src/HOL/Product_Type.thy
author wenzelm
Sat Dec 01 18:52:32 2001 +0100 (2001-12-01)
changeset 12338 de0f4a63baa5
parent 12114 a8e860c86252
child 13462 56610e2ba220
permissions -rw-r--r--
renamed class "term" to "type" (actually "HOL.type");
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    ID:         $Id$
nipkow@10213
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     4
    Copyright   1992  University of Cambridge
wenzelm@11777
     5
*)
nipkow@10213
     6
wenzelm@11838
     7
header {* Cartesian products *}
nipkow@10213
     8
oheimb@11025
     9
theory Product_Type = Fun
wenzelm@11838
    10
files ("Tools/split_rule.ML"):
wenzelm@11838
    11
wenzelm@11838
    12
subsection {* Unit *}
wenzelm@11838
    13
wenzelm@11838
    14
typedef unit = "{True}"
wenzelm@11838
    15
proof
wenzelm@11838
    16
  show "True : ?unit" by blast
wenzelm@11838
    17
qed
wenzelm@11838
    18
wenzelm@11838
    19
constdefs
wenzelm@11838
    20
  Unity :: unit    ("'(')")
wenzelm@11838
    21
  "() == Abs_unit True"
wenzelm@11838
    22
wenzelm@11838
    23
lemma unit_eq: "u = ()"
wenzelm@11838
    24
  by (induct u) (simp add: unit_def Unity_def)
wenzelm@11838
    25
wenzelm@11838
    26
text {*
wenzelm@11838
    27
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    28
  this rule directly --- it loops!
wenzelm@11838
    29
*}
wenzelm@11838
    30
wenzelm@11838
    31
ML_setup {*
wenzelm@11838
    32
  local
wenzelm@11838
    33
    val unit_pat = Thm.cterm_of (Theory.sign_of (the_context ())) (Free ("x", HOLogic.unitT));
wenzelm@11838
    34
    val unit_meta_eq = standard (mk_meta_eq (thm "unit_eq"));
wenzelm@11838
    35
    fun proc _ _ t =
wenzelm@11838
    36
      if HOLogic.is_unit t then None
wenzelm@11838
    37
      else Some unit_meta_eq
wenzelm@11838
    38
  in val unit_eq_proc = Simplifier.mk_simproc "unit_eq" [unit_pat] proc end;
wenzelm@11838
    39
wenzelm@11838
    40
  Addsimprocs [unit_eq_proc];
wenzelm@11838
    41
*}
wenzelm@11838
    42
wenzelm@11838
    43
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    44
  by simp
wenzelm@11838
    45
wenzelm@11838
    46
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    47
  by (rule triv_forall_equality)
wenzelm@11838
    48
wenzelm@11838
    49
lemma unit_induct [induct type: unit]: "P () ==> P x"
wenzelm@11838
    50
  by simp
wenzelm@11838
    51
wenzelm@11838
    52
text {*
wenzelm@11838
    53
  This rewrite counters the effect of @{text unit_eq_proc} on @{term
wenzelm@11838
    54
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    55
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    56
*}
wenzelm@11838
    57
wenzelm@11838
    58
lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f"
wenzelm@11838
    59
  by (rule ext) simp
nipkow@10213
    60
nipkow@10213
    61
wenzelm@11838
    62
subsection {* Pairs *}
nipkow@10213
    63
wenzelm@11777
    64
subsubsection {* Type definition *}
nipkow@10213
    65
nipkow@10213
    66
constdefs
oheimb@11025
    67
  Pair_Rep :: "['a, 'b] => ['a, 'b] => bool"
wenzelm@11032
    68
  "Pair_Rep == (%a b. %x y. x=a & y=b)"
nipkow@10213
    69
nipkow@10213
    70
global
nipkow@10213
    71
nipkow@10213
    72
typedef (Prod)
wenzelm@11838
    73
  ('a, 'b) "*"    (infixr 20)
wenzelm@11032
    74
    = "{f. EX a b. f = Pair_Rep (a::'a) (b::'b)}"
oheimb@11025
    75
proof
oheimb@11025
    76
  fix a b show "Pair_Rep a b : ?Prod"
oheimb@11025
    77
    by blast
oheimb@11025
    78
qed
nipkow@10213
    79
wenzelm@12114
    80
syntax (xsymbols)
oheimb@11493
    81
  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
    82
syntax (HTML output)
oheimb@11493
    83
  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
    84
wenzelm@11777
    85
local
nipkow@10213
    86
wenzelm@11777
    87
wenzelm@11777
    88
subsubsection {* Abstract constants and syntax *}
wenzelm@11777
    89
wenzelm@11777
    90
global
nipkow@10213
    91
nipkow@10213
    92
consts
oheimb@11025
    93
  fst      :: "'a * 'b => 'a"
oheimb@11025
    94
  snd      :: "'a * 'b => 'b"
oheimb@11025
    95
  split    :: "[['a, 'b] => 'c, 'a * 'b] => 'c"
oheimb@11025
    96
  prod_fun :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd"
oheimb@11025
    97
  Pair     :: "['a, 'b] => 'a * 'b"
oheimb@11025
    98
  Sigma    :: "['a set, 'a => 'b set] => ('a * 'b) set"
nipkow@10213
    99
wenzelm@11777
   100
local
nipkow@10213
   101
wenzelm@11777
   102
text {*
wenzelm@11777
   103
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   104
  abstractions.
wenzelm@11777
   105
*}
nipkow@10213
   106
nipkow@10213
   107
nonterminals
nipkow@10213
   108
  tuple_args patterns
nipkow@10213
   109
nipkow@10213
   110
syntax
nipkow@10213
   111
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   112
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   113
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   114
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   115
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   116
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
oheimb@11025
   117
  "@Sigma" ::"[pttrn, 'a set, 'b set] => ('a * 'b) set" ("(3SIGMA _:_./ _)" 10)
oheimb@11025
   118
  "@Times" ::"['a set,  'a => 'b set] => ('a * 'b) set" (infixr "<*>" 80)
nipkow@10213
   119
nipkow@10213
   120
translations
nipkow@10213
   121
  "(x, y)"       == "Pair x y"
nipkow@10213
   122
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
nipkow@10213
   123
  "%(x,y,zs).b"  == "split(%x (y,zs).b)"
nipkow@10213
   124
  "%(x,y).b"     == "split(%x y. b)"
nipkow@10213
   125
  "_abs (Pair x y) t" => "%(x,y).t"
nipkow@10213
   126
  (* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
nipkow@10213
   127
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *)
nipkow@10213
   128
nipkow@10213
   129
  "SIGMA x:A. B" => "Sigma A (%x. B)"
nipkow@10213
   130
  "A <*> B"      => "Sigma A (_K B)"
nipkow@10213
   131
wenzelm@12114
   132
syntax (xsymbols)
oheimb@11493
   133
  "@Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3\<Sigma> _\<in>_./ _)"   10)
oheimb@11493
   134
  "@Times" :: "['a set,  'a => 'b set] => ('a * 'b) set"  ("_ \<times> _" [81, 80] 80)
oheimb@11025
   135
wenzelm@11032
   136
print_translation {* [("Sigma", dependent_tr' ("@Sigma", "@Times"))] *}
nipkow@10213
   137
nipkow@10213
   138
wenzelm@11777
   139
subsubsection {* Definitions *}
nipkow@10213
   140
nipkow@10213
   141
defs
oheimb@11025
   142
  Pair_def:     "Pair a b == Abs_Prod(Pair_Rep a b)"
paulson@11451
   143
  fst_def:      "fst p == THE a. EX b. p = (a, b)"
paulson@11451
   144
  snd_def:      "snd p == THE b. EX a. p = (a, b)"
oheimb@11025
   145
  split_def:    "split == (%c p. c (fst p) (snd p))"
oheimb@11025
   146
  prod_fun_def: "prod_fun f g == split(%x y.(f(x), g(y)))"
oheimb@11025
   147
  Sigma_def:    "Sigma A B == UN x:A. UN y:B(x). {(x, y)}"
nipkow@10213
   148
nipkow@10213
   149
wenzelm@11966
   150
subsubsection {* Lemmas and proof tool setup *}
wenzelm@11838
   151
wenzelm@11838
   152
lemma ProdI: "Pair_Rep a b : Prod"
wenzelm@11838
   153
  by (unfold Prod_def) blast
wenzelm@11838
   154
wenzelm@11838
   155
lemma Pair_Rep_inject: "Pair_Rep a b = Pair_Rep a' b' ==> a = a' & b = b'"
wenzelm@11838
   156
  apply (unfold Pair_Rep_def)
wenzelm@11838
   157
  apply (drule fun_cong [THEN fun_cong])
wenzelm@11838
   158
  apply blast
wenzelm@11838
   159
  done
nipkow@10213
   160
wenzelm@11838
   161
lemma inj_on_Abs_Prod: "inj_on Abs_Prod Prod"
wenzelm@11838
   162
  apply (rule inj_on_inverseI)
wenzelm@11838
   163
  apply (erule Abs_Prod_inverse)
wenzelm@11838
   164
  done
wenzelm@11838
   165
wenzelm@11838
   166
lemma Pair_inject:
wenzelm@11838
   167
  "(a, b) = (a', b') ==> (a = a' ==> b = b' ==> R) ==> R"
wenzelm@11838
   168
proof -
wenzelm@11838
   169
  case rule_context [unfolded Pair_def]
wenzelm@11838
   170
  show ?thesis
wenzelm@11838
   171
    apply (rule inj_on_Abs_Prod [THEN inj_onD, THEN Pair_Rep_inject, THEN conjE])
wenzelm@11838
   172
    apply (rule rule_context ProdI)+
wenzelm@11838
   173
    .
oheimb@11025
   174
qed
nipkow@10213
   175
wenzelm@11838
   176
lemma Pair_eq [iff]: "((a, b) = (a', b')) = (a = a' & b = b')"
wenzelm@11838
   177
  by (blast elim!: Pair_inject)
wenzelm@11838
   178
wenzelm@11838
   179
lemma fst_conv [simp]: "fst (a, b) = a"
wenzelm@11838
   180
  by (unfold fst_def) blast
wenzelm@11838
   181
wenzelm@11838
   182
lemma snd_conv [simp]: "snd (a, b) = b"
wenzelm@11838
   183
  by (unfold snd_def) blast
oheimb@11025
   184
wenzelm@11838
   185
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   186
  by simp
wenzelm@11838
   187
wenzelm@11838
   188
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   189
  by simp
wenzelm@11838
   190
wenzelm@11838
   191
lemma PairE_lemma: "EX x y. p = (x, y)"
wenzelm@11838
   192
  apply (unfold Pair_def)
wenzelm@11838
   193
  apply (rule Rep_Prod [unfolded Prod_def, THEN CollectE])
wenzelm@11838
   194
  apply (erule exE, erule exE, rule exI, rule exI)
wenzelm@11838
   195
  apply (rule Rep_Prod_inverse [symmetric, THEN trans])
wenzelm@11838
   196
  apply (erule arg_cong)
wenzelm@11838
   197
  done
wenzelm@11032
   198
wenzelm@11838
   199
lemma PairE [cases type: *]: "(!!x y. p = (x, y) ==> Q) ==> Q"
wenzelm@11838
   200
  by (insert PairE_lemma [of p]) blast
wenzelm@11838
   201
wenzelm@11838
   202
ML_setup {*
wenzelm@11838
   203
  local val PairE = thm "PairE" in
wenzelm@11838
   204
    fun pair_tac s =
wenzelm@11838
   205
      EVERY' [res_inst_tac [("p", s)] PairE, hyp_subst_tac, K prune_params_tac];
wenzelm@11838
   206
  end;
wenzelm@11838
   207
*}
wenzelm@11032
   208
wenzelm@11838
   209
lemma surjective_pairing: "p = (fst p, snd p)"
wenzelm@11838
   210
  -- {* Do not add as rewrite rule: invalidates some proofs in IMP *}
wenzelm@11838
   211
  by (cases p) simp
wenzelm@11838
   212
wenzelm@11838
   213
declare surjective_pairing [symmetric, simp]
oheimb@11025
   214
wenzelm@11838
   215
lemma surj_pair [simp]: "EX x y. z = (x, y)"
wenzelm@11838
   216
  apply (rule exI)
wenzelm@11838
   217
  apply (rule exI)
wenzelm@11838
   218
  apply (rule surjective_pairing)
wenzelm@11838
   219
  done
wenzelm@11838
   220
wenzelm@11838
   221
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   222
proof
wenzelm@11820
   223
  fix a b
wenzelm@11820
   224
  assume "!!x. PROP P x"
wenzelm@11820
   225
  thus "PROP P (a, b)" .
wenzelm@11820
   226
next
wenzelm@11820
   227
  fix x
wenzelm@11820
   228
  assume "!!a b. PROP P (a, b)"
wenzelm@11820
   229
  hence "PROP P (fst x, snd x)" .
wenzelm@11820
   230
  thus "PROP P x" by simp
wenzelm@11820
   231
qed
wenzelm@11820
   232
wenzelm@11838
   233
lemmas split_tupled_all = split_paired_all unit_all_eq2
wenzelm@11838
   234
wenzelm@11838
   235
text {*
wenzelm@11838
   236
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   237
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   238
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   239
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   240
*}
wenzelm@11838
   241
wenzelm@11838
   242
ML_setup "
wenzelm@11838
   243
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   244
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
wenzelm@11838
   245
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@11838
   246
    fun exists_paired_all (Const (\"all\", _) $ Abs (_, T, t)) =
wenzelm@11838
   247
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   248
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   249
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   250
      | exists_paired_all _ = false;
wenzelm@11838
   251
    val ss = HOL_basic_ss
wenzelm@11838
   252
      addsimps [thm \"split_paired_all\", thm \"unit_all_eq2\", thm \"unit_abs_eta_conv\"]
wenzelm@11838
   253
      addsimprocs [unit_eq_proc];
wenzelm@11838
   254
  in
wenzelm@11838
   255
    val split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   256
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   257
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   258
      if exists_paired_all t then full_simp_tac ss i else no_tac);
wenzelm@11838
   259
    fun split_all th =
wenzelm@11838
   260
   if exists_paired_all (#prop (Thm.rep_thm th)) then full_simplify ss th else th;
wenzelm@11838
   261
  end;
wenzelm@11838
   262
wenzelm@11838
   263
claset_ref() := claset() addSbefore (\"split_all_tac\", split_all_tac);
wenzelm@11838
   264
"
wenzelm@11838
   265
wenzelm@11838
   266
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   267
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   268
  by fast
wenzelm@11838
   269
wenzelm@11838
   270
lemma prod_induct [induct type: *]: "!!x. (!!a b. P (a, b)) ==> P x"
wenzelm@11838
   271
  by fast
wenzelm@11838
   272
wenzelm@11838
   273
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
wenzelm@11838
   274
  by fast
wenzelm@11838
   275
wenzelm@11838
   276
lemma split_conv [simp]: "split c (a, b) = c a b"
wenzelm@11838
   277
  by (simp add: split_def)
wenzelm@11838
   278
wenzelm@11838
   279
lemmas split = split_conv  -- {* for backwards compatibility *}
wenzelm@11838
   280
wenzelm@11838
   281
lemmas splitI = split_conv [THEN iffD2, standard]
wenzelm@11838
   282
lemmas splitD = split_conv [THEN iffD1, standard]
wenzelm@11838
   283
wenzelm@11838
   284
lemma split_Pair_apply: "split (%x y. f (x, y)) = f"
wenzelm@11838
   285
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
wenzelm@11838
   286
  apply (rule ext)
wenzelm@11838
   287
  apply (tactic {* pair_tac "x" 1 *})
wenzelm@11838
   288
  apply simp
wenzelm@11838
   289
  done
wenzelm@11838
   290
wenzelm@11838
   291
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   292
  -- {* Can't be added to simpset: loops! *}
wenzelm@11838
   293
  by (simp add: split_Pair_apply)
wenzelm@11838
   294
wenzelm@11838
   295
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
wenzelm@11838
   296
  by (simp add: split_def)
wenzelm@11838
   297
wenzelm@11838
   298
lemma Pair_fst_snd_eq: "!!s t. (s = t) = (fst s = fst t & snd s = snd t)"
wenzelm@11838
   299
  apply (simp only: split_tupled_all)
wenzelm@11838
   300
  apply simp
wenzelm@11838
   301
  done
wenzelm@11838
   302
wenzelm@11838
   303
lemma prod_eqI [intro?]: "fst p = fst q ==> snd p = snd q ==> p = q"
wenzelm@11838
   304
  by (simp add: Pair_fst_snd_eq)
wenzelm@11838
   305
wenzelm@11838
   306
lemma split_weak_cong: "p = q ==> split c p = split c q"
wenzelm@11838
   307
  -- {* Prevents simplification of @{term c}: much faster *}
wenzelm@11838
   308
  by (erule arg_cong)
wenzelm@11838
   309
wenzelm@11838
   310
lemma split_eta: "(%(x, y). f (x, y)) = f"
wenzelm@11838
   311
  apply (rule ext)
wenzelm@11838
   312
  apply (simp only: split_tupled_all)
wenzelm@11838
   313
  apply (rule split_conv)
wenzelm@11838
   314
  done
wenzelm@11838
   315
wenzelm@11838
   316
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
wenzelm@11838
   317
  by (simp add: split_eta)
wenzelm@11838
   318
wenzelm@11838
   319
text {*
wenzelm@11838
   320
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   321
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   322
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   323
  existing proofs very inefficient; similarly for @{text
wenzelm@11838
   324
  split_beta}. *}
wenzelm@11838
   325
wenzelm@11838
   326
ML_setup {*
wenzelm@11838
   327
wenzelm@11838
   328
local
wenzelm@11838
   329
  val cond_split_eta = thm "cond_split_eta";
wenzelm@11838
   330
  fun  Pair_pat k 0 (Bound m) = (m = k)
wenzelm@11838
   331
  |    Pair_pat k i (Const ("Pair",  _) $ Bound m $ t) = i > 0 andalso
wenzelm@11838
   332
                        m = k+i andalso Pair_pat k (i-1) t
wenzelm@11838
   333
  |    Pair_pat _ _ _ = false;
wenzelm@11838
   334
  fun no_args k i (Abs (_, _, t)) = no_args (k+1) i t
wenzelm@11838
   335
  |   no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@11838
   336
  |   no_args k i (Bound m) = m < k orelse m > k+i
wenzelm@11838
   337
  |   no_args _ _ _ = true;
wenzelm@11838
   338
  fun split_pat tp i (Abs  (_,_,t)) = if tp 0 i t then Some (i,t) else None
wenzelm@11838
   339
  |   split_pat tp i (Const ("split", _) $ Abs (_, _, t)) = split_pat tp (i+1) t
wenzelm@11838
   340
  |   split_pat tp i _ = None;
wenzelm@11838
   341
  fun metaeq sg lhs rhs = mk_meta_eq (prove_goalw_cterm []
wenzelm@11838
   342
        (cterm_of sg (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs,rhs))))
wenzelm@11838
   343
        (K [simp_tac (HOL_basic_ss addsimps [cond_split_eta]) 1]));
wenzelm@11838
   344
  val sign = sign_of (the_context ());
wenzelm@12338
   345
  fun simproc name patstr =
wenzelm@12338
   346
    Simplifier.mk_simproc name [HOLogic.read_cterm sign patstr];
wenzelm@11838
   347
wenzelm@11838
   348
  val beta_patstr = "split f z";
wenzelm@11838
   349
  val  eta_patstr = "split f";
wenzelm@11838
   350
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k+1) i t
wenzelm@11838
   351
  |   beta_term_pat k i (t $ u) = Pair_pat k i (t $ u) orelse
wenzelm@11838
   352
                        (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@11838
   353
  |   beta_term_pat k i t = no_args k i t;
wenzelm@11838
   354
  fun  eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@11838
   355
  |    eta_term_pat _ _ _ = false;
wenzelm@11838
   356
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@11838
   357
  |   subst arg k i (t $ u) = if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@11838
   358
                              else (subst arg k i t $ subst arg k i u)
wenzelm@11838
   359
  |   subst arg k i t = t;
wenzelm@11838
   360
  fun beta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   361
        (case split_pat beta_term_pat 1 t of
wenzelm@11838
   362
        Some (i,f) => Some (metaeq sg s (subst arg 0 i f))
wenzelm@11838
   363
        | None => None)
wenzelm@11838
   364
  |   beta_proc _ _ _ = None;
wenzelm@11838
   365
  fun eta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t)) =
wenzelm@11838
   366
        (case split_pat eta_term_pat 1 t of
wenzelm@11838
   367
          Some (_,ft) => Some (metaeq sg s (let val (f $ arg) = ft in f end))
wenzelm@11838
   368
        | None => None)
wenzelm@11838
   369
  |   eta_proc _ _ _ = None;
wenzelm@11838
   370
in
wenzelm@11838
   371
  val split_beta_proc = simproc "split_beta" beta_patstr beta_proc;
wenzelm@11838
   372
  val split_eta_proc  = simproc "split_eta"   eta_patstr  eta_proc;
wenzelm@11838
   373
end;
wenzelm@11838
   374
wenzelm@11838
   375
Addsimprocs [split_beta_proc, split_eta_proc];
wenzelm@11838
   376
*}
wenzelm@11838
   377
wenzelm@11838
   378
lemma split_beta: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   379
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   380
wenzelm@11838
   381
lemma split_split: "R (split c p) = (ALL x y. p = (x, y) --> R (c x y))"
wenzelm@11838
   382
  -- {* For use with @{text split} and the Simplifier. *}
wenzelm@11838
   383
  apply (subst surjective_pairing)
wenzelm@11838
   384
  apply (subst split_conv)
wenzelm@11838
   385
  apply blast
wenzelm@11838
   386
  done
wenzelm@11838
   387
wenzelm@11838
   388
text {*
wenzelm@11838
   389
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   390
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   391
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   392
  current goal contains one of those constants.
wenzelm@11838
   393
*}
wenzelm@11838
   394
wenzelm@11838
   395
lemma split_split_asm: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
wenzelm@11838
   396
  apply (subst split_split)
wenzelm@11838
   397
  apply simp
wenzelm@11838
   398
  done
wenzelm@11838
   399
wenzelm@11838
   400
wenzelm@11838
   401
text {*
wenzelm@11838
   402
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   403
wenzelm@11838
   404
  \medskip These rules are for use with @{text blast}; could instead
wenzelm@11838
   405
  call @{text simp} using @{thm [source] split} as rewrite. *}
wenzelm@11838
   406
wenzelm@11838
   407
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   408
  apply (simp only: split_tupled_all)
wenzelm@11838
   409
  apply (simp (no_asm_simp))
wenzelm@11838
   410
  done
wenzelm@11838
   411
wenzelm@11838
   412
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   413
  apply (simp only: split_tupled_all)
wenzelm@11838
   414
  apply (simp (no_asm_simp))
wenzelm@11838
   415
  done
wenzelm@11838
   416
wenzelm@11838
   417
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
wenzelm@11838
   418
  by (induct p) (auto simp add: split_def)
wenzelm@11838
   419
wenzelm@11838
   420
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
wenzelm@11838
   421
  by (induct p) (auto simp add: split_def)
wenzelm@11838
   422
wenzelm@11838
   423
lemma splitE2:
wenzelm@11838
   424
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   425
proof -
wenzelm@11838
   426
  assume q: "Q (split P z)"
wenzelm@11838
   427
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   428
  show R
wenzelm@11838
   429
    apply (rule r surjective_pairing)+
wenzelm@11838
   430
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   431
    done
wenzelm@11838
   432
qed
wenzelm@11838
   433
wenzelm@11838
   434
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   435
  by simp
wenzelm@11838
   436
wenzelm@11838
   437
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   438
  by simp
wenzelm@11838
   439
wenzelm@11838
   440
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
wenzelm@11838
   441
  apply (simp only: split_tupled_all)
wenzelm@11838
   442
  apply simp
wenzelm@11838
   443
  done
wenzelm@11838
   444
wenzelm@11838
   445
lemma mem_splitE: "[| z: split c p; !!x y. [| p = (x,y); z: c x y |] ==> Q |] ==> Q"
wenzelm@11838
   446
proof -
wenzelm@11838
   447
  case rule_context [unfolded split_def]
wenzelm@11838
   448
  show ?thesis by (rule rule_context surjective_pairing)+
wenzelm@11838
   449
qed
wenzelm@11838
   450
wenzelm@11838
   451
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   452
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   453
wenzelm@11838
   454
ML_setup "
wenzelm@11838
   455
local (* filtering with exists_p_split is an essential optimization *)
wenzelm@11838
   456
  fun exists_p_split (Const (\"split\",_) $ _ $ (Const (\"Pair\",_)$_$_)) = true
wenzelm@11838
   457
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   458
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   459
    | exists_p_split _ = false;
wenzelm@11838
   460
  val ss = HOL_basic_ss addsimps [thm \"split_conv\"];
wenzelm@11838
   461
in
wenzelm@11838
   462
val split_conv_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   463
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   464
end;
wenzelm@11838
   465
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   466
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@11838
   467
claset_ref() := claset() addSbefore (\"split_conv_tac\", split_conv_tac);
wenzelm@11838
   468
"
wenzelm@11838
   469
wenzelm@11838
   470
lemma split_eta_SetCompr [simp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@11838
   471
  apply (rule ext)
wenzelm@11838
   472
  apply fast
wenzelm@11838
   473
  done
wenzelm@11838
   474
wenzelm@11838
   475
lemma split_eta_SetCompr2 [simp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@11838
   476
  apply (rule ext)
wenzelm@11838
   477
  apply fast
wenzelm@11838
   478
  done
wenzelm@11838
   479
wenzelm@11838
   480
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   481
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@11838
   482
  apply (rule ext)
wenzelm@11838
   483
  apply blast
wenzelm@11838
   484
  done
wenzelm@11838
   485
wenzelm@11838
   486
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   487
  by blast
wenzelm@11838
   488
wenzelm@11838
   489
(*
wenzelm@11838
   490
the following  would be slightly more general,
wenzelm@11838
   491
but cannot be used as rewrite rule:
wenzelm@11838
   492
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   493
### ?y = .x
wenzelm@11838
   494
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
wenzelm@11838
   495
by (rtac some_equality 1);
wenzelm@11838
   496
by ( Simp_tac 1);
wenzelm@11838
   497
by (split_all_tac 1);
wenzelm@11838
   498
by (Asm_full_simp_tac 1);
wenzelm@11838
   499
qed "The_split_eq";
wenzelm@11838
   500
*)
wenzelm@11838
   501
wenzelm@11838
   502
lemma injective_fst_snd: "!!x y. [|fst x = fst y; snd x = snd y|] ==> x = y"
wenzelm@11838
   503
  by auto
wenzelm@11838
   504
wenzelm@11838
   505
wenzelm@11838
   506
text {*
wenzelm@11838
   507
  \bigskip @{term prod_fun} --- action of the product functor upon
wenzelm@11838
   508
  functions.
wenzelm@11838
   509
*}
wenzelm@11838
   510
wenzelm@11838
   511
lemma prod_fun [simp]: "prod_fun f g (a, b) = (f a, g b)"
wenzelm@11838
   512
  by (simp add: prod_fun_def)
wenzelm@11838
   513
wenzelm@11838
   514
lemma prod_fun_compose: "prod_fun (f1 o f2) (g1 o g2) = (prod_fun f1 g1 o prod_fun f2 g2)"
wenzelm@11838
   515
  apply (rule ext)
wenzelm@11838
   516
  apply (tactic {* pair_tac "x" 1 *})
wenzelm@11838
   517
  apply simp
wenzelm@11838
   518
  done
wenzelm@11838
   519
wenzelm@11838
   520
lemma prod_fun_ident [simp]: "prod_fun (%x. x) (%y. y) = (%z. z)"
wenzelm@11838
   521
  apply (rule ext)
wenzelm@11838
   522
  apply (tactic {* pair_tac "z" 1 *})
wenzelm@11838
   523
  apply simp
wenzelm@11838
   524
  done
wenzelm@11838
   525
wenzelm@11838
   526
lemma prod_fun_imageI [intro]: "(a, b) : r ==> (f a, g b) : prod_fun f g ` r"
wenzelm@11838
   527
  apply (rule image_eqI)
wenzelm@11838
   528
  apply (rule prod_fun [symmetric])
wenzelm@11838
   529
  apply assumption
wenzelm@11838
   530
  done
wenzelm@11838
   531
wenzelm@11838
   532
lemma prod_fun_imageE [elim!]:
wenzelm@11838
   533
  "[| c: (prod_fun f g)`r;  !!x y. [| c=(f(x),g(y));  (x,y):r |] ==> P
wenzelm@11838
   534
    |] ==> P"
wenzelm@11838
   535
proof -
wenzelm@11838
   536
  case rule_context
wenzelm@11838
   537
  assume major: "c: (prod_fun f g)`r"
wenzelm@11838
   538
  show ?thesis
wenzelm@11838
   539
    apply (rule major [THEN imageE])
wenzelm@11838
   540
    apply (rule_tac p = x in PairE)
wenzelm@11838
   541
    apply (rule rule_context)
wenzelm@11838
   542
     prefer 2
wenzelm@11838
   543
     apply blast
wenzelm@11838
   544
    apply (blast intro: prod_fun)
wenzelm@11838
   545
    done
wenzelm@11838
   546
qed
wenzelm@11838
   547
wenzelm@11838
   548
wenzelm@11838
   549
text {*
wenzelm@11838
   550
  \bigskip Disjoint union of a family of sets -- Sigma.
wenzelm@11838
   551
*}
wenzelm@11838
   552
wenzelm@11838
   553
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
wenzelm@11838
   554
  by (unfold Sigma_def) blast
wenzelm@11838
   555
wenzelm@11838
   556
wenzelm@11838
   557
lemma SigmaE:
wenzelm@11838
   558
    "[| c: Sigma A B;
wenzelm@11838
   559
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
wenzelm@11838
   560
     |] ==> P"
wenzelm@11838
   561
  -- {* The general elimination rule. *}
wenzelm@11838
   562
  by (unfold Sigma_def) blast
wenzelm@11838
   563
wenzelm@11838
   564
text {*
wenzelm@11838
   565
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
wenzelm@11838
   566
  eigenvariables.
wenzelm@11838
   567
*}
wenzelm@11838
   568
wenzelm@11838
   569
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
wenzelm@11838
   570
  apply (erule SigmaE)
wenzelm@11838
   571
  apply blast
wenzelm@11838
   572
  done
wenzelm@11838
   573
wenzelm@11838
   574
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
wenzelm@11838
   575
  apply (erule SigmaE)
wenzelm@11838
   576
  apply blast
wenzelm@11838
   577
  done
wenzelm@11838
   578
wenzelm@11838
   579
lemma SigmaE2:
wenzelm@11838
   580
    "[| (a, b) : Sigma A B;
wenzelm@11838
   581
        [| a:A;  b:B(a) |] ==> P
wenzelm@11838
   582
     |] ==> P"
wenzelm@11838
   583
  by (blast dest: SigmaD1 SigmaD2)
wenzelm@11838
   584
wenzelm@11838
   585
declare SigmaE [elim!] SigmaE2 [elim!]
wenzelm@11838
   586
wenzelm@11838
   587
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
wenzelm@11838
   588
  by blast
wenzelm@11838
   589
wenzelm@11838
   590
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
wenzelm@11838
   591
  by blast
wenzelm@11838
   592
wenzelm@11838
   593
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
wenzelm@11838
   594
  by blast
wenzelm@11838
   595
wenzelm@11838
   596
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
wenzelm@11838
   597
  by auto
wenzelm@11838
   598
wenzelm@11838
   599
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
wenzelm@11838
   600
  by auto
wenzelm@11838
   601
wenzelm@11838
   602
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
wenzelm@11838
   603
  by auto
wenzelm@11838
   604
wenzelm@11838
   605
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
wenzelm@11838
   606
  by blast
wenzelm@11838
   607
wenzelm@11838
   608
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
wenzelm@11838
   609
  by blast
wenzelm@11838
   610
wenzelm@11838
   611
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
wenzelm@11838
   612
  by (blast elim: equalityE)
wenzelm@11838
   613
wenzelm@11838
   614
lemma SetCompr_Sigma_eq:
wenzelm@11838
   615
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
wenzelm@11838
   616
  by blast
wenzelm@11838
   617
wenzelm@11838
   618
text {*
wenzelm@11838
   619
  \bigskip Complex rules for Sigma.
wenzelm@11838
   620
*}
wenzelm@11838
   621
wenzelm@11838
   622
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
wenzelm@11838
   623
  by blast
wenzelm@11838
   624
wenzelm@11838
   625
lemma UN_Times_distrib:
wenzelm@11838
   626
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
wenzelm@11838
   627
  -- {* Suggested by Pierre Chartier *}
wenzelm@11838
   628
  by blast
wenzelm@11838
   629
wenzelm@11838
   630
lemma split_paired_Ball_Sigma [simp]:
wenzelm@11838
   631
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
wenzelm@11838
   632
  by blast
wenzelm@11838
   633
wenzelm@11838
   634
lemma split_paired_Bex_Sigma [simp]:
wenzelm@11838
   635
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
wenzelm@11838
   636
  by blast
wenzelm@11838
   637
wenzelm@11838
   638
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
wenzelm@11838
   639
  by blast
wenzelm@11838
   640
wenzelm@11838
   641
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
wenzelm@11838
   642
  by blast
wenzelm@11838
   643
wenzelm@11838
   644
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
wenzelm@11838
   645
  by blast
wenzelm@11838
   646
wenzelm@11838
   647
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
wenzelm@11838
   648
  by blast
wenzelm@11838
   649
wenzelm@11838
   650
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
wenzelm@11838
   651
  by blast
wenzelm@11838
   652
wenzelm@11838
   653
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
wenzelm@11838
   654
  by blast
wenzelm@11838
   655
wenzelm@11838
   656
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
wenzelm@11838
   657
  by blast
wenzelm@11838
   658
wenzelm@11838
   659
text {*
wenzelm@11838
   660
  Non-dependent versions are needed to avoid the need for higher-order
wenzelm@11838
   661
  matching, especially when the rules are re-oriented.
wenzelm@11838
   662
*}
wenzelm@11838
   663
wenzelm@11838
   664
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
wenzelm@11838
   665
  by blast
wenzelm@11838
   666
wenzelm@11838
   667
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
wenzelm@11838
   668
  by blast
wenzelm@11838
   669
wenzelm@11838
   670
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
wenzelm@11838
   671
  by blast
wenzelm@11838
   672
wenzelm@11838
   673
oheimb@11493
   674
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
wenzelm@11777
   675
  apply (rule_tac x = "(a, b)" in image_eqI)
wenzelm@11777
   676
   apply auto
wenzelm@11777
   677
  done
wenzelm@11777
   678
oheimb@11493
   679
wenzelm@11838
   680
text {*
wenzelm@11838
   681
  Setup of internal @{text split_rule}.
wenzelm@11838
   682
*}
wenzelm@11838
   683
wenzelm@11032
   684
constdefs
wenzelm@11425
   685
  internal_split :: "('a => 'b => 'c) => 'a * 'b => 'c"
wenzelm@11032
   686
  "internal_split == split"
wenzelm@11032
   687
wenzelm@11032
   688
lemma internal_split_conv: "internal_split c (a, b) = c a b"
wenzelm@11032
   689
  by (simp only: internal_split_def split_conv)
wenzelm@11032
   690
wenzelm@11032
   691
hide const internal_split
wenzelm@11032
   692
oheimb@11025
   693
use "Tools/split_rule.ML"
wenzelm@11032
   694
setup SplitRule.setup
nipkow@10213
   695
nipkow@10213
   696
end