src/HOLCF/Tools/Domain/domain_theorems.ML
author huffman
Sat Feb 27 10:12:47 2010 -0800 (2010-02-27)
changeset 35458 deaf221c4a59
parent 35457 d63655b88369
child 35459 3d8acfae6fb8
permissions -rw-r--r--
moved proofs of dist_les and dist_eqs to domain_constructors.ML
haftmann@32126
     1
(*  Title:      HOLCF/Tools/Domain/domain_theorems.ML
wenzelm@23152
     2
    Author:     David von Oheimb
wenzelm@32740
     3
    Author:     Brian Huffman
wenzelm@23152
     4
wenzelm@23152
     5
Proof generator for domain command.
wenzelm@23152
     6
*)
wenzelm@23152
     7
wenzelm@26342
     8
val HOLCF_ss = @{simpset};
wenzelm@23152
     9
huffman@31005
    10
signature DOMAIN_THEOREMS =
huffman@31005
    11
sig
huffman@35444
    12
  val theorems:
huffman@35444
    13
    Domain_Library.eq * Domain_Library.eq list
huffman@35444
    14
    -> typ * (binding * (bool * binding option * typ) list * mixfix) list
huffman@35444
    15
    -> theory -> thm list * theory;
huffman@35444
    16
huffman@31005
    17
  val comp_theorems: bstring * Domain_Library.eq list -> theory -> thm list * theory;
wenzelm@32740
    18
  val quiet_mode: bool Unsynchronized.ref;
wenzelm@32740
    19
  val trace_domain: bool Unsynchronized.ref;
huffman@31005
    20
end;
huffman@31005
    21
huffman@31023
    22
structure Domain_Theorems :> DOMAIN_THEOREMS =
huffman@31005
    23
struct
wenzelm@23152
    24
wenzelm@32740
    25
val quiet_mode = Unsynchronized.ref false;
wenzelm@32740
    26
val trace_domain = Unsynchronized.ref false;
huffman@29402
    27
huffman@29402
    28
fun message s = if !quiet_mode then () else writeln s;
huffman@29402
    29
fun trace s = if !trace_domain then tracing s else ();
huffman@29402
    30
huffman@25805
    31
val adm_impl_admw = @{thm adm_impl_admw};
huffman@25895
    32
val adm_all = @{thm adm_all};
huffman@25805
    33
val adm_conj = @{thm adm_conj};
huffman@25805
    34
val adm_subst = @{thm adm_subst};
huffman@31076
    35
val antisym_less_inverse = @{thm below_antisym_inverse};
huffman@25805
    36
val beta_cfun = @{thm beta_cfun};
huffman@25805
    37
val cfun_arg_cong = @{thm cfun_arg_cong};
huffman@33396
    38
val ch2ch_fst = @{thm ch2ch_fst};
huffman@33396
    39
val ch2ch_snd = @{thm ch2ch_snd};
huffman@25805
    40
val ch2ch_Rep_CFunL = @{thm ch2ch_Rep_CFunL};
huffman@25805
    41
val ch2ch_Rep_CFunR = @{thm ch2ch_Rep_CFunR};
huffman@25805
    42
val chain_iterate = @{thm chain_iterate};
huffman@25805
    43
val compact_ONE = @{thm compact_ONE};
huffman@25805
    44
val compact_sinl = @{thm compact_sinl};
huffman@25805
    45
val compact_sinr = @{thm compact_sinr};
huffman@25805
    46
val compact_spair = @{thm compact_spair};
huffman@25805
    47
val compact_up = @{thm compact_up};
huffman@25805
    48
val contlub_cfun_arg = @{thm contlub_cfun_arg};
huffman@25805
    49
val contlub_cfun_fun = @{thm contlub_cfun_fun};
huffman@33396
    50
val contlub_fst = @{thm contlub_fst};
huffman@33396
    51
val contlub_snd = @{thm contlub_snd};
huffman@33396
    52
val contlubE = @{thm contlubE};
huffman@33396
    53
val cont_const = @{thm cont_const};
huffman@33396
    54
val cont_id = @{thm cont_id};
huffman@33396
    55
val cont2cont_fst = @{thm cont2cont_fst};
huffman@33396
    56
val cont2cont_snd = @{thm cont2cont_snd};
huffman@33396
    57
val cont2cont_Rep_CFun = @{thm cont2cont_Rep_CFun};
huffman@25805
    58
val fix_def2 = @{thm fix_def2};
huffman@25805
    59
val injection_eq = @{thm injection_eq};
huffman@31076
    60
val injection_less = @{thm injection_below};
huffman@25805
    61
val lub_equal = @{thm lub_equal};
huffman@25805
    62
val monofun_cfun_arg = @{thm monofun_cfun_arg};
huffman@25805
    63
val retraction_strict = @{thm retraction_strict};
huffman@25805
    64
val spair_eq = @{thm spair_eq};
huffman@31076
    65
val spair_less = @{thm spair_below};
huffman@25805
    66
val sscase1 = @{thm sscase1};
huffman@25805
    67
val ssplit1 = @{thm ssplit1};
huffman@25805
    68
val strictify1 = @{thm strictify1};
huffman@25805
    69
val wfix_ind = @{thm wfix_ind};
huffman@25805
    70
huffman@25805
    71
val iso_intro       = @{thm iso.intro};
huffman@25805
    72
val iso_abs_iso     = @{thm iso.abs_iso};
huffman@25805
    73
val iso_rep_iso     = @{thm iso.rep_iso};
huffman@25805
    74
val iso_abs_strict  = @{thm iso.abs_strict};
huffman@25805
    75
val iso_rep_strict  = @{thm iso.rep_strict};
huffman@25805
    76
val iso_abs_defin'  = @{thm iso.abs_defin'};
huffman@25805
    77
val iso_rep_defin'  = @{thm iso.rep_defin'};
huffman@25805
    78
val iso_abs_defined = @{thm iso.abs_defined};
huffman@25805
    79
val iso_rep_defined = @{thm iso.rep_defined};
huffman@25805
    80
val iso_compact_abs = @{thm iso.compact_abs};
huffman@25805
    81
val iso_compact_rep = @{thm iso.compact_rep};
huffman@25805
    82
val iso_iso_swap    = @{thm iso.iso_swap};
huffman@25805
    83
huffman@25805
    84
val exh_start = @{thm exh_start};
huffman@25805
    85
val ex_defined_iffs = @{thms ex_defined_iffs};
huffman@25805
    86
val exh_casedist0 = @{thm exh_casedist0};
huffman@25805
    87
val exh_casedists = @{thms exh_casedists};
wenzelm@23152
    88
wenzelm@23152
    89
open Domain_Library;
wenzelm@23152
    90
infixr 0 ===>;
wenzelm@23152
    91
infixr 0 ==>;
wenzelm@23152
    92
infix 0 == ; 
wenzelm@23152
    93
infix 1 ===;
wenzelm@23152
    94
infix 1 ~= ;
wenzelm@23152
    95
infix 1 <<;
wenzelm@23152
    96
infix 1 ~<<;
wenzelm@23152
    97
infix 9 `   ;
wenzelm@23152
    98
infix 9 `% ;
wenzelm@23152
    99
infix 9 `%%;
wenzelm@23152
   100
infixr 9 oo;
wenzelm@23152
   101
wenzelm@23152
   102
(* ----- general proof facilities ------------------------------------------- *)
wenzelm@23152
   103
wenzelm@24503
   104
fun legacy_infer_term thy t =
wenzelm@24503
   105
  let val ctxt = ProofContext.set_mode ProofContext.mode_schematic (ProofContext.init thy)
wenzelm@24503
   106
  in singleton (Syntax.check_terms ctxt) (Sign.intern_term thy t) end;
wenzelm@24503
   107
wenzelm@23152
   108
fun pg'' thy defs t tacs =
wenzelm@23152
   109
  let
wenzelm@24503
   110
    val t' = legacy_infer_term thy t;
wenzelm@23152
   111
    val asms = Logic.strip_imp_prems t';
wenzelm@23152
   112
    val prop = Logic.strip_imp_concl t';
wenzelm@26711
   113
    fun tac {prems, context} =
wenzelm@23152
   114
      rewrite_goals_tac defs THEN
wenzelm@27208
   115
      EVERY (tacs {prems = map (rewrite_rule defs) prems, context = context})
wenzelm@23152
   116
  in Goal.prove_global thy [] asms prop tac end;
wenzelm@23152
   117
wenzelm@23152
   118
fun pg' thy defs t tacsf =
wenzelm@23152
   119
  let
wenzelm@27208
   120
    fun tacs {prems, context} =
wenzelm@27208
   121
      if null prems then tacsf context
wenzelm@27208
   122
      else cut_facts_tac prems 1 :: tacsf context;
wenzelm@23152
   123
  in pg'' thy defs t tacs end;
wenzelm@23152
   124
huffman@35443
   125
(* FIXME!!!!!!!!! *)
huffman@35443
   126
(* We should NEVER re-parse variable names as strings! *)
huffman@35443
   127
(* The names can conflict with existing constants or other syntax! *)
wenzelm@27208
   128
fun case_UU_tac ctxt rews i v =
wenzelm@27208
   129
  InductTacs.case_tac ctxt (v^"=UU") i THEN
wenzelm@23152
   130
  asm_simp_tac (HOLCF_ss addsimps rews) i;
wenzelm@23152
   131
wenzelm@23152
   132
val chain_tac =
wenzelm@23152
   133
  REPEAT_DETERM o resolve_tac 
huffman@33396
   134
    [chain_iterate, ch2ch_Rep_CFunR, ch2ch_Rep_CFunL, ch2ch_fst, ch2ch_snd];
wenzelm@23152
   135
wenzelm@23152
   136
(* ----- general proofs ----------------------------------------------------- *)
wenzelm@23152
   137
wenzelm@29064
   138
val all2E = @{lemma "!x y . P x y ==> (P x y ==> R) ==> R" by simp}
wenzelm@23152
   139
huffman@31076
   140
val dist_eqI = @{lemma "!!x::'a::po. ~ x << y ==> x ~= y" by (blast dest!: below_antisym_inverse)}
wenzelm@23152
   141
huffman@35444
   142
fun theorems
huffman@35444
   143
    (((dname, _), cons) : eq, eqs : eq list)
huffman@35444
   144
    (dom_eqn : typ * (binding * (bool * binding option * typ) list * mixfix) list)
huffman@35444
   145
    (thy : theory) =
wenzelm@23152
   146
let
wenzelm@23152
   147
huffman@29402
   148
val _ = message ("Proving isomorphism properties of domain "^dname^" ...");
huffman@33801
   149
val map_tab = Domain_Isomorphism.get_map_tab thy;
huffman@33801
   150
wenzelm@23152
   151
wenzelm@23152
   152
(* ----- getting the axioms and definitions --------------------------------- *)
wenzelm@23152
   153
wenzelm@23152
   154
local
wenzelm@26343
   155
  fun ga s dn = PureThy.get_thm thy (dn ^ "." ^ s);
wenzelm@23152
   156
in
wenzelm@23152
   157
  val ax_abs_iso  = ga "abs_iso"  dname;
wenzelm@23152
   158
  val ax_rep_iso  = ga "rep_iso"  dname;
wenzelm@23152
   159
  val ax_when_def = ga "when_def" dname;
huffman@35288
   160
  fun get_def mk_name (con, _, _) = ga (mk_name con^"_def") dname;
wenzelm@23152
   161
  val axs_dis_def = map (get_def dis_name) cons;
wenzelm@23152
   162
  val axs_mat_def = map (get_def mat_name) cons;
wenzelm@23152
   163
  val axs_pat_def = map (get_def pat_name) cons;
huffman@35446
   164
(*
wenzelm@23152
   165
  val axs_sel_def =
wenzelm@23152
   166
    let
wenzelm@23152
   167
      fun def_of_sel sel = ga (sel^"_def") dname;
wenzelm@23152
   168
      fun def_of_arg arg = Option.map def_of_sel (sel_of arg);
huffman@35288
   169
      fun defs_of_con (_, _, args) = map_filter def_of_arg args;
wenzelm@23152
   170
    in
wenzelm@26336
   171
      maps defs_of_con cons
wenzelm@23152
   172
    end;
huffman@35446
   173
*)
wenzelm@23152
   174
  val ax_copy_def = ga "copy_def" dname;
wenzelm@23152
   175
end; (* local *)
wenzelm@23152
   176
huffman@35444
   177
(* ----- define constructors ------------------------------------------------ *)
huffman@35444
   178
huffman@35444
   179
val lhsT = fst dom_eqn;
huffman@35444
   180
huffman@35444
   181
val rhsT =
huffman@35444
   182
  let
huffman@35444
   183
    fun mk_arg_typ (lazy, sel, T) = if lazy then mk_uT T else T;
huffman@35444
   184
    fun mk_con_typ (bind, args, mx) =
huffman@35444
   185
        if null args then oneT else foldr1 mk_sprodT (map mk_arg_typ args);
huffman@35444
   186
    fun mk_eq_typ (_, cons) = foldr1 mk_ssumT (map mk_con_typ cons);
huffman@35444
   187
  in
huffman@35444
   188
    mk_eq_typ dom_eqn
huffman@35444
   189
  end;
huffman@35444
   190
huffman@35444
   191
val rep_const = Const(dname^"_rep", lhsT ->> rhsT);
huffman@35444
   192
huffman@35444
   193
val abs_const = Const(dname^"_abs", rhsT ->> lhsT);
huffman@35444
   194
huffman@35444
   195
val (result, thy) =
huffman@35444
   196
  Domain_Constructors.add_domain_constructors
huffman@35444
   197
    (Long_Name.base_name dname) dom_eqn
huffman@35444
   198
    (rep_const, abs_const) (ax_rep_iso, ax_abs_iso) thy;
huffman@35444
   199
huffman@35451
   200
val con_appls = #con_betas result;
huffman@35457
   201
val {exhaust, casedist, ...} = result;
huffman@35458
   202
val {con_compacts, con_rews, inverts, injects, dist_les, dist_eqs, ...} = result;
huffman@35457
   203
val {sel_rews, ...} = result;
huffman@35457
   204
huffman@35444
   205
wenzelm@23152
   206
(* ----- theorems concerning the isomorphism -------------------------------- *)
wenzelm@23152
   207
huffman@35444
   208
val pg = pg' thy;
huffman@35444
   209
wenzelm@23152
   210
val dc_abs  = %%:(dname^"_abs");
wenzelm@23152
   211
val dc_rep  = %%:(dname^"_rep");
wenzelm@23152
   212
val dc_copy = %%:(dname^"_copy");
wenzelm@23152
   213
val x_name = "x";
wenzelm@23152
   214
wenzelm@23152
   215
val iso_locale = iso_intro OF [ax_abs_iso, ax_rep_iso];
wenzelm@23152
   216
val abs_strict = ax_rep_iso RS (allI RS retraction_strict);
wenzelm@23152
   217
val rep_strict = ax_abs_iso RS (allI RS retraction_strict);
wenzelm@23152
   218
val abs_defin' = iso_locale RS iso_abs_defin';
wenzelm@23152
   219
val rep_defin' = iso_locale RS iso_rep_defin';
wenzelm@35021
   220
val iso_rews = map Drule.export_without_context [ax_abs_iso, ax_rep_iso, abs_strict, rep_strict];
wenzelm@23152
   221
wenzelm@23152
   222
(* ----- generating beta reduction rules from definitions-------------------- *)
wenzelm@23152
   223
huffman@29402
   224
val _ = trace " Proving beta reduction rules...";
huffman@29402
   225
wenzelm@23152
   226
local
wenzelm@23152
   227
  fun arglist (Const _ $ Abs (s, _, t)) =
wenzelm@23152
   228
    let
wenzelm@23152
   229
      val (vars,body) = arglist t;
wenzelm@23152
   230
    in (s :: vars, body) end
wenzelm@23152
   231
    | arglist t = ([], t);
wenzelm@23152
   232
  fun bind_fun vars t = Library.foldr mk_All (vars, t);
wenzelm@23152
   233
  fun bound_vars 0 = []
wenzelm@23152
   234
    | bound_vars i = Bound (i-1) :: bound_vars (i - 1);
wenzelm@23152
   235
in
wenzelm@23152
   236
  fun appl_of_def def =
wenzelm@23152
   237
    let
wenzelm@23152
   238
      val (_ $ con $ lam) = concl_of def;
wenzelm@23152
   239
      val (vars, rhs) = arglist lam;
wenzelm@23152
   240
      val lhs = list_ccomb (con, bound_vars (length vars));
wenzelm@23152
   241
      val appl = bind_fun vars (lhs == rhs);
wenzelm@23152
   242
      val cs = ContProc.cont_thms lam;
wenzelm@23152
   243
      val betas = map (fn c => mk_meta_eq (c RS beta_cfun)) cs;
wenzelm@27208
   244
    in pg (def::betas) appl (K [rtac reflexive_thm 1]) end;
wenzelm@23152
   245
end;
wenzelm@23152
   246
huffman@29402
   247
val _ = trace "Proving when_appl...";
wenzelm@23152
   248
val when_appl = appl_of_def ax_when_def;
wenzelm@23152
   249
wenzelm@23152
   250
local 
wenzelm@23152
   251
  fun bind_fun t = Library.foldr mk_All (when_funs cons, t);
wenzelm@23152
   252
  fun bound_fun i _ = Bound (length cons - i);
wenzelm@23152
   253
  val when_app = list_ccomb (%%:(dname^"_when"), mapn bound_fun 1 cons);
wenzelm@23152
   254
in
huffman@29402
   255
  val _ = trace " Proving when_strict...";
wenzelm@23152
   256
  val when_strict =
wenzelm@23152
   257
    let
wenzelm@23152
   258
      val axs = [when_appl, mk_meta_eq rep_strict];
wenzelm@23152
   259
      val goal = bind_fun (mk_trp (strict when_app));
wenzelm@23152
   260
      val tacs = [resolve_tac [sscase1, ssplit1, strictify1] 1];
wenzelm@27208
   261
    in pg axs goal (K tacs) end;
wenzelm@23152
   262
huffman@29402
   263
  val _ = trace " Proving when_apps...";
wenzelm@23152
   264
  val when_apps =
wenzelm@23152
   265
    let
huffman@35288
   266
      fun one_when n (con, _, args) =
wenzelm@23152
   267
        let
wenzelm@23152
   268
          val axs = when_appl :: con_appls;
wenzelm@23152
   269
          val goal = bind_fun (lift_defined %: (nonlazy args, 
wenzelm@23152
   270
                mk_trp (when_app`(con_app con args) ===
wenzelm@23152
   271
                       list_ccomb (bound_fun n 0, map %# args))));
wenzelm@23152
   272
          val tacs = [asm_simp_tac (HOLCF_ss addsimps [ax_abs_iso]) 1];
wenzelm@27208
   273
        in pg axs goal (K tacs) end;
wenzelm@23152
   274
    in mapn one_when 1 cons end;
wenzelm@23152
   275
end;
wenzelm@23152
   276
val when_rews = when_strict :: when_apps;
wenzelm@23152
   277
wenzelm@23152
   278
(* ----- theorems concerning the constructors, discriminators and selectors - *)
wenzelm@23152
   279
wenzelm@23152
   280
local
huffman@35288
   281
  fun dis_strict (con, _, _) =
wenzelm@23152
   282
    let
wenzelm@23152
   283
      val goal = mk_trp (strict (%%:(dis_name con)));
wenzelm@27208
   284
    in pg axs_dis_def goal (K [rtac when_strict 1]) end;
wenzelm@23152
   285
huffman@35288
   286
  fun dis_app c (con, _, args) =
wenzelm@23152
   287
    let
wenzelm@23152
   288
      val lhs = %%:(dis_name c) ` con_app con args;
huffman@26012
   289
      val rhs = if con = c then TT else FF;
wenzelm@23152
   290
      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
wenzelm@23152
   291
      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@27208
   292
    in pg axs_dis_def goal (K tacs) end;
wenzelm@23152
   293
huffman@29402
   294
  val _ = trace " Proving dis_apps...";
huffman@35288
   295
  val dis_apps = maps (fn (c,_,_) => map (dis_app c) cons) cons;
wenzelm@23152
   296
huffman@35288
   297
  fun dis_defin (con, _, args) =
wenzelm@23152
   298
    let
wenzelm@23152
   299
      val goal = defined (%:x_name) ==> defined (%%:(dis_name con) `% x_name);
wenzelm@23152
   300
      val tacs =
wenzelm@23152
   301
        [rtac casedist 1,
wenzelm@23152
   302
         contr_tac 1,
wenzelm@23152
   303
         DETERM_UNTIL_SOLVED (CHANGED
wenzelm@23152
   304
          (asm_simp_tac (HOLCF_ss addsimps dis_apps) 1))];
wenzelm@27208
   305
    in pg [] goal (K tacs) end;
wenzelm@23152
   306
huffman@29402
   307
  val _ = trace " Proving dis_stricts...";
wenzelm@23152
   308
  val dis_stricts = map dis_strict cons;
huffman@29402
   309
  val _ = trace " Proving dis_defins...";
wenzelm@23152
   310
  val dis_defins = map dis_defin cons;
wenzelm@23152
   311
in
wenzelm@23152
   312
  val dis_rews = dis_stricts @ dis_defins @ dis_apps;
wenzelm@23152
   313
end;
wenzelm@23152
   314
wenzelm@23152
   315
local
huffman@35288
   316
  fun mat_strict (con, _, _) =
wenzelm@23152
   317
    let
huffman@30912
   318
      val goal = mk_trp (%%:(mat_name con) ` UU ` %:"rhs" === UU);
huffman@30912
   319
      val tacs = [asm_simp_tac (HOLCF_ss addsimps [when_strict]) 1];
wenzelm@27208
   320
    in pg axs_mat_def goal (K tacs) end;
wenzelm@23152
   321
huffman@29402
   322
  val _ = trace " Proving mat_stricts...";
wenzelm@23152
   323
  val mat_stricts = map mat_strict cons;
wenzelm@23152
   324
huffman@35288
   325
  fun one_mat c (con, _, args) =
wenzelm@23152
   326
    let
huffman@30912
   327
      val lhs = %%:(mat_name c) ` con_app con args ` %:"rhs";
wenzelm@23152
   328
      val rhs =
wenzelm@23152
   329
        if con = c
huffman@30912
   330
        then list_ccomb (%:"rhs", map %# args)
huffman@26012
   331
        else mk_fail;
wenzelm@23152
   332
      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
wenzelm@23152
   333
      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@27208
   334
    in pg axs_mat_def goal (K tacs) end;
wenzelm@23152
   335
huffman@29402
   336
  val _ = trace " Proving mat_apps...";
wenzelm@23152
   337
  val mat_apps =
huffman@35288
   338
    maps (fn (c,_,_) => map (one_mat c) cons) cons;
wenzelm@23152
   339
in
wenzelm@23152
   340
  val mat_rews = mat_stricts @ mat_apps;
wenzelm@23152
   341
end;
wenzelm@23152
   342
wenzelm@23152
   343
local
wenzelm@23152
   344
  fun ps args = mapn (fn n => fn _ => %:("pat" ^ string_of_int n)) 1 args;
wenzelm@23152
   345
huffman@35288
   346
  fun pat_lhs (con,_,args) = mk_branch (list_comb (%%:(pat_name con), ps args));
wenzelm@23152
   347
huffman@35288
   348
  fun pat_rhs (con,_,[]) = mk_return ((%:"rhs") ` HOLogic.unit)
huffman@35288
   349
    | pat_rhs (con,_,args) =
huffman@26012
   350
        (mk_branch (mk_ctuple_pat (ps args)))
wenzelm@23152
   351
          `(%:"rhs")`(mk_ctuple (map %# args));
wenzelm@23152
   352
wenzelm@23152
   353
  fun pat_strict c =
wenzelm@23152
   354
    let
wenzelm@25132
   355
      val axs = @{thm branch_def} :: axs_pat_def;
wenzelm@23152
   356
      val goal = mk_trp (strict (pat_lhs c ` (%:"rhs")));
wenzelm@23152
   357
      val tacs = [simp_tac (HOLCF_ss addsimps [when_strict]) 1];
wenzelm@27208
   358
    in pg axs goal (K tacs) end;
wenzelm@23152
   359
huffman@35288
   360
  fun pat_app c (con, _, args) =
wenzelm@23152
   361
    let
wenzelm@25132
   362
      val axs = @{thm branch_def} :: axs_pat_def;
wenzelm@23152
   363
      val lhs = (pat_lhs c)`(%:"rhs")`(con_app con args);
huffman@35288
   364
      val rhs = if con = first c then pat_rhs c else mk_fail;
wenzelm@23152
   365
      val goal = lift_defined %: (nonlazy args, mk_trp (lhs === rhs));
wenzelm@23152
   366
      val tacs = [asm_simp_tac (HOLCF_ss addsimps when_rews) 1];
wenzelm@27208
   367
    in pg axs goal (K tacs) end;
wenzelm@23152
   368
huffman@29402
   369
  val _ = trace " Proving pat_stricts...";
wenzelm@23152
   370
  val pat_stricts = map pat_strict cons;
huffman@29402
   371
  val _ = trace " Proving pat_apps...";
wenzelm@26336
   372
  val pat_apps = maps (fn c => map (pat_app c) cons) cons;
wenzelm@23152
   373
in
wenzelm@23152
   374
  val pat_rews = pat_stricts @ pat_apps;
wenzelm@23152
   375
end;
wenzelm@23152
   376
wenzelm@23152
   377
(* ----- theorems concerning one induction step ----------------------------- *)
wenzelm@23152
   378
wenzelm@23152
   379
val copy_strict =
wenzelm@23152
   380
  let
huffman@31232
   381
    val _ = trace " Proving copy_strict...";
wenzelm@23152
   382
    val goal = mk_trp (strict (dc_copy `% "f"));
huffman@33504
   383
    val rules = [abs_strict, rep_strict] @ @{thms domain_map_stricts};
huffman@31232
   384
    val tacs = [asm_simp_tac (HOLCF_ss addsimps rules) 1];
huffman@35058
   385
  in
huffman@35058
   386
    SOME (pg [ax_copy_def] goal (K tacs))
huffman@35058
   387
    handle
huffman@35058
   388
      THM (s, _, _) => (trace s; NONE)
huffman@35058
   389
    | ERROR s => (trace s; NONE)
huffman@35058
   390
  end;
wenzelm@23152
   391
wenzelm@23152
   392
local
huffman@35288
   393
  fun copy_app (con, _, args) =
wenzelm@23152
   394
    let
wenzelm@23152
   395
      val lhs = dc_copy`%"f"`(con_app con args);
huffman@31232
   396
      fun one_rhs arg =
haftmann@33971
   397
          if Datatype_Aux.is_rec_type (dtyp_of arg)
huffman@33801
   398
          then Domain_Axioms.copy_of_dtyp map_tab
huffman@33801
   399
                 (proj (%:"f") eqs) (dtyp_of arg) ` (%# arg)
huffman@31232
   400
          else (%# arg);
huffman@31232
   401
      val rhs = con_app2 con one_rhs args;
huffman@35059
   402
      fun is_rec arg = Datatype_Aux.is_rec_type (dtyp_of arg);
huffman@35059
   403
      fun is_nonlazy_rec arg = is_rec arg andalso not (is_lazy arg);
huffman@35059
   404
      fun nonlazy_rec args = map vname (filter is_nonlazy_rec args);
wenzelm@23152
   405
      val goal = lift_defined %: (nonlazy_rec args, mk_trp (lhs === rhs));
wenzelm@33317
   406
      val args' = filter_out (fn a => is_rec a orelse is_lazy a) args;
huffman@33504
   407
      val stricts = abs_strict :: rep_strict :: @{thms domain_map_stricts};
huffman@35443
   408
                        (* FIXME! case_UU_tac *)
wenzelm@27208
   409
      fun tacs1 ctxt = map (case_UU_tac ctxt stricts 1 o vname) args';
huffman@33504
   410
      val rules = [ax_abs_iso] @ @{thms domain_map_simps};
huffman@31232
   411
      val tacs2 = [asm_simp_tac (HOLCF_ss addsimps rules) 1];
huffman@31232
   412
    in pg (ax_copy_def::con_appls) goal (fn ctxt => (tacs1 ctxt @ tacs2)) end;
wenzelm@23152
   413
in
huffman@29402
   414
  val _ = trace " Proving copy_apps...";
wenzelm@23152
   415
  val copy_apps = map copy_app cons;
wenzelm@23152
   416
end;
wenzelm@23152
   417
wenzelm@23152
   418
local
huffman@35288
   419
  fun one_strict (con, _, args) = 
wenzelm@23152
   420
    let
wenzelm@23152
   421
      val goal = mk_trp (dc_copy`UU`(con_app con args) === UU);
huffman@35058
   422
      val rews = the_list copy_strict @ copy_apps @ con_rews;
huffman@35443
   423
                        (* FIXME! case_UU_tac *)
wenzelm@27208
   424
      fun tacs ctxt = map (case_UU_tac ctxt rews 1) (nonlazy args) @
wenzelm@23152
   425
        [asm_simp_tac (HOLCF_ss addsimps rews) 1];
huffman@35058
   426
    in
huffman@35058
   427
      SOME (pg [] goal tacs)
huffman@35058
   428
      handle
huffman@35058
   429
        THM (s, _, _) => (trace s; NONE)
huffman@35058
   430
      | ERROR s => (trace s; NONE)
huffman@35058
   431
    end;
wenzelm@23152
   432
huffman@35288
   433
  fun has_nonlazy_rec (_, _, args) = exists is_nonlazy_rec args;
wenzelm@23152
   434
in
huffman@29402
   435
  val _ = trace " Proving copy_stricts...";
huffman@35058
   436
  val copy_stricts = map_filter one_strict (filter has_nonlazy_rec cons);
wenzelm@23152
   437
end;
wenzelm@23152
   438
huffman@35058
   439
val copy_rews = the_list copy_strict @ copy_apps @ copy_stricts;
wenzelm@23152
   440
wenzelm@23152
   441
in
wenzelm@23152
   442
  thy
wenzelm@30364
   443
    |> Sign.add_path (Long_Name.base_name dname)
huffman@31004
   444
    |> snd o PureThy.add_thmss [
huffman@31004
   445
        ((Binding.name "iso_rews"  , iso_rews    ), [Simplifier.simp_add]),
huffman@31004
   446
        ((Binding.name "exhaust"   , [exhaust]   ), []),
huffman@31004
   447
        ((Binding.name "casedist"  , [casedist]  ), [Induct.cases_type dname]),
huffman@31004
   448
        ((Binding.name "when_rews" , when_rews   ), [Simplifier.simp_add]),
huffman@31004
   449
        ((Binding.name "compacts"  , con_compacts), [Simplifier.simp_add]),
huffman@33427
   450
        ((Binding.name "con_rews"  , con_rews    ),
huffman@33427
   451
         [Simplifier.simp_add, Fixrec.fixrec_simp_add]),
huffman@31004
   452
        ((Binding.name "sel_rews"  , sel_rews    ), [Simplifier.simp_add]),
huffman@31004
   453
        ((Binding.name "dis_rews"  , dis_rews    ), [Simplifier.simp_add]),
huffman@31004
   454
        ((Binding.name "pat_rews"  , pat_rews    ), [Simplifier.simp_add]),
huffman@31004
   455
        ((Binding.name "dist_les"  , dist_les    ), [Simplifier.simp_add]),
huffman@31004
   456
        ((Binding.name "dist_eqs"  , dist_eqs    ), [Simplifier.simp_add]),
huffman@31004
   457
        ((Binding.name "inverts"   , inverts     ), [Simplifier.simp_add]),
huffman@31004
   458
        ((Binding.name "injects"   , injects     ), [Simplifier.simp_add]),
huffman@31004
   459
        ((Binding.name "copy_rews" , copy_rews   ), [Simplifier.simp_add]),
huffman@33427
   460
        ((Binding.name "match_rews", mat_rews    ),
huffman@33427
   461
         [Simplifier.simp_add, Fixrec.fixrec_simp_add])]
wenzelm@24712
   462
    |> Sign.parent_path
haftmann@28536
   463
    |> pair (iso_rews @ when_rews @ con_rews @ sel_rews @ dis_rews @
wenzelm@23152
   464
        pat_rews @ dist_les @ dist_eqs @ copy_rews)
wenzelm@23152
   465
end; (* let *)
wenzelm@23152
   466
wenzelm@23152
   467
fun comp_theorems (comp_dnam, eqs: eq list) thy =
wenzelm@23152
   468
let
wenzelm@27232
   469
val global_ctxt = ProofContext.init thy;
huffman@33801
   470
val map_tab = Domain_Isomorphism.get_map_tab thy;
wenzelm@27232
   471
wenzelm@23152
   472
val dnames = map (fst o fst) eqs;
wenzelm@23152
   473
val conss  = map  snd        eqs;
haftmann@28965
   474
val comp_dname = Sign.full_bname thy comp_dnam;
wenzelm@23152
   475
huffman@29402
   476
val _ = message ("Proving induction properties of domain "^comp_dname^" ...");
wenzelm@23152
   477
val pg = pg' thy;
wenzelm@23152
   478
wenzelm@23152
   479
(* ----- getting the composite axiom and definitions ------------------------ *)
wenzelm@23152
   480
wenzelm@23152
   481
local
wenzelm@26343
   482
  fun ga s dn = PureThy.get_thm thy (dn ^ "." ^ s);
wenzelm@23152
   483
in
wenzelm@23152
   484
  val axs_reach      = map (ga "reach"     ) dnames;
wenzelm@23152
   485
  val axs_take_def   = map (ga "take_def"  ) dnames;
wenzelm@23152
   486
  val axs_finite_def = map (ga "finite_def") dnames;
wenzelm@23152
   487
  val ax_copy2_def   =      ga "copy_def"  comp_dnam;
huffman@35444
   488
(* TEMPORARILY DISABLED
wenzelm@23152
   489
  val ax_bisim_def   =      ga "bisim_def" comp_dnam;
huffman@35444
   490
TEMPORARILY DISABLED *)
wenzelm@23152
   491
end;
wenzelm@23152
   492
wenzelm@23152
   493
local
wenzelm@26343
   494
  fun gt  s dn = PureThy.get_thm  thy (dn ^ "." ^ s);
wenzelm@26343
   495
  fun gts s dn = PureThy.get_thms thy (dn ^ "." ^ s);
wenzelm@23152
   496
in
wenzelm@23152
   497
  val cases = map (gt  "casedist" ) dnames;
wenzelm@26336
   498
  val con_rews  = maps (gts "con_rews" ) dnames;
wenzelm@26336
   499
  val copy_rews = maps (gts "copy_rews") dnames;
wenzelm@23152
   500
end;
wenzelm@23152
   501
wenzelm@23152
   502
fun dc_take dn = %%:(dn^"_take");
wenzelm@23152
   503
val x_name = idx_name dnames "x"; 
wenzelm@23152
   504
val P_name = idx_name dnames "P";
wenzelm@23152
   505
val n_eqs = length eqs;
wenzelm@23152
   506
wenzelm@23152
   507
(* ----- theorems concerning finite approximation and finite induction ------ *)
wenzelm@23152
   508
wenzelm@23152
   509
local
wenzelm@32149
   510
  val iterate_Cprod_ss = global_simpset_of @{theory Fix};
wenzelm@23152
   511
  val copy_con_rews  = copy_rews @ con_rews;
wenzelm@23152
   512
  val copy_take_defs =
wenzelm@23152
   513
    (if n_eqs = 1 then [] else [ax_copy2_def]) @ axs_take_def;
huffman@29402
   514
  val _ = trace " Proving take_stricts...";
huffman@35057
   515
  fun one_take_strict ((dn, args), _) =
wenzelm@23152
   516
    let
huffman@35057
   517
      val goal = mk_trp (strict (dc_take dn $ %:"n"));
huffman@35057
   518
      val rules = [
huffman@35057
   519
        @{thm monofun_fst [THEN monofunE]},
huffman@35057
   520
        @{thm monofun_snd [THEN monofunE]}];
huffman@35057
   521
      val tacs = [
huffman@35057
   522
        rtac @{thm UU_I} 1,
huffman@35057
   523
        rtac @{thm below_eq_trans} 1,
huffman@35057
   524
        resolve_tac axs_reach 2,
huffman@35057
   525
        rtac @{thm monofun_cfun_fun} 1,
huffman@35057
   526
        REPEAT (resolve_tac rules 1),
huffman@35057
   527
        rtac @{thm iterate_below_fix} 1];
huffman@35057
   528
    in pg axs_take_def goal (K tacs) end;
huffman@35057
   529
  val take_stricts = map one_take_strict eqs;
wenzelm@23152
   530
  fun take_0 n dn =
wenzelm@23152
   531
    let
huffman@35058
   532
      val goal = mk_trp ((dc_take dn $ @{term "0::nat"}) `% x_name n === UU);
wenzelm@27208
   533
    in pg axs_take_def goal (K [simp_tac iterate_Cprod_ss 1]) end;
wenzelm@23152
   534
  val take_0s = mapn take_0 1 dnames;
huffman@29402
   535
  val _ = trace " Proving take_apps...";
huffman@35288
   536
  fun one_take_app dn (con, _, args) =
wenzelm@23152
   537
    let
huffman@35058
   538
      fun mk_take n = dc_take (List.nth (dnames, n)) $ %:"n";
huffman@35058
   539
      fun one_rhs arg =
huffman@35058
   540
          if Datatype_Aux.is_rec_type (dtyp_of arg)
huffman@35058
   541
          then Domain_Axioms.copy_of_dtyp map_tab
huffman@35058
   542
                 mk_take (dtyp_of arg) ` (%# arg)
huffman@35058
   543
          else (%# arg);
huffman@35058
   544
      val lhs = (dc_take dn $ (%%:"Suc" $ %:"n"))`(con_app con args);
huffman@35058
   545
      val rhs = con_app2 con one_rhs args;
huffman@35059
   546
      fun is_rec arg = Datatype_Aux.is_rec_type (dtyp_of arg);
huffman@35059
   547
      fun is_nonlazy_rec arg = is_rec arg andalso not (is_lazy arg);
huffman@35059
   548
      fun nonlazy_rec args = map vname (filter is_nonlazy_rec args);
huffman@35059
   549
      val goal = lift_defined %: (nonlazy_rec args, mk_trp (lhs === rhs));
huffman@35059
   550
      val tacs = [asm_simp_tac (HOLCF_ss addsimps copy_con_rews) 1];
huffman@35059
   551
    in pg copy_take_defs goal (K tacs) end;
huffman@35058
   552
  fun one_take_apps ((dn, _), cons) = map (one_take_app dn) cons;
huffman@35058
   553
  val take_apps = maps one_take_apps eqs;
wenzelm@23152
   554
in
wenzelm@35021
   555
  val take_rews = map Drule.export_without_context
huffman@35058
   556
    (take_stricts @ take_0s @ take_apps);
wenzelm@23152
   557
end; (* local *)
wenzelm@23152
   558
wenzelm@23152
   559
local
huffman@35288
   560
  fun one_con p (con, _, args) =
wenzelm@23152
   561
    let
huffman@35443
   562
      val P_names = map P_name (1 upto (length dnames));
huffman@35443
   563
      val vns = Name.variant_list P_names (map vname args);
huffman@35443
   564
      val nonlazy_vns = map snd (filter_out (is_lazy o fst) (args ~~ vns));
wenzelm@23152
   565
      fun ind_hyp arg = %:(P_name (1 + rec_of arg)) $ bound_arg args arg;
wenzelm@23152
   566
      val t1 = mk_trp (%:p $ con_app2 con (bound_arg args) args);
wenzelm@33317
   567
      val t2 = lift ind_hyp (filter is_rec args, t1);
huffman@35443
   568
      val t3 = lift_defined (bound_arg vns) (nonlazy_vns, t2);
huffman@35443
   569
    in Library.foldr mk_All (vns, t3) end;
wenzelm@23152
   570
wenzelm@23152
   571
  fun one_eq ((p, cons), concl) =
wenzelm@23152
   572
    mk_trp (%:p $ UU) ===> Logic.list_implies (map (one_con p) cons, concl);
wenzelm@23152
   573
wenzelm@23152
   574
  fun ind_term concf = Library.foldr one_eq
wenzelm@23152
   575
    (mapn (fn n => fn x => (P_name n, x)) 1 conss,
wenzelm@23152
   576
     mk_trp (foldr1 mk_conj (mapn concf 1 dnames)));
wenzelm@23152
   577
  val take_ss = HOL_ss addsimps take_rews;
wenzelm@27208
   578
  fun quant_tac ctxt i = EVERY
wenzelm@27239
   579
    (mapn (fn n => fn _ => res_inst_tac ctxt [(("x", 0), x_name n)] spec i) 1 dnames);
wenzelm@23152
   580
wenzelm@23152
   581
  fun ind_prems_tac prems = EVERY
wenzelm@26336
   582
    (maps (fn cons =>
wenzelm@23152
   583
      (resolve_tac prems 1 ::
huffman@35288
   584
        maps (fn (_,_,args) => 
wenzelm@23152
   585
          resolve_tac prems 1 ::
wenzelm@23152
   586
          map (K(atac 1)) (nonlazy args) @
wenzelm@33317
   587
          map (K(atac 1)) (filter is_rec args))
wenzelm@26336
   588
        cons))
wenzelm@26336
   589
      conss);
wenzelm@23152
   590
  local 
wenzelm@23152
   591
    (* check whether every/exists constructor of the n-th part of the equation:
wenzelm@23152
   592
       it has a possibly indirectly recursive argument that isn't/is possibly 
wenzelm@23152
   593
       indirectly lazy *)
wenzelm@23152
   594
    fun rec_to quant nfn rfn ns lazy_rec (n,cons) = quant (exists (fn arg => 
wenzelm@23152
   595
          is_rec arg andalso not(rec_of arg mem ns) andalso
wenzelm@23152
   596
          ((rec_of arg =  n andalso nfn(lazy_rec orelse is_lazy arg)) orelse 
wenzelm@23152
   597
            rec_of arg <> n andalso rec_to quant nfn rfn (rec_of arg::ns) 
wenzelm@23152
   598
              (lazy_rec orelse is_lazy arg) (n, (List.nth(conss,rec_of arg))))
huffman@35288
   599
          ) o third) cons;
wenzelm@23152
   600
    fun all_rec_to ns  = rec_to forall not all_rec_to  ns;
wenzelm@23152
   601
    fun warn (n,cons) =
wenzelm@23152
   602
      if all_rec_to [] false (n,cons)
wenzelm@23152
   603
      then (warning ("domain "^List.nth(dnames,n)^" is empty!"); true)
wenzelm@23152
   604
      else false;
wenzelm@23152
   605
    fun lazy_rec_to ns = rec_to exists I  lazy_rec_to ns;
wenzelm@23152
   606
wenzelm@23152
   607
  in
wenzelm@23152
   608
    val n__eqs = mapn (fn n => fn (_,cons) => (n,cons)) 0 eqs;
wenzelm@23152
   609
    val is_emptys = map warn n__eqs;
wenzelm@23152
   610
    val is_finite = forall (not o lazy_rec_to [] false) n__eqs;
wenzelm@23152
   611
  end;
wenzelm@23152
   612
in (* local *)
huffman@29402
   613
  val _ = trace " Proving finite_ind...";
wenzelm@23152
   614
  val finite_ind =
wenzelm@23152
   615
    let
wenzelm@23152
   616
      fun concf n dn = %:(P_name n) $ (dc_take dn $ %:"n" `%(x_name n));
wenzelm@23152
   617
      val goal = ind_term concf;
wenzelm@23152
   618
wenzelm@27208
   619
      fun tacf {prems, context} =
wenzelm@23152
   620
        let
wenzelm@23152
   621
          val tacs1 = [
wenzelm@27208
   622
            quant_tac context 1,
wenzelm@23152
   623
            simp_tac HOL_ss 1,
wenzelm@27208
   624
            InductTacs.induct_tac context [[SOME "n"]] 1,
wenzelm@23152
   625
            simp_tac (take_ss addsimps prems) 1,
wenzelm@23152
   626
            TRY (safe_tac HOL_cs)];
wenzelm@23152
   627
          fun arg_tac arg =
huffman@35443
   628
                        (* FIXME! case_UU_tac *)
wenzelm@27208
   629
            case_UU_tac context (prems @ con_rews) 1
wenzelm@23152
   630
              (List.nth (dnames, rec_of arg) ^ "_take n$" ^ vname arg);
huffman@35288
   631
          fun con_tacs (con, _, args) = 
wenzelm@23152
   632
            asm_simp_tac take_ss 1 ::
wenzelm@33317
   633
            map arg_tac (filter is_nonlazy_rec args) @
wenzelm@23152
   634
            [resolve_tac prems 1] @
wenzelm@33317
   635
            map (K (atac 1)) (nonlazy args) @
wenzelm@33317
   636
            map (K (etac spec 1)) (filter is_rec args);
wenzelm@23152
   637
          fun cases_tacs (cons, cases) =
wenzelm@27239
   638
            res_inst_tac context [(("x", 0), "x")] cases 1 ::
wenzelm@23152
   639
            asm_simp_tac (take_ss addsimps prems) 1 ::
wenzelm@26336
   640
            maps con_tacs cons;
wenzelm@23152
   641
        in
wenzelm@26336
   642
          tacs1 @ maps cases_tacs (conss ~~ cases)
wenzelm@23152
   643
        end;
huffman@31232
   644
    in pg'' thy [] goal tacf
huffman@31232
   645
       handle ERROR _ => (warning "Proof of finite_ind failed."; TrueI)
huffman@31232
   646
    end;
wenzelm@23152
   647
huffman@29402
   648
  val _ = trace " Proving take_lemmas...";
wenzelm@23152
   649
  val take_lemmas =
wenzelm@23152
   650
    let
wenzelm@23152
   651
      fun take_lemma n (dn, ax_reach) =
wenzelm@23152
   652
        let
wenzelm@23152
   653
          val lhs = dc_take dn $ Bound 0 `%(x_name n);
wenzelm@23152
   654
          val rhs = dc_take dn $ Bound 0 `%(x_name n^"'");
wenzelm@23152
   655
          val concl = mk_trp (%:(x_name n) === %:(x_name n^"'"));
wenzelm@23152
   656
          val goal = mk_All ("n", mk_trp (lhs === rhs)) ===> concl;
huffman@33396
   657
          val rules = [contlub_fst RS contlubE RS ssubst,
huffman@33396
   658
                       contlub_snd RS contlubE RS ssubst];
wenzelm@27208
   659
          fun tacf {prems, context} = [
wenzelm@27239
   660
            res_inst_tac context [(("t", 0), x_name n    )] (ax_reach RS subst) 1,
wenzelm@27239
   661
            res_inst_tac context [(("t", 0), x_name n^"'")] (ax_reach RS subst) 1,
wenzelm@23152
   662
            stac fix_def2 1,
wenzelm@23152
   663
            REPEAT (CHANGED
huffman@33396
   664
              (resolve_tac rules 1 THEN chain_tac 1)),
wenzelm@23152
   665
            stac contlub_cfun_fun 1,
wenzelm@23152
   666
            stac contlub_cfun_fun 2,
wenzelm@23152
   667
            rtac lub_equal 3,
wenzelm@23152
   668
            chain_tac 1,
wenzelm@23152
   669
            rtac allI 1,
wenzelm@23152
   670
            resolve_tac prems 1];
wenzelm@23152
   671
        in pg'' thy axs_take_def goal tacf end;
wenzelm@23152
   672
    in mapn take_lemma 1 (dnames ~~ axs_reach) end;
wenzelm@23152
   673
wenzelm@23152
   674
(* ----- theorems concerning finiteness and induction ----------------------- *)
wenzelm@23152
   675
huffman@29402
   676
  val _ = trace " Proving finites, ind...";
wenzelm@23152
   677
  val (finites, ind) =
huffman@31232
   678
  (
wenzelm@23152
   679
    if is_finite
wenzelm@23152
   680
    then (* finite case *)
wenzelm@23152
   681
      let 
wenzelm@23152
   682
        fun take_enough dn = mk_ex ("n",dc_take dn $ Bound 0 ` %:"x" === %:"x");
wenzelm@23152
   683
        fun dname_lemma dn =
wenzelm@23152
   684
          let
wenzelm@23152
   685
            val prem1 = mk_trp (defined (%:"x"));
wenzelm@23152
   686
            val disj1 = mk_all ("n", dc_take dn $ Bound 0 ` %:"x" === UU);
wenzelm@23152
   687
            val prem2 = mk_trp (mk_disj (disj1, take_enough dn));
wenzelm@23152
   688
            val concl = mk_trp (take_enough dn);
wenzelm@23152
   689
            val goal = prem1 ===> prem2 ===> concl;
wenzelm@23152
   690
            val tacs = [
wenzelm@23152
   691
              etac disjE 1,
wenzelm@23152
   692
              etac notE 1,
wenzelm@23152
   693
              resolve_tac take_lemmas 1,
wenzelm@23152
   694
              asm_simp_tac take_ss 1,
wenzelm@23152
   695
              atac 1];
wenzelm@27208
   696
          in pg [] goal (K tacs) end;
huffman@31232
   697
        val _ = trace " Proving finite_lemmas1a";
wenzelm@23152
   698
        val finite_lemmas1a = map dname_lemma dnames;
wenzelm@23152
   699
 
huffman@31232
   700
        val _ = trace " Proving finite_lemma1b";
wenzelm@23152
   701
        val finite_lemma1b =
wenzelm@23152
   702
          let
wenzelm@23152
   703
            fun mk_eqn n ((dn, args), _) =
wenzelm@23152
   704
              let
wenzelm@23152
   705
                val disj1 = dc_take dn $ Bound 1 ` Bound 0 === UU;
wenzelm@23152
   706
                val disj2 = dc_take dn $ Bound 1 ` Bound 0 === Bound 0;
wenzelm@23152
   707
              in
wenzelm@23152
   708
                mk_constrainall
wenzelm@23152
   709
                  (x_name n, Type (dn,args), mk_disj (disj1, disj2))
wenzelm@23152
   710
              end;
wenzelm@23152
   711
            val goal =
wenzelm@23152
   712
              mk_trp (mk_all ("n", foldr1 mk_conj (mapn mk_eqn 1 eqs)));
wenzelm@27208
   713
            fun arg_tacs ctxt vn = [
wenzelm@27239
   714
              eres_inst_tac ctxt [(("x", 0), vn)] all_dupE 1,
wenzelm@23152
   715
              etac disjE 1,
wenzelm@23152
   716
              asm_simp_tac (HOL_ss addsimps con_rews) 1,
wenzelm@23152
   717
              asm_simp_tac take_ss 1];
huffman@35288
   718
            fun con_tacs ctxt (con, _, args) =
wenzelm@23152
   719
              asm_simp_tac take_ss 1 ::
wenzelm@27208
   720
              maps (arg_tacs ctxt) (nonlazy_rec args);
wenzelm@27208
   721
            fun foo_tacs ctxt n (cons, cases) =
wenzelm@23152
   722
              simp_tac take_ss 1 ::
wenzelm@23152
   723
              rtac allI 1 ::
wenzelm@27239
   724
              res_inst_tac ctxt [(("x", 0), x_name n)] cases 1 ::
wenzelm@23152
   725
              asm_simp_tac take_ss 1 ::
wenzelm@27208
   726
              maps (con_tacs ctxt) cons;
wenzelm@27208
   727
            fun tacs ctxt =
wenzelm@23152
   728
              rtac allI 1 ::
wenzelm@27208
   729
              InductTacs.induct_tac ctxt [[SOME "n"]] 1 ::
wenzelm@23152
   730
              simp_tac take_ss 1 ::
wenzelm@23152
   731
              TRY (safe_tac (empty_cs addSEs [conjE] addSIs [conjI])) ::
wenzelm@27208
   732
              flat (mapn (foo_tacs ctxt) 1 (conss ~~ cases));
wenzelm@23152
   733
          in pg [] goal tacs end;
wenzelm@23152
   734
wenzelm@23152
   735
        fun one_finite (dn, l1b) =
wenzelm@23152
   736
          let
wenzelm@23152
   737
            val goal = mk_trp (%%:(dn^"_finite") $ %:"x");
wenzelm@27208
   738
            fun tacs ctxt = [
huffman@35443
   739
                        (* FIXME! case_UU_tac *)
wenzelm@27208
   740
              case_UU_tac ctxt take_rews 1 "x",
wenzelm@23152
   741
              eresolve_tac finite_lemmas1a 1,
wenzelm@23152
   742
              step_tac HOL_cs 1,
wenzelm@23152
   743
              step_tac HOL_cs 1,
wenzelm@23152
   744
              cut_facts_tac [l1b] 1,
wenzelm@23152
   745
              fast_tac HOL_cs 1];
wenzelm@23152
   746
          in pg axs_finite_def goal tacs end;
wenzelm@23152
   747
huffman@31232
   748
        val _ = trace " Proving finites";
wenzelm@27232
   749
        val finites = map one_finite (dnames ~~ atomize global_ctxt finite_lemma1b);
huffman@31232
   750
        val _ = trace " Proving ind";
wenzelm@23152
   751
        val ind =
wenzelm@23152
   752
          let
wenzelm@23152
   753
            fun concf n dn = %:(P_name n) $ %:(x_name n);
wenzelm@27208
   754
            fun tacf {prems, context} =
wenzelm@23152
   755
              let
wenzelm@23152
   756
                fun finite_tacs (finite, fin_ind) = [
wenzelm@23152
   757
                  rtac(rewrite_rule axs_finite_def finite RS exE)1,
wenzelm@23152
   758
                  etac subst 1,
wenzelm@23152
   759
                  rtac fin_ind 1,
wenzelm@23152
   760
                  ind_prems_tac prems];
wenzelm@23152
   761
              in
wenzelm@23152
   762
                TRY (safe_tac HOL_cs) ::
wenzelm@27232
   763
                maps finite_tacs (finites ~~ atomize global_ctxt finite_ind)
wenzelm@23152
   764
              end;
wenzelm@23152
   765
          in pg'' thy [] (ind_term concf) tacf end;
wenzelm@23152
   766
      in (finites, ind) end (* let *)
wenzelm@23152
   767
wenzelm@23152
   768
    else (* infinite case *)
wenzelm@23152
   769
      let
wenzelm@23152
   770
        fun one_finite n dn =
wenzelm@27239
   771
          read_instantiate global_ctxt [(("P", 0), dn ^ "_finite " ^ x_name n)] excluded_middle;
wenzelm@23152
   772
        val finites = mapn one_finite 1 dnames;
wenzelm@23152
   773
wenzelm@23152
   774
        val goal =
wenzelm@23152
   775
          let
huffman@26012
   776
            fun one_adm n _ = mk_trp (mk_adm (%:(P_name n)));
wenzelm@23152
   777
            fun concf n dn = %:(P_name n) $ %:(x_name n);
wenzelm@23152
   778
          in Logic.list_implies (mapn one_adm 1 dnames, ind_term concf) end;
huffman@33396
   779
        val cont_rules =
huffman@33396
   780
            [cont_id, cont_const, cont2cont_Rep_CFun,
huffman@33396
   781
             cont2cont_fst, cont2cont_snd];
wenzelm@27208
   782
        fun tacf {prems, context} =
wenzelm@23152
   783
          map (fn ax_reach => rtac (ax_reach RS subst) 1) axs_reach @ [
wenzelm@27208
   784
          quant_tac context 1,
wenzelm@23152
   785
          rtac (adm_impl_admw RS wfix_ind) 1,
huffman@25895
   786
          REPEAT_DETERM (rtac adm_all 1),
wenzelm@23152
   787
          REPEAT_DETERM (
wenzelm@23152
   788
            TRY (rtac adm_conj 1) THEN 
wenzelm@23152
   789
            rtac adm_subst 1 THEN 
huffman@33396
   790
            REPEAT (resolve_tac cont_rules 1) THEN
huffman@33396
   791
            resolve_tac prems 1),
wenzelm@23152
   792
          strip_tac 1,
wenzelm@23152
   793
          rtac (rewrite_rule axs_take_def finite_ind) 1,
wenzelm@23152
   794
          ind_prems_tac prems];
wenzelm@23152
   795
        val ind = (pg'' thy [] goal tacf
wenzelm@23152
   796
          handle ERROR _ =>
huffman@33396
   797
            (warning "Cannot prove infinite induction rule"; TrueI));
huffman@31232
   798
      in (finites, ind) end
huffman@31232
   799
  )
huffman@31232
   800
      handle THM _ =>
huffman@31232
   801
             (warning "Induction proofs failed (THM raised)."; ([], TrueI))
huffman@31232
   802
           | ERROR _ =>
huffman@33810
   803
             (warning "Cannot prove induction rule"; ([], TrueI));
huffman@31232
   804
huffman@31232
   805
wenzelm@23152
   806
end; (* local *)
wenzelm@23152
   807
wenzelm@23152
   808
(* ----- theorem concerning coinduction ------------------------------------- *)
wenzelm@23152
   809
huffman@35444
   810
(* COINDUCTION TEMPORARILY DISABLED
wenzelm@23152
   811
local
wenzelm@23152
   812
  val xs = mapn (fn n => K (x_name n)) 1 dnames;
wenzelm@23152
   813
  fun bnd_arg n i = Bound(2*(n_eqs - n)-i-1);
wenzelm@23152
   814
  val take_ss = HOL_ss addsimps take_rews;
wenzelm@23152
   815
  val sproj = prj (fn s => K("fst("^s^")")) (fn s => K("snd("^s^")"));
huffman@29402
   816
  val _ = trace " Proving coind_lemma...";
wenzelm@23152
   817
  val coind_lemma =
wenzelm@23152
   818
    let
wenzelm@23152
   819
      fun mk_prj n _ = proj (%:"R") eqs n $ bnd_arg n 0 $ bnd_arg n 1;
wenzelm@23152
   820
      fun mk_eqn n dn =
wenzelm@23152
   821
        (dc_take dn $ %:"n" ` bnd_arg n 0) ===
wenzelm@23152
   822
        (dc_take dn $ %:"n" ` bnd_arg n 1);
wenzelm@23152
   823
      fun mk_all2 (x,t) = mk_all (x, mk_all (x^"'", t));
wenzelm@23152
   824
      val goal =
wenzelm@23152
   825
        mk_trp (mk_imp (%%:(comp_dname^"_bisim") $ %:"R",
wenzelm@23152
   826
          Library.foldr mk_all2 (xs,
wenzelm@23152
   827
            Library.foldr mk_imp (mapn mk_prj 0 dnames,
wenzelm@23152
   828
              foldr1 mk_conj (mapn mk_eqn 0 dnames)))));
wenzelm@27208
   829
      fun x_tacs ctxt n x = [
wenzelm@23152
   830
        rotate_tac (n+1) 1,
wenzelm@23152
   831
        etac all2E 1,
wenzelm@27239
   832
        eres_inst_tac ctxt [(("P", 1), sproj "R" eqs n^" "^x^" "^x^"'")] (mp RS disjE) 1,
wenzelm@23152
   833
        TRY (safe_tac HOL_cs),
wenzelm@23152
   834
        REPEAT (CHANGED (asm_simp_tac take_ss 1))];
wenzelm@27208
   835
      fun tacs ctxt = [
wenzelm@23152
   836
        rtac impI 1,
wenzelm@27208
   837
        InductTacs.induct_tac ctxt [[SOME "n"]] 1,
wenzelm@23152
   838
        simp_tac take_ss 1,
wenzelm@23152
   839
        safe_tac HOL_cs] @
wenzelm@27208
   840
        flat (mapn (x_tacs ctxt) 0 xs);
wenzelm@23152
   841
    in pg [ax_bisim_def] goal tacs end;
wenzelm@23152
   842
in
huffman@29402
   843
  val _ = trace " Proving coind...";
wenzelm@23152
   844
  val coind = 
wenzelm@23152
   845
    let
wenzelm@23152
   846
      fun mk_prj n x = mk_trp (proj (%:"R") eqs n $ %:x $ %:(x^"'"));
wenzelm@23152
   847
      fun mk_eqn x = %:x === %:(x^"'");
wenzelm@23152
   848
      val goal =
wenzelm@23152
   849
        mk_trp (%%:(comp_dname^"_bisim") $ %:"R") ===>
wenzelm@23152
   850
          Logic.list_implies (mapn mk_prj 0 xs,
wenzelm@23152
   851
            mk_trp (foldr1 mk_conj (map mk_eqn xs)));
wenzelm@23152
   852
      val tacs =
wenzelm@23152
   853
        TRY (safe_tac HOL_cs) ::
wenzelm@26336
   854
        maps (fn take_lemma => [
wenzelm@23152
   855
          rtac take_lemma 1,
wenzelm@23152
   856
          cut_facts_tac [coind_lemma] 1,
wenzelm@23152
   857
          fast_tac HOL_cs 1])
wenzelm@26336
   858
        take_lemmas;
wenzelm@27208
   859
    in pg [] goal (K tacs) end;
wenzelm@23152
   860
end; (* local *)
huffman@35444
   861
COINDUCTION TEMPORARILY DISABLED *)
wenzelm@23152
   862
wenzelm@32172
   863
val inducts = Project_Rule.projections (ProofContext.init thy) ind;
huffman@30829
   864
fun ind_rule (dname, rule) = ((Binding.empty, [rule]), [Induct.induct_type dname]);
huffman@31232
   865
val induct_failed = (Thm.prop_of ind = Thm.prop_of TrueI);
huffman@30829
   866
wenzelm@24712
   867
in thy |> Sign.add_path comp_dnam
huffman@31004
   868
       |> snd o PureThy.add_thmss [
huffman@31004
   869
           ((Binding.name "take_rews"  , take_rews   ), [Simplifier.simp_add]),
huffman@31004
   870
           ((Binding.name "take_lemmas", take_lemmas ), []),
huffman@31004
   871
           ((Binding.name "finites"    , finites     ), []),
huffman@31004
   872
           ((Binding.name "finite_ind" , [finite_ind]), []),
huffman@35444
   873
           ((Binding.name "ind"        , [ind]       ), [])(*,
huffman@35444
   874
           ((Binding.name "coind"      , [coind]     ), [])*)]
huffman@31232
   875
       |> (if induct_failed then I
huffman@31232
   876
           else snd o PureThy.add_thmss (map ind_rule (dnames ~~ inducts)))
haftmann@28536
   877
       |> Sign.parent_path |> pair take_rews
wenzelm@23152
   878
end; (* let *)
wenzelm@23152
   879
end; (* struct *)