src/HOL/simpdata.ML
author oheimb
Thu Sep 24 17:16:06 1998 +0200 (1998-09-24)
changeset 5552 dcd3e7711cac
parent 5447 df03d330aeab
child 5975 cd19eaa90f45
permissions -rw-r--r--
simplified CLASIMP_DATA
renamed mk_meta_eq to mk_eq, meta_eq to mk_meta_eq
clasohm@1465
     1
(*  Title:      HOL/simpdata.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
oheimb@5304
     6
Instantiation of the generic simplifier for HOL.
clasohm@923
     7
*)
clasohm@923
     8
paulson@1984
     9
section "Simplifier";
paulson@1984
    10
paulson@1984
    11
(*** Addition of rules to simpsets and clasets simultaneously ***)
paulson@1984
    12
berghofe@5190
    13
infix 4 addIffs delIffs;
berghofe@5190
    14
paulson@1984
    15
(*Takes UNCONDITIONAL theorems of the form A<->B to 
paulson@2031
    16
        the Safe Intr     rule B==>A and 
paulson@2031
    17
        the Safe Destruct rule A==>B.
paulson@1984
    18
  Also ~A goes to the Safe Elim rule A ==> ?R
paulson@1984
    19
  Failing other cases, A is added as a Safe Intr rule*)
paulson@1984
    20
local
paulson@1984
    21
  val iff_const = HOLogic.eq_const HOLogic.boolT;
paulson@1984
    22
berghofe@5190
    23
  fun addIff ((cla, simp), th) = 
berghofe@5190
    24
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
berghofe@5190
    25
                (Const("Not", _) $ A) =>
berghofe@5190
    26
                    cla addSEs [zero_var_indexes (th RS notE)]
paulson@2031
    27
              | (con $ _ $ _) =>
berghofe@5190
    28
                    if con = iff_const
berghofe@5190
    29
                    then cla addSIs [zero_var_indexes (th RS iffD2)]  
berghofe@5190
    30
                              addSDs [zero_var_indexes (th RS iffD1)]
berghofe@5190
    31
                    else  cla addSIs [th]
berghofe@5190
    32
              | _ => cla addSIs [th],
berghofe@5190
    33
       simp addsimps [th])
paulson@1984
    34
      handle _ => error ("AddIffs: theorem must be unconditional\n" ^ 
berghofe@5190
    35
                         string_of_thm th);
paulson@1984
    36
berghofe@5190
    37
  fun delIff ((cla, simp), th) = 
berghofe@5190
    38
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
berghofe@5190
    39
                (Const ("Not", _) $ A) =>
berghofe@5190
    40
                    cla delrules [zero_var_indexes (th RS notE)]
paulson@2031
    41
              | (con $ _ $ _) =>
berghofe@5190
    42
                    if con = iff_const
berghofe@5190
    43
                    then cla delrules [zero_var_indexes (th RS iffD2),
berghofe@5190
    44
                                       make_elim (zero_var_indexes (th RS iffD1))]
berghofe@5190
    45
                    else cla delrules [th]
berghofe@5190
    46
              | _ => cla delrules [th],
berghofe@5190
    47
       simp delsimps [th])
berghofe@5190
    48
      handle _ => (warning("DelIffs: ignoring conditional theorem\n" ^ 
berghofe@5190
    49
                          string_of_thm th); (cla, simp));
berghofe@5190
    50
berghofe@5190
    51
  fun store_clasimp (cla, simp) = (claset_ref () := cla; simpset_ref () := simp)
paulson@1984
    52
in
berghofe@5190
    53
val op addIffs = foldl addIff;
berghofe@5190
    54
val op delIffs = foldl delIff;
berghofe@5190
    55
fun AddIffs thms = store_clasimp ((claset (), simpset ()) addIffs thms);
berghofe@5190
    56
fun DelIffs thms = store_clasimp ((claset (), simpset ()) delIffs thms);
paulson@1984
    57
end;
paulson@1984
    58
oheimb@5304
    59
nipkow@4640
    60
qed_goal "meta_eq_to_obj_eq" HOL.thy "x==y ==> x=y"
nipkow@4640
    61
  (fn [prem] => [rewtac prem, rtac refl 1]);
nipkow@4640
    62
clasohm@923
    63
local
clasohm@923
    64
paulson@4769
    65
  fun prover s = prove_goal HOL.thy s (K [Blast_tac 1]);
clasohm@923
    66
paulson@1922
    67
  val P_imp_P_iff_True = prover "P --> (P = True)" RS mp;
paulson@1922
    68
  val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
clasohm@923
    69
paulson@1922
    70
  val not_P_imp_P_iff_F = prover "~P --> (P = False)" RS mp;
paulson@1922
    71
  val not_P_imp_P_eq_False = not_P_imp_P_iff_F RS eq_reflection;
clasohm@923
    72
nipkow@2134
    73
in
nipkow@2134
    74
oheimb@5552
    75
(*Make meta-equalities.  The operator below is Trueprop*)
oheimb@5552
    76
oheimb@5552
    77
  fun mk_meta_eq r = r RS eq_reflection;
oheimb@5304
    78
oheimb@5552
    79
  fun mk_eq th = case concl_of th of
oheimb@5304
    80
          Const("==",_)$_$_       => th
oheimb@5552
    81
      |   _$(Const("op =",_)$_$_) => mk_meta_eq th
oheimb@5304
    82
      |   _$(Const("Not",_)$_)    => th RS not_P_imp_P_eq_False
oheimb@5304
    83
      |   _                       => th RS P_imp_P_eq_True;
oheimb@5304
    84
  (* last 2 lines requires all formulae to be of the from Trueprop(.) *)
oheimb@5304
    85
oheimb@5552
    86
  fun mk_eq_True r = Some(r RS meta_eq_to_obj_eq RS P_imp_P_eq_True);
oheimb@5552
    87
oheimb@5552
    88
  fun mk_meta_cong rl =
oheimb@5552
    89
    standard(mk_meta_eq(replicate (nprems_of rl) meta_eq_to_obj_eq MRS rl))
oheimb@5552
    90
    handle THM _ =>
oheimb@5552
    91
    error("Premises and conclusion of congruence rules must be =-equalities");
nipkow@3896
    92
clasohm@923
    93
paulson@2082
    94
val simp_thms = map prover
paulson@2082
    95
 [ "(x=x) = True",
paulson@2082
    96
   "(~True) = False", "(~False) = True", "(~ ~ P) = P",
paulson@2082
    97
   "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
nipkow@4640
    98
   "(True=P) = P", "(P=True) = P", "(False=P) = (~P)", "(P=False) = (~P)",
paulson@2082
    99
   "(True --> P) = P", "(False --> P) = True", 
paulson@2082
   100
   "(P --> True) = True", "(P --> P) = True",
paulson@2082
   101
   "(P --> False) = (~P)", "(P --> ~P) = (~P)",
paulson@2082
   102
   "(P & True) = P", "(True & P) = P", 
nipkow@2800
   103
   "(P & False) = False", "(False & P) = False",
nipkow@2800
   104
   "(P & P) = P", "(P & (P & Q)) = (P & Q)",
paulson@3913
   105
   "(P & ~P) = False",    "(~P & P) = False",
paulson@2082
   106
   "(P | True) = True", "(True | P) = True", 
nipkow@2800
   107
   "(P | False) = P", "(False | P) = P",
nipkow@2800
   108
   "(P | P) = P", "(P | (P | Q)) = (P | Q)",
paulson@3913
   109
   "(P | ~P) = True",    "(~P | P) = True",
paulson@2082
   110
   "((~P) = (~Q)) = (P=Q)",
wenzelm@3842
   111
   "(!x. P) = P", "(? x. P) = P", "? x. x=t", "? x. t=x", 
paulson@4351
   112
(*two needed for the one-point-rule quantifier simplification procs*)
paulson@4351
   113
   "(? x. x=t & P(x)) = P(t)",		(*essential for termination!!*)
paulson@4351
   114
   "(! x. t=x --> P(x)) = P(t)" ];      (*covers a stray case*)
clasohm@923
   115
oheimb@5552
   116
(* Add congruence rules for = (instead of ==) *)
paulson@4351
   117
oheimb@5552
   118
(* ###FIXME: Move to simplifier, 
oheimb@5552
   119
   taking mk_meta_cong as input, eliminating addeqcongs and deleqcongs *)
oheimb@5552
   120
infix 4 addcongs delcongs;
nipkow@4640
   121
fun ss addcongs congs = ss addeqcongs (map mk_meta_cong congs);
nipkow@4640
   122
fun ss delcongs congs = ss deleqcongs (map mk_meta_cong congs);
wenzelm@4086
   123
fun Addcongs congs = (simpset_ref() := simpset() addcongs congs);
wenzelm@4086
   124
fun Delcongs congs = (simpset_ref() := simpset() delcongs congs);
clasohm@1264
   125
oheimb@5552
   126
paulson@1922
   127
val imp_cong = impI RSN
paulson@1922
   128
    (2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
paulson@4769
   129
        (fn _=> [Blast_tac 1]) RS mp RS mp);
paulson@1922
   130
paulson@1948
   131
(*Miniscoping: pushing in existential quantifiers*)
paulson@1948
   132
val ex_simps = map prover 
wenzelm@3842
   133
                ["(EX x. P x & Q)   = ((EX x. P x) & Q)",
wenzelm@3842
   134
                 "(EX x. P & Q x)   = (P & (EX x. Q x))",
wenzelm@3842
   135
                 "(EX x. P x | Q)   = ((EX x. P x) | Q)",
wenzelm@3842
   136
                 "(EX x. P | Q x)   = (P | (EX x. Q x))",
wenzelm@3842
   137
                 "(EX x. P x --> Q) = ((ALL x. P x) --> Q)",
wenzelm@3842
   138
                 "(EX x. P --> Q x) = (P --> (EX x. Q x))"];
paulson@1948
   139
paulson@1948
   140
(*Miniscoping: pushing in universal quantifiers*)
paulson@1948
   141
val all_simps = map prover
wenzelm@3842
   142
                ["(ALL x. P x & Q)   = ((ALL x. P x) & Q)",
wenzelm@3842
   143
                 "(ALL x. P & Q x)   = (P & (ALL x. Q x))",
wenzelm@3842
   144
                 "(ALL x. P x | Q)   = ((ALL x. P x) | Q)",
wenzelm@3842
   145
                 "(ALL x. P | Q x)   = (P | (ALL x. Q x))",
wenzelm@3842
   146
                 "(ALL x. P x --> Q) = ((EX x. P x) --> Q)",
wenzelm@3842
   147
                 "(ALL x. P --> Q x) = (P --> (ALL x. Q x))"];
paulson@1948
   148
clasohm@923
   149
paulson@2022
   150
(* elimination of existential quantifiers in assumptions *)
clasohm@923
   151
clasohm@923
   152
val ex_all_equiv =
clasohm@923
   153
  let val lemma1 = prove_goal HOL.thy
clasohm@923
   154
        "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
clasohm@923
   155
        (fn prems => [resolve_tac prems 1, etac exI 1]);
clasohm@923
   156
      val lemma2 = prove_goalw HOL.thy [Ex_def]
clasohm@923
   157
        "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
clasohm@923
   158
        (fn prems => [REPEAT(resolve_tac prems 1)])
clasohm@923
   159
  in equal_intr lemma1 lemma2 end;
clasohm@923
   160
clasohm@923
   161
end;
clasohm@923
   162
nipkow@3654
   163
(* Elimination of True from asumptions: *)
nipkow@3654
   164
nipkow@3654
   165
val True_implies_equals = prove_goal HOL.thy
nipkow@3654
   166
 "(True ==> PROP P) == PROP P"
oheimb@4525
   167
(K [rtac equal_intr_rule 1, atac 2,
nipkow@3654
   168
          METAHYPS (fn prems => resolve_tac prems 1) 1,
nipkow@3654
   169
          rtac TrueI 1]);
nipkow@3654
   170
paulson@4769
   171
fun prove nm thm  = qed_goal nm HOL.thy thm (K [Blast_tac 1]);
clasohm@923
   172
clasohm@923
   173
prove "conj_commute" "(P&Q) = (Q&P)";
clasohm@923
   174
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
clasohm@923
   175
val conj_comms = [conj_commute, conj_left_commute];
nipkow@2134
   176
prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";
clasohm@923
   177
paulson@1922
   178
prove "disj_commute" "(P|Q) = (Q|P)";
paulson@1922
   179
prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
paulson@1922
   180
val disj_comms = [disj_commute, disj_left_commute];
nipkow@2134
   181
prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";
paulson@1922
   182
clasohm@923
   183
prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
clasohm@923
   184
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
nipkow@1485
   185
paulson@1892
   186
prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
paulson@1892
   187
prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";
paulson@1892
   188
nipkow@2134
   189
prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
nipkow@2134
   190
prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
nipkow@2134
   191
prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";
paulson@1892
   192
paulson@3448
   193
(*These two are specialized, but imp_disj_not1 is useful in Auth/Yahalom.ML*)
paulson@3448
   194
prove "imp_disj_not1" "((P --> Q | R)) = (~Q --> P --> R)";
paulson@3448
   195
prove "imp_disj_not2" "((P --> Q | R)) = (~R --> P --> Q)";
paulson@3448
   196
paulson@3904
   197
prove "imp_disj1" "((P-->Q)|R) = (P--> Q|R)";
paulson@3904
   198
prove "imp_disj2" "(Q|(P-->R)) = (P--> Q|R)";
paulson@3904
   199
nipkow@1485
   200
prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
nipkow@1485
   201
prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
paulson@3446
   202
prove "not_imp" "(~(P --> Q)) = (P & ~Q)";
paulson@1922
   203
prove "not_iff" "(P~=Q) = (P = (~Q))";
oheimb@4743
   204
prove "disj_not1" "(~P | Q) = (P --> Q)";
oheimb@4743
   205
prove "disj_not2" "(P | ~Q) = (Q --> P)"; (* changes orientation :-( *)
nipkow@1485
   206
nipkow@4830
   207
(*Avoids duplication of subgoals after split_if, when the true and false 
nipkow@2134
   208
  cases boil down to the same thing.*) 
nipkow@2134
   209
prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";
nipkow@2134
   210
wenzelm@3842
   211
prove "not_all" "(~ (! x. P(x))) = (? x.~P(x))";
paulson@1922
   212
prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
wenzelm@3842
   213
prove "not_ex"  "(~ (? x. P(x))) = (! x.~P(x))";
paulson@1922
   214
prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";
oheimb@1660
   215
nipkow@1655
   216
prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
nipkow@1655
   217
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
nipkow@1655
   218
nipkow@2134
   219
(* '&' congruence rule: not included by default!
nipkow@2134
   220
   May slow rewrite proofs down by as much as 50% *)
nipkow@2134
   221
nipkow@2134
   222
let val th = prove_goal HOL.thy 
nipkow@2134
   223
                "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
paulson@4769
   224
                (fn _=> [Blast_tac 1])
nipkow@2134
   225
in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   226
nipkow@2134
   227
let val th = prove_goal HOL.thy 
nipkow@2134
   228
                "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
paulson@4769
   229
                (fn _=> [Blast_tac 1])
nipkow@2134
   230
in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   231
nipkow@2134
   232
(* '|' congruence rule: not included by default! *)
nipkow@2134
   233
nipkow@2134
   234
let val th = prove_goal HOL.thy 
nipkow@2134
   235
                "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
paulson@4769
   236
                (fn _=> [Blast_tac 1])
nipkow@2134
   237
in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   238
nipkow@2134
   239
prove "eq_sym_conv" "(x=y) = (y=x)";
nipkow@2134
   240
paulson@5278
   241
paulson@5278
   242
(** if-then-else rules **)
paulson@5278
   243
nipkow@2134
   244
qed_goalw "if_True" HOL.thy [if_def] "(if True then x else y) = x"
oheimb@4525
   245
 (K [Blast_tac 1]);
nipkow@2134
   246
nipkow@2134
   247
qed_goalw "if_False" HOL.thy [if_def] "(if False then x else y) = y"
oheimb@4525
   248
 (K [Blast_tac 1]);
nipkow@2134
   249
oheimb@5304
   250
qed_goalw "if_P" HOL.thy [if_def] "!!P. P ==> (if P then x else y) = x"
oheimb@5304
   251
 (K [Blast_tac 1]);
oheimb@5304
   252
nipkow@2134
   253
qed_goalw "if_not_P" HOL.thy [if_def] "!!P. ~P ==> (if P then x else y) = y"
oheimb@4525
   254
 (K [Blast_tac 1]);
nipkow@2134
   255
nipkow@4830
   256
qed_goal "split_if" HOL.thy
oheimb@4205
   257
    "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" (K [
oheimb@4205
   258
	res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1,
nipkow@2134
   259
         stac if_P 2,
nipkow@2134
   260
         stac if_not_P 1,
paulson@4769
   261
         ALLGOALS (Blast_tac)]);
nipkow@4830
   262
(* for backwards compatibility: *)
nipkow@4830
   263
val expand_if = split_if;
oheimb@4205
   264
oheimb@4205
   265
qed_goal "split_if_asm" HOL.thy
paulson@4769
   266
    "P(if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
nipkow@4830
   267
    (K [stac split_if 1,
paulson@4769
   268
	Blast_tac 1]);
nipkow@2134
   269
oheimb@5304
   270
qed_goal "if_cancel" HOL.thy "(if c then x else x) = x"
oheimb@5304
   271
  (K [stac split_if 1, Blast_tac 1]);
oheimb@5304
   272
oheimb@5304
   273
qed_goal "if_eq_cancel" HOL.thy "(if x = y then y else x) = x"
oheimb@5304
   274
  (K [stac split_if 1, Blast_tac 1]);
oheimb@5304
   275
paulson@4769
   276
(*This form is useful for expanding IFs on the RIGHT of the ==> symbol*)
paulson@4769
   277
qed_goal "if_bool_eq_conj" HOL.thy
paulson@4769
   278
    "(if P then Q else R) = ((P-->Q) & (~P-->R))"
nipkow@4830
   279
    (K [rtac split_if 1]);
paulson@4769
   280
paulson@4769
   281
(*And this form is useful for expanding IFs on the LEFT*)
paulson@4769
   282
qed_goal "if_bool_eq_disj" HOL.thy
paulson@4769
   283
    "(if P then Q else R) = ((P&Q) | (~P&R))"
nipkow@4830
   284
    (K [stac split_if 1,
paulson@4769
   285
	Blast_tac 1]);
nipkow@2134
   286
paulson@4351
   287
paulson@4351
   288
(*** make simplification procedures for quantifier elimination ***)
paulson@4351
   289
paulson@4351
   290
structure Quantifier1 = Quantifier1Fun(
paulson@4351
   291
struct
paulson@4351
   292
  (*abstract syntax*)
paulson@4351
   293
  fun dest_eq((c as Const("op =",_)) $ s $ t) = Some(c,s,t)
paulson@4351
   294
    | dest_eq _ = None;
paulson@4351
   295
  fun dest_conj((c as Const("op &",_)) $ s $ t) = Some(c,s,t)
paulson@4351
   296
    | dest_conj _ = None;
paulson@4351
   297
  val conj = HOLogic.conj
paulson@4351
   298
  val imp  = HOLogic.imp
paulson@4351
   299
  (*rules*)
paulson@4351
   300
  val iff_reflection = eq_reflection
paulson@4351
   301
  val iffI = iffI
paulson@4351
   302
  val sym  = sym
paulson@4351
   303
  val conjI= conjI
paulson@4351
   304
  val conjE= conjE
paulson@4351
   305
  val impI = impI
paulson@4351
   306
  val impE = impE
paulson@4351
   307
  val mp   = mp
paulson@4351
   308
  val exI  = exI
paulson@4351
   309
  val exE  = exE
paulson@4351
   310
  val allI = allI
paulson@4351
   311
  val allE = allE
paulson@4351
   312
end);
paulson@4351
   313
nipkow@4320
   314
local
nipkow@4320
   315
val ex_pattern =
paulson@4351
   316
  read_cterm (sign_of HOL.thy) ("EX x. P(x) & Q(x)",HOLogic.boolT)
paulson@3913
   317
nipkow@4320
   318
val all_pattern =
paulson@4351
   319
  read_cterm (sign_of HOL.thy) ("ALL x. P(x) & P'(x) --> Q(x)",HOLogic.boolT)
nipkow@4320
   320
nipkow@4320
   321
in
nipkow@4320
   322
val defEX_regroup =
nipkow@4320
   323
  mk_simproc "defined EX" [ex_pattern] Quantifier1.rearrange_ex;
nipkow@4320
   324
val defALL_regroup =
nipkow@4320
   325
  mk_simproc "defined ALL" [all_pattern] Quantifier1.rearrange_all;
nipkow@4320
   326
end;
paulson@3913
   327
paulson@4351
   328
paulson@4351
   329
(*** Case splitting ***)
paulson@3913
   330
oheimb@5304
   331
structure SplitterData =
oheimb@5304
   332
  struct
oheimb@5304
   333
  structure Simplifier = Simplifier
oheimb@5552
   334
  val mk_eq          = mk_eq
oheimb@5304
   335
  val meta_eq_to_iff = meta_eq_to_obj_eq
oheimb@5304
   336
  val iffD           = iffD2
oheimb@5304
   337
  val disjE          = disjE
oheimb@5304
   338
  val conjE          = conjE
oheimb@5304
   339
  val exE            = exE
oheimb@5304
   340
  val contrapos      = contrapos
oheimb@5304
   341
  val contrapos2     = contrapos2
oheimb@5304
   342
  val notnotD        = notnotD
oheimb@5304
   343
  end;
nipkow@4681
   344
oheimb@5304
   345
structure Splitter = SplitterFun(SplitterData);
oheimb@2263
   346
oheimb@5304
   347
val split_tac        = Splitter.split_tac;
oheimb@5304
   348
val split_inside_tac = Splitter.split_inside_tac;
oheimb@5304
   349
val split_asm_tac    = Splitter.split_asm_tac;
oheimb@5307
   350
val op addsplits     = Splitter.addsplits;
oheimb@5307
   351
val op delsplits     = Splitter.delsplits;
oheimb@5304
   352
val Addsplits        = Splitter.Addsplits;
oheimb@5304
   353
val Delsplits        = Splitter.Delsplits;
oheimb@4718
   354
nipkow@2134
   355
(** 'if' congruence rules: neither included by default! *)
nipkow@2134
   356
nipkow@2134
   357
(*Simplifies x assuming c and y assuming ~c*)
nipkow@2134
   358
qed_goal "if_cong" HOL.thy
nipkow@2134
   359
  "[| b=c; c ==> x=u; ~c ==> y=v |] ==>\
nipkow@2134
   360
\  (if b then x else y) = (if c then u else v)"
nipkow@2134
   361
  (fn rew::prems =>
nipkow@4830
   362
   [stac rew 1, stac split_if 1, stac split_if 1,
paulson@2935
   363
    blast_tac (HOL_cs addDs prems) 1]);
nipkow@2134
   364
nipkow@2134
   365
(*Prevents simplification of x and y: much faster*)
nipkow@2134
   366
qed_goal "if_weak_cong" HOL.thy
nipkow@2134
   367
  "b=c ==> (if b then x else y) = (if c then x else y)"
nipkow@2134
   368
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   369
nipkow@2134
   370
(*Prevents simplification of t: much faster*)
nipkow@2134
   371
qed_goal "let_weak_cong" HOL.thy
nipkow@2134
   372
  "a = b ==> (let x=a in t(x)) = (let x=b in t(x))"
nipkow@2134
   373
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   374
nipkow@2134
   375
(*In general it seems wrong to add distributive laws by default: they
nipkow@2134
   376
  might cause exponential blow-up.  But imp_disjL has been in for a while
nipkow@2134
   377
  and cannot be removed without affecting existing proofs.  Moreover, 
nipkow@2134
   378
  rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
nipkow@2134
   379
  grounds that it allows simplification of R in the two cases.*)
nipkow@2134
   380
oheimb@5304
   381
fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
oheimb@5304
   382
nipkow@2134
   383
val mksimps_pairs =
nipkow@2134
   384
  [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
nipkow@2134
   385
   ("All", [spec]), ("True", []), ("False", []),
paulson@4769
   386
   ("If", [if_bool_eq_conj RS iffD1])];
nipkow@1758
   387
oheimb@5552
   388
(* ###FIXME: move to Provers/simplifier.ML
oheimb@5304
   389
val mk_atomize:      (string * thm list) list -> thm -> thm list
oheimb@5304
   390
*)
oheimb@5552
   391
(* ###FIXME: move to Provers/simplifier.ML *)
oheimb@5304
   392
fun mk_atomize pairs =
oheimb@5304
   393
  let fun atoms th =
oheimb@5304
   394
        (case concl_of th of
oheimb@5304
   395
           Const("Trueprop",_) $ p =>
oheimb@5304
   396
             (case head_of p of
oheimb@5304
   397
                Const(a,_) =>
oheimb@5304
   398
                  (case assoc(pairs,a) of
oheimb@5304
   399
                     Some(rls) => flat (map atoms ([th] RL rls))
oheimb@5304
   400
                   | None => [th])
oheimb@5304
   401
              | _ => [th])
oheimb@5304
   402
         | _ => [th])
oheimb@5304
   403
  in atoms end;
oheimb@5304
   404
oheimb@5552
   405
fun mksimps pairs = (map mk_eq o mk_atomize pairs o gen_all);
oheimb@5304
   406
nipkow@4640
   407
fun unsafe_solver prems = FIRST'[resolve_tac (reflexive_thm::TrueI::refl::prems),
oheimb@2636
   408
				 atac, etac FalseE];
oheimb@2636
   409
(*No premature instantiation of variables during simplification*)
nipkow@4640
   410
fun   safe_solver prems = FIRST'[match_tac (reflexive_thm::TrueI::prems),
oheimb@2636
   411
				 eq_assume_tac, ematch_tac [FalseE]];
oheimb@2443
   412
oheimb@2636
   413
val HOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
oheimb@2636
   414
			    setSSolver   safe_solver
oheimb@2636
   415
			    setSolver  unsafe_solver
nipkow@4677
   416
			    setmksimps (mksimps mksimps_pairs)
oheimb@5552
   417
			    setmkeqTrue mk_eq_True;
oheimb@2443
   418
paulson@3446
   419
val HOL_ss = 
paulson@3446
   420
    HOL_basic_ss addsimps 
paulson@3446
   421
     ([triv_forall_equality, (* prunes params *)
nipkow@3654
   422
       True_implies_equals, (* prune asms `True' *)
oheimb@4718
   423
       if_True, if_False, if_cancel, if_eq_cancel,
oheimb@5304
   424
       imp_disjL, conj_assoc, disj_assoc,
paulson@3904
   425
       de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
nipkow@5447
   426
       disj_not1, not_all, not_ex, cases_simp, Eps_eq, Eps_sym_eq]
paulson@3446
   427
     @ ex_simps @ all_simps @ simp_thms)
nipkow@4032
   428
     addsimprocs [defALL_regroup,defEX_regroup]
wenzelm@4744
   429
     addcongs [imp_cong]
nipkow@4830
   430
     addsplits [split_if];
paulson@2082
   431
nipkow@1655
   432
qed_goal "if_distrib" HOL.thy
nipkow@1655
   433
  "f(if c then x else y) = (if c then f x else f y)" 
nipkow@4830
   434
  (K [simp_tac (HOL_ss setloop (split_tac [split_if])) 1]);
nipkow@1655
   435
paulson@1984
   436
paulson@4327
   437
(*For expand_case_tac*)
paulson@2948
   438
val prems = goal HOL.thy "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
paulson@2948
   439
by (case_tac "P" 1);
paulson@2948
   440
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
paulson@2948
   441
val expand_case = result();
paulson@2948
   442
paulson@4327
   443
(*Used in Auth proofs.  Typically P contains Vars that become instantiated
paulson@4327
   444
  during unification.*)
paulson@2948
   445
fun expand_case_tac P i =
paulson@2948
   446
    res_inst_tac [("P",P)] expand_case i THEN
paulson@2948
   447
    Simp_tac (i+1) THEN 
paulson@2948
   448
    Simp_tac i;
paulson@2948
   449
paulson@2948
   450
wenzelm@4119
   451
(* install implicit simpset *)
paulson@1984
   452
wenzelm@4086
   453
simpset_ref() := HOL_ss;
paulson@1984
   454
berghofe@3615
   455
oheimb@4652
   456
wenzelm@5219
   457
(*** integration of simplifier with classical reasoner ***)
oheimb@2636
   458
wenzelm@5219
   459
structure Clasimp = ClasimpFun
oheimb@5552
   460
 (structure Simplifier = Simplifier 
oheimb@5552
   461
        and Classical  = Classical 
oheimb@5552
   462
        and Blast      = Blast);
oheimb@4652
   463
open Clasimp;
oheimb@2636
   464
oheimb@2636
   465
val HOL_css = (HOL_cs, HOL_ss);