@13797
   142
apply (unfold ensures_def)
paulson@13797
   143
apply (auto simp add: ensures_def Int_Un_distrib [symmetric] Diff_Int_distrib [symmetric])
paulson@13797
   144
prefer 2 apply (blast intro: transient_strengthen)
paulson@13797
   145
apply (blast intro: stable_constrains_Int constrains_weaken)
paulson@13797
   146
done
paulson@13797
   147
paulson@13797
   148
lemma stable_transient_ensures:
paulson@13805
   149
     "[| F \<in> stable A;  F \<in> transient C;  A \<subseteq> B \<union> C |] ==> F \<in> A ensures B"
paulson@13797
   150
apply (simp add: ensures_def stable_def)
paulson@13797
   151
apply (blast intro: constrains_weaken transient_strengthen)
paulson@13797
   152
done
paulson@13797
   153
paulson@13805
   154
lemma ensures_eq: "(A ensures B) = (A unless B) \<inter> transient (A-B)"
paulson@13797
   155
by (simp (no_asm) add: ensures_def unless_def)
paulson@13797
   156
paulson@13797
   157
paulson@13798
   158
subsection{*leadsTo*}
paulson@13797
   159
paulson@13805
   160
lemma leadsTo_Basis [intro]: "F \<in> A ensures B ==> F \<in> A leadsTo B"
paulson@13797
   161
apply (unfold leadsTo_def)
paulson@13797
   162
apply (blast intro: leads.Basis)
paulson@13797
   163
done
paulson@13797
   164
paulson@13797
   165
lemma leadsTo_Trans: 
paulson@13805
   166
     "[| F \<in> A leadsTo B;  F \<in> B leadsTo C |] ==> F \<in> A leadsTo C"
paulson@13797
   167
apply (unfold leadsTo_def)
paulson@13797
   168
apply (blast intro: leads.Trans)
paulson@13797
   169
done
paulson@13797
   170
paulson@14112
   171
lemma leadsTo_Basis':
paulson@14112
   172
     "[| F \<in> A co A \<union> B; F \<in> transient A |] ==> F \<in> A leadsTo B"
paulson@14112
   173
apply (drule_tac B = "A-B" in constrains_weaken_L)
paulson@14112
   174
apply (drule_tac [2] B = "A-B" in transient_strengthen)
paulson@14112
   175
apply (rule_tac [3] ensuresI [THEN leadsTo_Basis])
paulson@14112
   176
apply (blast+)
paulson@14112
   177
done
paulson@14112
   178
paulson@13805
   179
lemma transient_imp_leadsTo: "F \<in> transient A ==> F \<in> A leadsTo (-A)"
paulson@13797
   180
by (simp (no_asm_simp) add: leadsTo_Basis ensuresI Compl_partition)
paulson@13797
   181
paulson@13812
   182
text{*Useful with cancellation, disjunction*}
paulson@13805
   183
lemma leadsTo_Un_duplicate: "F \<in> A leadsTo (A' \<union> A') ==> F \<in> A leadsTo A'"
paulson@13797
   184
by (simp add: Un_ac)
paulson@13797
   185
paulson@13797
   186
lemma leadsTo_Un_duplicate2:
paulson@13805
   187
     "F \<in> A leadsTo (A' \<union> C \<union> C) ==> F \<in> A leadsTo (A' \<union> C)"
paulson@13797
   188
by (simp add: Un_ac)
paulson@13797
   189
paulson@13812
   190
text{*The Union introduction rule as we should have liked to state it*}
paulson@13797
   191
lemma leadsTo_Union: 
paulson@13805
   192
    "(!!A. A \<in> S ==> F \<in> A leadsTo B) ==> F \<in> (Union S) leadsTo B"
paulson@13797
   193
apply (unfold leadsTo_def)
paulson@13797
   194
apply (blast intro: leads.Union)
paulson@13797
   195
done
paulson@13797
   196
paulson@13797
   197
lemma leadsTo_Union_Int: 
paulson@13805
   198
 "(!!A. A \<in> S ==> F \<in> (A \<inter> C) leadsTo B) ==> F \<in> (Union S \<inter> C) leadsTo B"
paulson@13797
   199
apply (unfold leadsTo_def)
paulson@13797
   200
apply (simp only: Int_Union_Union)
paulson@13797
   201
apply (blast intro: leads.Union)
paulson@13797
   202
done
paulson@13797
   203
paulson@13797
   204
lemma leadsTo_UN: 
paulson@13805
   205
    "(!!i. i \<in> I ==> F \<in> (A i) leadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) leadsTo B"
paulson@13797
   206
apply (subst Union_image_eq [symmetric])
paulson@13797
   207
apply (blast intro: leadsTo_Union)
paulson@13797
   208
done
paulson@13797
   209
paulson@13812
   210
text{*Binary union introduction rule*}
paulson@13797
   211
lemma leadsTo_Un:
paulson@13805
   212
     "[| F \<in> A leadsTo C; F \<in> B leadsTo C |] ==> F \<in> (A \<union> B) leadsTo C"
haftmann@44106
   213
  using leadsTo_Union [of "{A, B}" F C] by auto
paulson@13797
   214
paulson@13797
   215
lemma single_leadsTo_I: 
paulson@13805
   216
     "(!!x. x \<in> A ==> F \<in> {x} leadsTo B) ==> F \<in> A leadsTo B"
paulson@13797
   217
by (subst UN_singleton [symmetric], rule leadsTo_UN, blast)
paulson@13797
   218
paulson@13797
   219
paulson@13812
   220
text{*The INDUCTION rule as we should have liked to state it*}
paulson@13797
   221
lemma leadsTo_induct: 
paulson@13805
   222
  "[| F \<in> za leadsTo zb;   
paulson@13805
   223
      !!A B. F \<in> A ensures B ==> P A B;  
paulson@13805
   224
      !!A B C. [| F \<in> A leadsTo B; P A B; F \<in> B leadsTo C; P B C |]  
paulson@13797
   225
               ==> P A C;  
paulson@13805
   226
      !!B S. \<forall>A \<in> S. F \<in> A leadsTo B & P A B ==> P (Union S) B  
paulson@13797
   227
   |] ==> P za zb"
paulson@13797
   228
apply (unfold leadsTo_def)
paulson@13797
   229
apply (drule CollectD, erule leads.induct)
paulson@13797
   230
apply (blast+)
paulson@13797
   231
done
paulson@13797
   232
paulson@13797
   233
paulson@13805
   234
lemma subset_imp_ensures: "A \<subseteq> B ==> F \<in> A ensures B"
paulson@13797
   235
by (unfold ensures_def constrains_def transient_def, blast)
paulson@13797
   236
wenzelm@45605
   237
lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis]
paulson@13797
   238
wenzelm@45605
   239
lemmas leadsTo_refl = subset_refl [THEN subset_imp_leadsTo]
paulson@13797
   240
wenzelm@45605
   241
lemmas empty_leadsTo = empty_subsetI [THEN subset_imp_leadsTo, simp]
paulson@13797
   242
wenzelm@45605
   243
lemmas leadsTo_UNIV = subset_UNIV [THEN subset_imp_leadsTo, simp]
paulson@13797
   244
paulson@13797
   245
paulson@13797
   246
paulson@13797
   247
(** Variant induction rule: on the preconditions for B **)
paulson@13797
   248
paulson@13812
   249
text{*Lemma is the weak version: can't see how to do it in one step*}
paulson@13797
   250
lemma leadsTo_induct_pre_lemma: 
paulson@13805
   251
  "[| F \<in> za leadsTo zb;   
paulson@13797
   252
      P zb;  
paulson@13805
   253
      !!A B. [| F \<in> A ensures B;  P B |] ==> P A;  
paulson@13805
   254
      !!S. \<forall>A \<in> S. P A ==> P (Union S)  
paulson@13797
   255
   |] ==> P za"
paulson@13812
   256
txt{*by induction on this formula*}
paulson@13797
   257
apply (subgoal_tac "P zb --> P za")
paulson@13812
   258
txt{*now solve first subgoal: this formula is sufficient*}
paulson@13797
   259
apply (blast intro: leadsTo_refl)
paulson@13797
   260
apply (erule leadsTo_induct)
paulson@13797
   261
apply (blast+)
paulson@13797
   262
done
paulson@13797
   263
paulson@13797
   264
lemma leadsTo_induct_pre: 
paulson@13805
   265
  "[| F \<in> za leadsTo zb;   
paulson@13797
   266
      P zb;  
paulson@13805
   267
      !!A B. [| F \<in> A ensures B;  F \<in> B leadsTo zb;  P B |] ==> P A;  
paulson@13805
   268
      !!S. \<forall>A \<in> S. F \<in> A leadsTo zb & P A ==> P (Union S)  
paulson@13797
   269
   |] ==> P za"
paulson@13805
   270
apply (subgoal_tac "F \<in> za leadsTo zb & P za")
paulson@13797
   271
apply (erule conjunct2)
paulson@13797
   272
apply (erule leadsTo_induct_pre_lemma)
paulson@13797
   273
prefer 3 apply (blast intro: leadsTo_Union)
paulson@13797
   274
prefer 2 apply (blast intro: leadsTo_Trans)
paulson@13797
   275
apply (blast intro: leadsTo_refl)
paulson@13797
   276
done
paulson@13797
   277
paulson@13797
   278
paulson@13805
   279
lemma leadsTo_weaken_R: "[| F \<in> A leadsTo A'; A'<=B' |] ==> F \<in> A leadsTo B'"
paulson@13797
   280
by (blast intro: subset_imp_leadsTo leadsTo_Trans)
paulson@13797
   281
wenzelm@45477
   282
lemma leadsTo_weaken_L:
paulson@13805
   283
     "[| F \<in> A leadsTo A'; B \<subseteq> A |] ==> F \<in> B leadsTo A'"
paulson@13797
   284
by (blast intro: leadsTo_Trans subset_imp_leadsTo)
paulson@13797
   285
paulson@13812
   286
text{*Distributes over binary unions*}
paulson@13797
   287
lemma leadsTo_Un_distrib:
paulson@13805
   288
     "F \<in> (A \<union> B) leadsTo C  =  (F \<in> A leadsTo C & F \<in> B leadsTo C)"
paulson@13797
   289
by (blast intro: leadsTo_Un leadsTo_weaken_L)
paulson@13797
   290
paulson@13797
   291
lemma leadsTo_UN_distrib:
paulson@13805
   292
     "F \<in> (\<Union>i \<in> I. A i) leadsTo B  =  (\<forall>i \<in> I. F \<in> (A i) leadsTo B)"
paulson@13797
   293
by (blast intro: leadsTo_UN leadsTo_weaken_L)
paulson@13797
   294
paulson@13797
   295
lemma leadsTo_Union_distrib:
paulson@13805
   296
     "F \<in> (Union S) leadsTo B  =  (\<forall>A \<in> S. F \<in> A leadsTo B)"
paulson@13797
   297
by (blast intro: leadsTo_Union leadsTo_weaken_L)
paulson@13797
   298
paulson@13797
   299
paulson@13797
   300
lemma leadsTo_weaken:
paulson@13805
   301
     "[| F \<in> A leadsTo A'; B \<subseteq> A; A'<=B' |] ==> F \<in> B leadsTo B'"
paulson@13797
   302
by (blast intro: leadsTo_weaken_R leadsTo_weaken_L leadsTo_Trans)
paulson@13797
   303
paulson@13797
   304
paulson@14150
   305
text{*Set difference: maybe combine with @{text leadsTo_weaken_L}??*}
paulson@13797
   306
lemma leadsTo_Diff:
paulson@13805
   307
     "[| F \<in> (A-B) leadsTo C; F \<in> B leadsTo C |]   ==> F \<in> A leadsTo C"
paulson@13797
   308
by (blast intro: leadsTo_Un leadsTo_weaken)
paulson@13797
   309
paulson@13797
   310
lemma leadsTo_UN_UN:
paulson@13805
   311
   "(!! i. i \<in> I ==> F \<in> (A i) leadsTo (A' i))  
paulson@13805
   312
    ==> F \<in> (\<Union>i \<in> I. A i) leadsTo (\<Union>i \<in> I. A' i)"
paulson@13797
   313
apply (simp only: Union_image_eq [symmetric])
paulson@13797
   314
apply (blast intro: leadsTo_Union leadsTo_weaken_R)
paulson@13797
   315
done
paulson@13797
   316
paulson@13812
   317
text{*Binary union version*}
paulson@13797
   318
lemma leadsTo_Un_Un:
paulson@13805
   319
     "[| F \<in> A leadsTo A'; F \<in> B leadsTo B' |]  
paulson@13805
   320
      ==> F \<in> (A \<union> B) leadsTo (A' \<union> B')"
paulson@13797
   321
by (blast intro: leadsTo_Un leadsTo_weaken_R)
paulson@13797
   322
paulson@13797
   323
paulson@13797
   324
(** The cancellation law **)
paulson@13797
   325
paulson@13797
   326
lemma leadsTo_cancel2:
paulson@13805
   327
     "[| F \<in> A leadsTo (A' \<union> B); F \<in> B leadsTo B' |]  
paulson@13805
   328
      ==> F \<in> A leadsTo (A' \<union> B')"
paulson@13797
   329
by (blast intro: leadsTo_Un_Un subset_imp_leadsTo leadsTo_Trans)
paulson@13797
   330
paulson@13797
   331
lemma leadsTo_cancel_Diff2:
paulson@13805
   332
     "[| F \<in> A leadsTo (A' \<union> B); F \<in> (B-A') leadsTo B' |]  
paulson@13805
   333
      ==> F \<in> A leadsTo (A' \<union> B')"
paulson@13797
   334
apply (rule leadsTo_cancel2)
paulson@13797
   335
prefer 2 apply assumption
paulson@13797
   336
apply (simp_all (no_asm_simp))
paulson@13797
   337
done
paulson@13797
   338
paulson@13797
   339
lemma leadsTo_cancel1:
paulson@13805
   340
     "[| F \<in> A leadsTo (B \<union> A'); F \<in> B leadsTo B' |]  
paulson@13805
   341
    ==> F \<in> A leadsTo (B' \<union> A')"
paulson@13797
   342
apply (simp add: Un_commute)
paulson@13797
   343
apply (blast intro!: leadsTo_cancel2)
paulson@13797
   344
done
paulson@13797
   345
paulson@13797
   346
lemma leadsTo_cancel_Diff1:
paulson@13805
   347
     "[| F \<in> A leadsTo (B \<union> A'); F \<in> (B-A') leadsTo B' |]  
paulson@13805
   348
    ==> F \<in> A leadsTo (B' \<union> A')"
paulson@13797
   349
apply (rule leadsTo_cancel1)
paulson@13797
   350
prefer 2 apply assumption
paulson@13797
   351
apply (simp_all (no_asm_simp))
paulson@13797
   352
done
paulson@13797
   353
paulson@13797
   354
paulson@13812
   355
text{*The impossibility law*}
paulson@13812
   356
lemma leadsTo_empty: "[|F \<in> A leadsTo {}; all_total F|] ==> A={}"
paulson@13797
   357
apply (erule leadsTo_induct_pre)
paulson@13812
   358
apply (simp_all add: ensures_def constrains_def transient_def all_total_def, clarify)
paulson@13812
   359
apply (drule bspec, assumption)+
paulson@13812
   360
apply blast
paulson@13797
   361
done
paulson@13797
   362
paulson@13812
   363
subsection{*PSP: Progress-Safety-Progress*}
paulson@13797
   364
paulson@13812
   365
text{*Special case of PSP: Misra's "stable conjunction"*}
paulson@13797
   366
lemma psp_stable: 
paulson@13805
   367
   "[| F \<in> A leadsTo A'; F \<in> stable B |]  
paulson@13805
   368
    ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B)"
paulson@13797
   369
apply (unfold stable_def)
paulson@13797
   370
apply (erule leadsTo_induct)
paulson@13797
   371
prefer 3 apply (blast intro: leadsTo_Union_Int)
paulson@13797
   372
prefer 2 apply (blast intro: leadsTo_Trans)
paulson@13797
   373
apply (rule leadsTo_Basis)
paulson@13797
   374
apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] Int_Un_distrib2 [symmetric])
paulson@13797
   375
apply (blast intro: transient_strengthen constrains_Int)
paulson@13797
   376
done
paulson@13797
   377
paulson@13797
   378
lemma psp_stable2: 
paulson@13805
   379
   "[| F \<in> A leadsTo A'; F \<in> stable B |] ==> F \<in> (B \<inter> A) leadsTo (B \<inter> A')"
paulson@13797
   380
by (simp add: psp_stable Int_ac)
paulson@13797
   381
paulson@13797
   382
lemma psp_ensures: 
paulson@13805
   383
   "[| F \<in> A ensures A'; F \<in> B co B' |]  
paulson@13805
   384
    ==> F \<in> (A \<inter> B') ensures ((A' \<inter> B) \<union> (B' - B))"
paulson@13797
   385
apply (unfold ensures_def constrains_def, clarify) (*speeds up the proof*)
paulson@13797
   386
apply (blast intro: transient_strengthen)
paulson@13797
   387
done
paulson@13797
   388
paulson@13797
   389
lemma psp:
paulson@13805
   390
     "[| F \<in> A leadsTo A'; F \<in> B co B' |]  
paulson@13805
   391
      ==> F \<in> (A \<inter> B') leadsTo ((A' \<inter> B) \<union> (B' - B))"
paulson@13797
   392
apply (erule leadsTo_induct)
paulson@13797
   393
  prefer 3 apply (blast intro: leadsTo_Union_Int)
paulson@13797
   394
 txt{*Basis case*}
paulson@13797
   395
 apply (blast intro: psp_ensures)
paulson@13797
   396
txt{*Transitivity case has a delicate argument involving "cancellation"*}
paulson@13797
   397
apply (rule leadsTo_Un_duplicate2)
paulson@13797
   398
apply (erule leadsTo_cancel_Diff1)
paulson@13797
   399
apply (simp add: Int_Diff Diff_triv)
paulson@13797
   400
apply (blast intro: leadsTo_weaken_L dest: constrains_imp_subset)
paulson@13797
   401
done
paulson@13797
   402
paulson@13797
   403
lemma psp2:
paulson@13805
   404
     "[| F \<in> A leadsTo A'; F \<in> B co B' |]  
paulson@13805
   405
    ==> F \<in> (B' \<inter> A) leadsTo ((B \<inter> A') \<union> (B' - B))"
paulson@13797
   406
by (simp (no_asm_simp) add: psp Int_ac)
paulson@13797
   407
paulson@13797
   408
lemma psp_unless: 
paulson@13805
   409
   "[| F \<in> A leadsTo A';  F \<in> B unless B' |]  
paulson@13805
   410
    ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B) \<union> B')"
paulson@13797
   411
paulson@13797
   412
apply (unfold unless_def)
paulson@13797
   413
apply (drule psp, assumption)
paulson@13797
   414
apply (blast intro: leadsTo_weaken)
paulson@13797
   415
done
paulson@13797
   416
paulson@13797
   417
paulson@13798
   418
subsection{*Proving the induction rules*}
paulson@13797
   419
paulson@13797
   420
(** The most general rule: r is any wf relation; f is any variant function **)
paulson@13797
   421
paulson@13797
   422
lemma leadsTo_wf_induct_lemma:
paulson@13797
   423
     "[| wf r;      
paulson@13805
   424
         \<forall>m. F \<in> (A \<inter> f-`{m}) leadsTo                      
paulson@13805
   425
                    ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
paulson@13805
   426
      ==> F \<in> (A \<inter> f-`{m}) leadsTo B"
paulson@13797
   427
apply (erule_tac a = m in wf_induct)
paulson@13805
   428
apply (subgoal_tac "F \<in> (A \<inter> (f -` (r^-1 `` {x}))) leadsTo B")
paulson@13797
   429
 apply (blast intro: leadsTo_cancel1 leadsTo_Un_duplicate)
paulson@13797
   430
apply (subst vimage_eq_UN)
paulson@13797
   431
apply (simp only: UN_simps [symmetric])
paulson@13797
   432
apply (blast intro: leadsTo_UN)
paulson@13797
   433
done
paulson@13797
   434
paulson@13797
   435
paulson@13797
   436
(** Meta or object quantifier ? **)
paulson@13797
   437
lemma leadsTo_wf_induct:
paulson@13797
   438
     "[| wf r;      
paulson@13805
   439
         \<forall>m. F \<in> (A \<inter> f-`{m}) leadsTo                      
paulson@13805
   440
                    ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
paulson@13805
   441
      ==> F \<in> A leadsTo B"
paulson@13797
   442
apply (rule_tac t = A in subst)
paulson@13797
   443
 defer 1
paulson@13797
   444
 apply (rule leadsTo_UN)
paulson@13797
   445
 apply (erule leadsTo_wf_induct_lemma)
paulson@13797
   446
 apply assumption
paulson@13797
   447
apply fast (*Blast_tac: Function unknown's argument not a parameter*)
paulson@13797
   448
done
paulson@13797
   449
paulson@13797
   450
paulson@13797
   451
lemma bounded_induct:
paulson@13797
   452
     "[| wf r;      
paulson@13805
   453
         \<forall>m \<in> I. F \<in> (A \<inter> f-`{m}) leadsTo                    
paulson@13805
   454
                      ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
paulson@13805
   455
      ==> F \<in> A leadsTo ((A - (f-`I)) \<union> B)"
paulson@13797
   456
apply (erule leadsTo_wf_induct, safe)
paulson@13805
   457
apply (case_tac "m \<in> I")
paulson@13797
   458
apply (blast intro: leadsTo_weaken)
paulson@13797
   459
apply (blast intro: subset_imp_leadsTo)
paulson@13797
   460
done
paulson@13797
   461
paulson@13797
   462
paulson@13805
   463
(*Alternative proof is via the lemma F \<in> (A \<inter> f-`(lessThan m)) leadsTo B*)
paulson@13797
   464
lemma lessThan_induct: 
nipkow@15045
   465
     "[| !!m::nat. F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`{..<m}) \<union> B) |]  
paulson@13805
   466
      ==> F \<in> A leadsTo B"
paulson@13797
   467
apply (rule wf_less_than [THEN leadsTo_wf_induct])
paulson@13797
   468
apply (simp (no_asm_simp))
paulson@13797
   469
apply blast
paulson@13797
   470
done
paulson@13797
   471
paulson@13797
   472
lemma lessThan_bounded_induct:
paulson@13805
   473
     "!!l::nat. [| \<forall>m \<in> greaterThan l.     
paulson@13805
   474
            F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`(lessThan m)) \<union> B) |]  
paulson@13805
   475
      ==> F \<in> A leadsTo ((A \<inter> (f-`(atMost l))) \<union> B)"
paulson@13797
   476
apply (simp only: Diff_eq [symmetric] vimage_Compl Compl_greaterThan [symmetric])
paulson@13797
   477
apply (rule wf_less_than [THEN bounded_induct])
paulson@13797
   478
apply (simp (no_asm_simp))
paulson@13797
   479
done
paulson@13797
   480
paulson@13797
   481
lemma greaterThan_bounded_induct:
paulson@13805
   482
     "(!!l::nat. \<forall>m \<in> lessThan l.     
paulson@13805
   483
                 F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`(greaterThan m)) \<union> B))
paulson@13805
   484
      ==> F \<in> A leadsTo ((A \<inter> (f-`(atLeast l))) \<union> B)"
paulson@13797
   485
apply (rule_tac f = f and f1 = "%k. l - k" 
paulson@13797
   486
       in wf_less_than [THEN wf_inv_image, THEN leadsTo_wf_induct])
krauss@19769
   487
apply (simp (no_asm) add:Image_singleton)
paulson@13797
   488
apply clarify
paulson@13797
   489
apply (case_tac "m<l")
paulson@13805
   490
 apply (blast intro: leadsTo_weaken_R diff_less_mono2)
lp15@61824
   491
apply (blast intro: not_le_imp_less subset_imp_leadsTo)
paulson@13797
   492
done
paulson@13797
   493
paulson@13797
   494
paulson@13798
   495
subsection{*wlt*}
paulson@13797
   496
paulson@13812
   497
text{*Misra's property W3*}
paulson@13805
   498
lemma wlt_leadsTo: "F \<in> (wlt F B) leadsTo B"
paulson@13797
   499
apply (unfold wlt_def)
paulson@13797
   500
apply (blast intro!: leadsTo_Union)
paulson@13797
   501
done
paulson@13797
   502
paulson@13805
   503
lemma leadsTo_subset: "F \<in> A leadsTo B ==> A \<subseteq> wlt F B"
paulson@13797
   504
apply (unfold wlt_def)
paulson@13797
   505
apply (blast intro!: leadsTo_Union)
paulson@13797
   506
done
paulson@13797
   507
paulson@13812
   508
text{*Misra's property W2*}
paulson@13805
   509
lemma leadsTo_eq_subset_wlt: "F \<in> A leadsTo B = (A \<subseteq> wlt F B)"
paulson@13797
   510
by (blast intro!: leadsTo_subset wlt_leadsTo [THEN leadsTo_weaken_L])
paulson@13797
   511
paulson@13812
   512
text{*Misra's property W4*}
paulson@13805
   513
lemma wlt_increasing: "B \<subseteq> wlt F B"
paulson@13797
   514
apply (simp (no_asm_simp) add: leadsTo_eq_subset_wlt [symmetric] subset_imp_leadsTo)
paulson@13797
   515
done
paulson@13797
   516
paulson@13797
   517
paulson@13812
   518
text{*Used in the Trans case below*}
paulson@13797
   519
lemma lemma1: 
paulson@13805
   520
   "[| B \<subseteq> A2;   
paulson@13805
   521
       F \<in> (A1 - B) co (A1 \<union> B);  
paulson@13805
   522
       F \<in> (A2 - C) co (A2 \<union> C) |]  
paulson@13805
   523
    ==> F \<in> (A1 \<union> A2 - C) co (A1 \<union> A2 \<union> C)"
paulson@13797
   524
by (unfold constrains_def, clarify,  blast)
paulson@13797
   525
paulson@13812
   526
text{*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*}
paulson@13797
   527
lemma leadsTo_123:
paulson@13805
   528
     "F \<in> A leadsTo A'  
paulson@13805
   529
      ==> \<exists>B. A \<subseteq> B & F \<in> B leadsTo A' & F \<in> (B-A') co (B \<union> A')"
paulson@13797
   530
apply (erule leadsTo_induct)
paulson@13812
   531
  txt{*Basis*}
paulson@13812
   532
  apply (blast dest: ensuresD)
paulson@13812
   533
 txt{*Trans*}
paulson@13812
   534
 apply clarify
paulson@13812
   535
 apply (rule_tac x = "Ba \<union> Bb" in exI)
paulson@13812
   536
 apply (blast intro: lemma1 leadsTo_Un_Un leadsTo_cancel1 leadsTo_Un_duplicate)
paulson@13812
   537
txt{*Union*}
paulson@13797
   538
apply (clarify dest!: ball_conj_distrib [THEN iffD1] bchoice)
paulson@13805
   539
apply (rule_tac x = "\<Union>A \<in> S. f A" in exI)
paulson@13797
   540
apply (auto intro: leadsTo_UN)
paulson@13797
   541
(*Blast_tac says PROOF FAILED*)
paulson@13805
   542
apply (rule_tac I1=S and A1="%i. f i - B" and A'1="%i. f i \<union> B" 
paulson@13798
   543
       in constrains_UN [THEN constrains_weaken], auto) 
paulson@13797
   544
done
paulson@13797
   545
paulson@13797
   546
paulson@13812
   547
text{*Misra's property W5*}
paulson@13805
   548
lemma wlt_constrains_wlt: "F \<in> (wlt F B - B) co (wlt F B)"
paulson@13798
   549
proof -
paulson@13798
   550
  from wlt_leadsTo [of F B, THEN leadsTo_123]
paulson@13798
   551
  show ?thesis
paulson@13798
   552
  proof (elim exE conjE)
paulson@13798
   553
(* assumes have to be in exactly the form as in the goal displayed at
paulson@13798
   554
   this point.  Isar doesn't give you any automation. *)
paulson@13798
   555
    fix C
paulson@13798
   556
    assume wlt: "wlt F B \<subseteq> C"
paulson@13798
   557
       and lt:  "F \<in> C leadsTo B"
paulson@13798
   558
       and co:  "F \<in> C - B co C \<union> B"
paulson@13798
   559
    have eq: "C = wlt F B"
paulson@13798
   560
    proof -
paulson@13798
   561
      from lt and wlt show ?thesis 
paulson@13798
   562
           by (blast dest: leadsTo_eq_subset_wlt [THEN iffD1])
paulson@13798
   563
    qed
paulson@13798
   564
    from co show ?thesis by (simp add: eq wlt_increasing Un_absorb2)
paulson@13798
   565
  qed
paulson@13798
   566
qed
paulson@13797
   567
paulson@13797
   568
paulson@13798
   569
subsection{*Completion: Binary and General Finite versions*}
paulson@13797
   570
paulson@13797
   571
lemma completion_lemma :
paulson@13805
   572
     "[| W = wlt F (B' \<union> C);      
paulson@13805
   573
       F \<in> A leadsTo (A' \<union> C);  F \<in> A' co (A' \<union> C);    
paulson@13805
   574
       F \<in> B leadsTo (B' \<union> C);  F \<in> B' co (B' \<union> C) |]  
paulson@13805
   575
    ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B') \<union> C)"
paulson@13805
   576
apply (subgoal_tac "F \<in> (W-C) co (W \<union> B' \<union> C) ")
paulson@13797
   577
 prefer 2
paulson@13797
   578
 apply (blast intro: wlt_constrains_wlt [THEN [2] constrains_Un, 
paulson@13797
   579
                                         THEN constrains_weaken])
paulson@13805
   580
apply (subgoal_tac "F \<in> (W-C) co W")
paulson@13797
   581
 prefer 2
paulson@13797
   582
 apply (simp add: wlt_increasing Un_assoc Un_absorb2)
paulson@13805
   583
apply (subgoal_tac "F \<in> (A \<inter> W - C) leadsTo (A' \<inter> W \<union> C) ")
paulson@13797
   584
 prefer 2 apply (blast intro: wlt_leadsTo psp [THEN leadsTo_weaken])
paulson@13797
   585
(** LEVEL 6 **)
paulson@13805
   586
apply (subgoal_tac "F \<in> (A' \<inter> W \<union> C) leadsTo (A' \<inter> B' \<union> C) ")
paulson@13797
   587
 prefer 2
paulson@13797
   588
 apply (rule leadsTo_Un_duplicate2)
paulson@13797
   589
 apply (blast intro: leadsTo_Un_Un wlt_leadsTo
paulson@13797
   590
                         [THEN psp2, THEN leadsTo_weaken] leadsTo_refl)
paulson@13797
   591
apply (drule leadsTo_Diff)
paulson@13797
   592
apply (blast intro: subset_imp_leadsTo)
paulson@13805
   593
apply (subgoal_tac "A \<inter> B \<subseteq> A \<inter> W")
paulson@13797
   594
 prefer 2
paulson@13797
   595
 apply (blast dest!: leadsTo_subset intro!: subset_refl [THEN Int_mono])
paulson@13797
   596
apply (blast intro: leadsTo_Trans subset_imp_leadsTo)
paulson@13797
   597
done
paulson@13797
   598
paulson@13797
   599
lemmas completion = completion_lemma [OF refl]
paulson@13797
   600
paulson@13797
   601
lemma finite_completion_lemma:
paulson@13805
   602
     "finite I ==> (\<forall>i \<in> I. F \<in> (A i) leadsTo (A' i \<union> C)) -->   
paulson@13805
   603
                   (\<forall>i \<in> I. F \<in> (A' i) co (A' i \<union> C)) -->  
paulson@13805
   604
                   F \<in> (\<Inter>i \<in> I. A i) leadsTo ((\<Inter>i \<in> I. A' i) \<union> C)"
paulson@13797
   605
apply (erule finite_induct, auto)
paulson@13797
   606
apply (rule completion)
paulson@13797
   607
   prefer 4
paulson@13797
   608
   apply (simp only: INT_simps [symmetric])
paulson@13797
   609
   apply (rule constrains_INT, auto)
paulson@13797
   610
done
paulson@13797
   611
paulson@13797
   612
lemma finite_completion: 
paulson@13797
   613
     "[| finite I;   
paulson@13805
   614
         !!i. i \<in> I ==> F \<in> (A i) leadsTo (A' i \<union> C);  
paulson@13805
   615
         !!i. i \<in> I ==> F \<in> (A' i) co (A' i \<union> C) |]    
paulson@13805
   616
      ==> F \<in> (\<Inter>i \<in> I. A i) leadsTo ((\<Inter>i \<in> I. A' i) \<union> C)"
paulson@13797
   617
by (blast intro: finite_completion_lemma [THEN mp, THEN mp])
paulson@13797
   618
paulson@13797
   619
lemma stable_completion: 
paulson@13805
   620
     "[| F \<in> A leadsTo A';  F \<in> stable A';    
paulson@13805
   621
         F \<in> B leadsTo B';  F \<in> stable B' |]  
paulson@13805
   622
    ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B')"
paulson@13797
   623
apply (unfold stable_def)
paulson@13797
   624
apply (rule_tac C1 = "{}" in completion [THEN leadsTo_weaken_R])
paulson@13797
   625
apply (force+)
paulson@13797
   626
done
paulson@13797
   627
paulson@13797
   628
lemma finite_stable_completion: 
paulson@13797
   629
     "[| finite I;   
paulson@13805
   630
         !!i. i \<in> I ==> F \<in> (A i) leadsTo (A' i);  
paulson@13805
   631
         !!i. i \<in> I ==> F \<in> stable (A' i) |]    
paulson@13805
   632
      ==> F \<in> (\<Inter>i \<in> I. A i) leadsTo (\<Inter>i \<in> I. A' i)"
paulson@13797
   633
apply (unfold stable_def)
paulson@13797
   634
apply (rule_tac C1 = "{}" in finite_completion [THEN leadsTo_weaken_R])
paulson@13797
   635
apply (simp_all (no_asm_simp))
paulson@13797
   636
apply blast+
paulson@13797
   637
done
paulson@9685
   638
wenzelm@35422
   639
end