src/HOL/SMT.thy
author blanchet
Wed Sep 17 16:53:39 2014 +0200 (2014-09-17)
changeset 58360 dee1fd1cc631
parent 58072 a86c962de77f
child 58441 c1b489999de9
permissions -rw-r--r--
added interface for CVC4 extensions
blanchet@58061
     1
(*  Title:      HOL/SMT.thy
blanchet@56078
     2
    Author:     Sascha Boehme, TU Muenchen
blanchet@56078
     3
*)
blanchet@56078
     4
blanchet@56078
     5
header {* Bindings to Satisfiability Modulo Theories (SMT) solvers based on SMT-LIB 2 *}
blanchet@56078
     6
blanchet@58061
     7
theory SMT
blanchet@57230
     8
imports Divides
blanchet@58061
     9
keywords "smt_status" :: diag
blanchet@56078
    10
begin
blanchet@56078
    11
blanchet@56078
    12
subsection {* Triggers for quantifier instantiation *}
blanchet@56078
    13
blanchet@56078
    14
text {*
blanchet@56078
    15
Some SMT solvers support patterns as a quantifier instantiation
blanchet@57696
    16
heuristics. Patterns may either be positive terms (tagged by "pat")
blanchet@56078
    17
triggering quantifier instantiations -- when the solver finds a
blanchet@56078
    18
term matching a positive pattern, it instantiates the corresponding
blanchet@56078
    19
quantifier accordingly -- or negative terms (tagged by "nopat")
blanchet@57696
    20
inhibiting quantifier instantiations. A list of patterns
blanchet@56078
    21
of the same kind is called a multipattern, and all patterns in a
blanchet@56078
    22
multipattern are considered conjunctively for quantifier instantiation.
blanchet@56078
    23
A list of multipatterns is called a trigger, and their multipatterns
blanchet@57696
    24
act disjunctively during quantifier instantiation. Each multipattern
blanchet@56078
    25
should mention at least all quantified variables of the preceding
blanchet@56078
    26
quantifier block.
blanchet@56078
    27
*}
blanchet@56078
    28
blanchet@57230
    29
typedecl 'a symb_list
blanchet@57230
    30
blanchet@57230
    31
consts
blanchet@57230
    32
  Symb_Nil :: "'a symb_list"
blanchet@57230
    33
  Symb_Cons :: "'a \<Rightarrow> 'a symb_list \<Rightarrow> 'a symb_list"
blanchet@57230
    34
blanchet@56078
    35
typedecl pattern
blanchet@56078
    36
blanchet@56078
    37
consts
blanchet@56078
    38
  pat :: "'a \<Rightarrow> pattern"
blanchet@56078
    39
  nopat :: "'a \<Rightarrow> pattern"
blanchet@56078
    40
blanchet@57230
    41
definition trigger :: "pattern symb_list symb_list \<Rightarrow> bool \<Rightarrow> bool" where
blanchet@57230
    42
  "trigger _ P = P"
blanchet@56078
    43
blanchet@56078
    44
blanchet@56078
    45
subsection {* Higher-order encoding *}
blanchet@56078
    46
blanchet@56078
    47
text {*
blanchet@56078
    48
Application is made explicit for constants occurring with varying
blanchet@57696
    49
numbers of arguments. This is achieved by the introduction of the
blanchet@56078
    50
following constant.
blanchet@56078
    51
*}
blanchet@56078
    52
blanchet@56078
    53
definition fun_app :: "'a \<Rightarrow> 'a" where "fun_app f = f"
blanchet@56078
    54
blanchet@56078
    55
text {*
blanchet@56078
    56
Some solvers support a theory of arrays which can be used to encode
blanchet@57696
    57
higher-order functions. The following set of lemmas specifies the
blanchet@56078
    58
properties of such (extensional) arrays.
blanchet@56078
    59
*}
blanchet@56078
    60
blanchet@56078
    61
lemmas array_rules = ext fun_upd_apply fun_upd_same fun_upd_other  fun_upd_upd fun_app_def
blanchet@56078
    62
blanchet@56078
    63
blanchet@56103
    64
subsection {* Normalization *}
blanchet@56103
    65
blanchet@56103
    66
lemma case_bool_if[abs_def]: "case_bool x y P = (if P then x else y)"
blanchet@56103
    67
  by simp
blanchet@56103
    68
blanchet@56103
    69
lemmas Ex1_def_raw = Ex1_def[abs_def]
blanchet@56103
    70
lemmas Ball_def_raw = Ball_def[abs_def]
blanchet@56103
    71
lemmas Bex_def_raw = Bex_def[abs_def]
blanchet@56103
    72
lemmas abs_if_raw = abs_if[abs_def]
blanchet@56103
    73
lemmas min_def_raw = min_def[abs_def]
blanchet@56103
    74
lemmas max_def_raw = max_def[abs_def]
blanchet@56103
    75
blanchet@56103
    76
blanchet@56078
    77
subsection {* Integer division and modulo for Z3 *}
blanchet@56078
    78
blanchet@56102
    79
text {*
blanchet@56102
    80
The following Z3-inspired definitions are overspecified for the case where @{text "l = 0"}. This
blanchet@56102
    81
Schönheitsfehler is corrected in the @{text div_as_z3div} and @{text mod_as_z3mod} theorems.
blanchet@56102
    82
*}
blanchet@56102
    83
blanchet@56078
    84
definition z3div :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@56102
    85
  "z3div k l = (if l \<ge> 0 then k div l else - (k div - l))"
blanchet@56078
    86
blanchet@56078
    87
definition z3mod :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@56102
    88
  "z3mod k l = k mod (if l \<ge> 0 then l else - l)"
blanchet@56078
    89
blanchet@56101
    90
lemma div_as_z3div:
blanchet@56102
    91
  "\<forall>k l. k div l = (if l = 0 then 0 else if l > 0 then z3div k l else z3div (- k) (- l))"
blanchet@56101
    92
  by (simp add: z3div_def)
blanchet@56101
    93
blanchet@56101
    94
lemma mod_as_z3mod:
blanchet@56102
    95
  "\<forall>k l. k mod l = (if l = 0 then k else if l > 0 then z3mod k l else - z3mod (- k) (- l))"
blanchet@56101
    96
  by (simp add: z3mod_def)
blanchet@56101
    97
blanchet@56078
    98
blanchet@56078
    99
subsection {* Setup *}
blanchet@56078
   100
blanchet@58061
   101
ML_file "Tools/SMT/smt_util.ML"
blanchet@58061
   102
ML_file "Tools/SMT/smt_failure.ML"
blanchet@58061
   103
ML_file "Tools/SMT/smt_config.ML"
blanchet@58061
   104
ML_file "Tools/SMT/smt_builtin.ML"
blanchet@58061
   105
ML_file "Tools/SMT/smt_datatypes.ML"
blanchet@58061
   106
ML_file "Tools/SMT/smt_normalize.ML"
blanchet@58061
   107
ML_file "Tools/SMT/smt_translate.ML"
blanchet@58061
   108
ML_file "Tools/SMT/smtlib.ML"
blanchet@58061
   109
ML_file "Tools/SMT/smtlib_interface.ML"
blanchet@58061
   110
ML_file "Tools/SMT/smtlib_proof.ML"
blanchet@58061
   111
ML_file "Tools/SMT/smtlib_isar.ML"
blanchet@58061
   112
ML_file "Tools/SMT/z3_proof.ML"
blanchet@58061
   113
ML_file "Tools/SMT/z3_isar.ML"
blanchet@58061
   114
ML_file "Tools/SMT/smt_solver.ML"
blanchet@58360
   115
ML_file "Tools/SMT/cvc4_interface.ML"
blanchet@58360
   116
ML_file "Tools/SMT/verit_proof.ML"
blanchet@58360
   117
ML_file "Tools/SMT/verit_isar.ML"
blanchet@58360
   118
ML_file "Tools/SMT/verit_proof_parse.ML"
blanchet@58061
   119
ML_file "Tools/SMT/z3_interface.ML"
blanchet@58061
   120
ML_file "Tools/SMT/z3_replay_util.ML"
blanchet@58061
   121
ML_file "Tools/SMT/z3_replay_literals.ML"
blanchet@58061
   122
ML_file "Tools/SMT/z3_replay_rules.ML"
blanchet@58061
   123
ML_file "Tools/SMT/z3_replay_methods.ML"
blanchet@58061
   124
ML_file "Tools/SMT/z3_replay.ML"
blanchet@58061
   125
ML_file "Tools/SMT/smt_systems.ML"
blanchet@56078
   126
blanchet@58061
   127
method_setup smt = {*
blanchet@56078
   128
  Scan.optional Attrib.thms [] >>
blanchet@56078
   129
    (fn thms => fn ctxt =>
blanchet@58061
   130
      METHOD (fn facts => HEADGOAL (SMT_Solver.smt_tac ctxt (thms @ facts))))
blanchet@58072
   131
*} "apply an SMT solver to the current goal"
blanchet@56078
   132
blanchet@56078
   133
blanchet@56078
   134
subsection {* Configuration *}
blanchet@56078
   135
blanchet@56078
   136
text {*
blanchet@56078
   137
The current configuration can be printed by the command
blanchet@58061
   138
@{text smt_status}, which shows the values of most options.
blanchet@56078
   139
*}
blanchet@56078
   140
blanchet@56078
   141
blanchet@56078
   142
subsection {* General configuration options *}
blanchet@56078
   143
blanchet@56078
   144
text {*
blanchet@58061
   145
The option @{text smt_solver} can be used to change the target SMT
blanchet@58061
   146
solver. The possible values can be obtained from the @{text smt_status}
blanchet@56078
   147
command.
blanchet@56078
   148
blanchet@57696
   149
Due to licensing restrictions, Z3 is not enabled by default. Z3 is free
blanchet@57237
   150
for non-commercial applications and can be enabled by setting Isabelle
blanchet@57237
   151
system option @{text z3_non_commercial} to @{text yes}.
blanchet@56078
   152
*}
blanchet@56078
   153
blanchet@58061
   154
declare [[smt_solver = z3]]
blanchet@56078
   155
blanchet@56078
   156
text {*
blanchet@57696
   157
Since SMT solvers are potentially nonterminating, there is a timeout
blanchet@57696
   158
(given in seconds) to restrict their runtime.
blanchet@56078
   159
*}
blanchet@56078
   160
blanchet@58061
   161
declare [[smt_timeout = 20]]
blanchet@56078
   162
blanchet@56078
   163
text {*
blanchet@57696
   164
SMT solvers apply randomized heuristics. In case a problem is not
blanchet@56078
   165
solvable by an SMT solver, changing the following option might help.
blanchet@56078
   166
*}
blanchet@56078
   167
blanchet@58061
   168
declare [[smt_random_seed = 1]]
blanchet@56078
   169
blanchet@56078
   170
text {*
blanchet@56078
   171
In general, the binding to SMT solvers runs as an oracle, i.e, the SMT
blanchet@57696
   172
solvers are fully trusted without additional checks. The following
blanchet@56078
   173
option can cause the SMT solver to run in proof-producing mode, giving
blanchet@57696
   174
a checkable certificate. This is currently only implemented for Z3.
blanchet@56078
   175
*}
blanchet@56078
   176
blanchet@58061
   177
declare [[smt_oracle = false]]
blanchet@56078
   178
blanchet@56078
   179
text {*
blanchet@56078
   180
Each SMT solver provides several commandline options to tweak its
blanchet@57696
   181
behaviour. They can be passed to the solver by setting the following
blanchet@56078
   182
options.
blanchet@56078
   183
*}
blanchet@56078
   184
blanchet@58061
   185
declare [[cvc3_options = ""]]
blanchet@58061
   186
declare [[cvc4_options = ""]]
blanchet@58061
   187
declare [[veriT_options = ""]]
blanchet@58061
   188
declare [[z3_options = ""]]
blanchet@56078
   189
blanchet@56078
   190
text {*
blanchet@56078
   191
The SMT method provides an inference mechanism to detect simple triggers
blanchet@56078
   192
in quantified formulas, which might increase the number of problems
blanchet@56078
   193
solvable by SMT solvers (note: triggers guide quantifier instantiations
blanchet@57696
   194
in the SMT solver). To turn it on, set the following option.
blanchet@56078
   195
*}
blanchet@56078
   196
blanchet@58061
   197
declare [[smt_infer_triggers = false]]
blanchet@56078
   198
blanchet@56078
   199
text {*
blanchet@58360
   200
Enable the following option to use built-in support for datatypes,
blanchet@58360
   201
codatatypes, and records in CVC4. Currently, this is implemented only
blanchet@58360
   202
in oracle mode.
blanchet@58360
   203
*}
blanchet@58360
   204
blanchet@58360
   205
declare [[cvc4_extensions = false]]
blanchet@58360
   206
blanchet@58360
   207
text {*
blanchet@56078
   208
Enable the following option to use built-in support for div/mod, datatypes,
blanchet@57696
   209
and records in Z3. Currently, this is implemented only in oracle mode.
blanchet@56078
   210
*}
blanchet@56078
   211
blanchet@58061
   212
declare [[z3_extensions = false]]
blanchet@56078
   213
blanchet@56078
   214
blanchet@56078
   215
subsection {* Certificates *}
blanchet@56078
   216
blanchet@56078
   217
text {*
blanchet@58061
   218
By setting the option @{text smt_certificates} to the name of a file,
blanchet@56078
   219
all following applications of an SMT solver a cached in that file.
blanchet@56078
   220
Any further application of the same SMT solver (using the very same
blanchet@56078
   221
configuration) re-uses the cached certificate instead of invoking the
blanchet@57696
   222
solver. An empty string disables caching certificates.
blanchet@56078
   223
blanchet@57696
   224
The filename should be given as an explicit path. It is good
blanchet@56078
   225
practice to use the name of the current theory (with ending
blanchet@56078
   226
@{text ".certs"} instead of @{text ".thy"}) as the certificates file.
blanchet@56078
   227
Certificate files should be used at most once in a certain theory context,
blanchet@56078
   228
to avoid race conditions with other concurrent accesses.
blanchet@56078
   229
*}
blanchet@56078
   230
blanchet@58061
   231
declare [[smt_certificates = ""]]
blanchet@56078
   232
blanchet@56078
   233
text {*
blanchet@58061
   234
The option @{text smt_read_only_certificates} controls whether only
blanchet@56078
   235
stored certificates are should be used or invocation of an SMT solver
blanchet@57696
   236
is allowed. When set to @{text true}, no SMT solver will ever be
blanchet@56078
   237
invoked and only the existing certificates found in the configured
blanchet@56078
   238
cache are used;  when set to @{text false} and there is no cached
blanchet@56078
   239
certificate for some proposition, then the configured SMT solver is
blanchet@56078
   240
invoked.
blanchet@56078
   241
*}
blanchet@56078
   242
blanchet@58061
   243
declare [[smt_read_only_certificates = false]]
blanchet@56078
   244
blanchet@56078
   245
blanchet@56078
   246
subsection {* Tracing *}
blanchet@56078
   247
blanchet@56078
   248
text {*
blanchet@57696
   249
The SMT method, when applied, traces important information. To
blanchet@56078
   250
make it entirely silent, set the following option to @{text false}.
blanchet@56078
   251
*}
blanchet@56078
   252
blanchet@58061
   253
declare [[smt_verbose = true]]
blanchet@56078
   254
blanchet@56078
   255
text {*
blanchet@56078
   256
For tracing the generated problem file given to the SMT solver as
blanchet@56078
   257
well as the returned result of the solver, the option
blanchet@58061
   258
@{text smt_trace} should be set to @{text true}.
blanchet@56078
   259
*}
blanchet@56078
   260
blanchet@58061
   261
declare [[smt_trace = false]]
blanchet@56078
   262
blanchet@56078
   263
blanchet@56078
   264
subsection {* Schematic rules for Z3 proof reconstruction *}
blanchet@56078
   265
blanchet@56078
   266
text {*
blanchet@57696
   267
Several prof rules of Z3 are not very well documented. There are two
blanchet@56078
   268
lemma groups which can turn failing Z3 proof reconstruction attempts
blanchet@56078
   269
into succeeding ones: the facts in @{text z3_rule} are tried prior to
blanchet@56078
   270
any implemented reconstruction procedure for all uncertain Z3 proof
blanchet@56078
   271
rules;  the facts in @{text z3_simp} are only fed to invocations of
blanchet@56078
   272
the simplifier when reconstructing theory-specific proof steps.
blanchet@56078
   273
*}
blanchet@56078
   274
blanchet@58061
   275
lemmas [z3_rule] =
blanchet@56078
   276
  refl eq_commute conj_commute disj_commute simp_thms nnf_simps
blanchet@56078
   277
  ring_distribs field_simps times_divide_eq_right times_divide_eq_left
blanchet@56078
   278
  if_True if_False not_not
blanchet@56078
   279
blanchet@58061
   280
lemma [z3_rule]:
blanchet@57169
   281
  "(P \<and> Q) = (\<not> (\<not> P \<or> \<not> Q))"
blanchet@57169
   282
  "(P \<and> Q) = (\<not> (\<not> Q \<or> \<not> P))"
blanchet@57169
   283
  "(\<not> P \<and> Q) = (\<not> (P \<or> \<not> Q))"
blanchet@57169
   284
  "(\<not> P \<and> Q) = (\<not> (\<not> Q \<or> P))"
blanchet@57169
   285
  "(P \<and> \<not> Q) = (\<not> (\<not> P \<or> Q))"
blanchet@57169
   286
  "(P \<and> \<not> Q) = (\<not> (Q \<or> \<not> P))"
blanchet@57169
   287
  "(\<not> P \<and> \<not> Q) = (\<not> (P \<or> Q))"
blanchet@57169
   288
  "(\<not> P \<and> \<not> Q) = (\<not> (Q \<or> P))"
blanchet@56078
   289
  by auto
blanchet@56078
   290
blanchet@58061
   291
lemma [z3_rule]:
blanchet@57169
   292
  "(P \<longrightarrow> Q) = (Q \<or> \<not> P)"
blanchet@57169
   293
  "(\<not> P \<longrightarrow> Q) = (P \<or> Q)"
blanchet@57169
   294
  "(\<not> P \<longrightarrow> Q) = (Q \<or> P)"
blanchet@56078
   295
  "(True \<longrightarrow> P) = P"
blanchet@56078
   296
  "(P \<longrightarrow> True) = True"
blanchet@56078
   297
  "(False \<longrightarrow> P) = True"
blanchet@56078
   298
  "(P \<longrightarrow> P) = True"
blanchet@56078
   299
  by auto
blanchet@56078
   300
blanchet@58061
   301
lemma [z3_rule]:
blanchet@57169
   302
  "((P = Q) \<longrightarrow> R) = (R | (Q = (\<not> P)))"
blanchet@56078
   303
  by auto
blanchet@56078
   304
blanchet@58061
   305
lemma [z3_rule]:
blanchet@57169
   306
  "(\<not> True) = False"
blanchet@57169
   307
  "(\<not> False) = True"
blanchet@56078
   308
  "(x = x) = True"
blanchet@56078
   309
  "(P = True) = P"
blanchet@56078
   310
  "(True = P) = P"
blanchet@57169
   311
  "(P = False) = (\<not> P)"
blanchet@57169
   312
  "(False = P) = (\<not> P)"
blanchet@57169
   313
  "((\<not> P) = P) = False"
blanchet@57169
   314
  "(P = (\<not> P)) = False"
blanchet@57169
   315
  "((\<not> P) = (\<not> Q)) = (P = Q)"
blanchet@57169
   316
  "\<not> (P = (\<not> Q)) = (P = Q)"
blanchet@57169
   317
  "\<not> ((\<not> P) = Q) = (P = Q)"
blanchet@57169
   318
  "(P \<noteq> Q) = (Q = (\<not> P))"
blanchet@57169
   319
  "(P = Q) = ((\<not> P \<or> Q) \<and> (P \<or> \<not> Q))"
blanchet@57169
   320
  "(P \<noteq> Q) = ((\<not> P \<or> \<not> Q) \<and> (P \<or> Q))"
blanchet@56078
   321
  by auto
blanchet@56078
   322
blanchet@58061
   323
lemma [z3_rule]:
blanchet@57169
   324
  "(if P then P else \<not> P) = True"
blanchet@57169
   325
  "(if \<not> P then \<not> P else P) = True"
blanchet@56078
   326
  "(if P then True else False) = P"
blanchet@57169
   327
  "(if P then False else True) = (\<not> P)"
blanchet@57169
   328
  "(if P then Q else True) = ((\<not> P) \<or> Q)"
blanchet@57169
   329
  "(if P then Q else True) = (Q \<or> (\<not> P))"
blanchet@57169
   330
  "(if P then Q else \<not> Q) = (P = Q)"
blanchet@57169
   331
  "(if P then Q else \<not> Q) = (Q = P)"
blanchet@57169
   332
  "(if P then \<not> Q else Q) = (P = (\<not> Q))"
blanchet@57169
   333
  "(if P then \<not> Q else Q) = ((\<not> Q) = P)"
blanchet@57169
   334
  "(if \<not> P then x else y) = (if P then y else x)"
blanchet@57169
   335
  "(if P then (if Q then x else y) else x) = (if P \<and> (\<not> Q) then y else x)"
blanchet@57169
   336
  "(if P then (if Q then x else y) else x) = (if (\<not> Q) \<and> P then y else x)"
blanchet@56078
   337
  "(if P then (if Q then x else y) else y) = (if P \<and> Q then x else y)"
blanchet@56078
   338
  "(if P then (if Q then x else y) else y) = (if Q \<and> P then x else y)"
blanchet@56078
   339
  "(if P then x else if P then y else z) = (if P then x else z)"
blanchet@56078
   340
  "(if P then x else if Q then x else y) = (if P \<or> Q then x else y)"
blanchet@56078
   341
  "(if P then x else if Q then x else y) = (if Q \<or> P then x else y)"
blanchet@56078
   342
  "(if P then x = y else x = z) = (x = (if P then y else z))"
blanchet@56078
   343
  "(if P then x = y else y = z) = (y = (if P then x else z))"
blanchet@56078
   344
  "(if P then x = y else z = y) = (y = (if P then x else z))"
blanchet@56078
   345
  by auto
blanchet@56078
   346
blanchet@58061
   347
lemma [z3_rule]:
blanchet@56078
   348
  "0 + (x::int) = x"
blanchet@56078
   349
  "x + 0 = x"
blanchet@56078
   350
  "x + x = 2 * x"
blanchet@56078
   351
  "0 * x = 0"
blanchet@56078
   352
  "1 * x = x"
blanchet@56078
   353
  "x + y = y + x"
blanchet@57230
   354
  by (auto simp add: mult_2)
blanchet@56078
   355
blanchet@58061
   356
lemma [z3_rule]:  (* for def-axiom *)
blanchet@56078
   357
  "P = Q \<or> P \<or> Q"
blanchet@57169
   358
  "P = Q \<or> \<not> P \<or> \<not> Q"
blanchet@57169
   359
  "(\<not> P) = Q \<or> \<not> P \<or> Q"
blanchet@57169
   360
  "(\<not> P) = Q \<or> P \<or> \<not> Q"
blanchet@57169
   361
  "P = (\<not> Q) \<or> \<not> P \<or> Q"
blanchet@57169
   362
  "P = (\<not> Q) \<or> P \<or> \<not> Q"
blanchet@57169
   363
  "P \<noteq> Q \<or> P \<or> \<not> Q"
blanchet@57169
   364
  "P \<noteq> Q \<or> \<not> P \<or> Q"
blanchet@57169
   365
  "P \<noteq> (\<not> Q) \<or> P \<or> Q"
blanchet@57169
   366
  "(\<not> P) \<noteq> Q \<or> P \<or> Q"
blanchet@57169
   367
  "P \<or> Q \<or> P \<noteq> (\<not> Q)"
blanchet@57169
   368
  "P \<or> Q \<or> (\<not> P) \<noteq> Q"
blanchet@57169
   369
  "P \<or> \<not> Q \<or> P \<noteq> Q"
blanchet@57169
   370
  "\<not> P \<or> Q \<or> P \<noteq> Q"
blanchet@56078
   371
  "P \<or> y = (if P then x else y)"
blanchet@56078
   372
  "P \<or> (if P then x else y) = y"
blanchet@57169
   373
  "\<not> P \<or> x = (if P then x else y)"
blanchet@57169
   374
  "\<not> P \<or> (if P then x else y) = x"
blanchet@57169
   375
  "P \<or> R \<or> \<not> (if P then Q else R)"
blanchet@57169
   376
  "\<not> P \<or> Q \<or> \<not> (if P then Q else R)"
blanchet@57169
   377
  "\<not> (if P then Q else R) \<or> \<not> P \<or> Q"
blanchet@57169
   378
  "\<not> (if P then Q else R) \<or> P \<or> R"
blanchet@57169
   379
  "(if P then Q else R) \<or> \<not> P \<or> \<not> Q"
blanchet@57169
   380
  "(if P then Q else R) \<or> P \<or> \<not> R"
blanchet@57169
   381
  "(if P then \<not> Q else R) \<or> \<not> P \<or> Q"
blanchet@57169
   382
  "(if P then Q else \<not> R) \<or> P \<or> R"
blanchet@56078
   383
  by auto
blanchet@56078
   384
blanchet@57230
   385
hide_type (open) symb_list pattern
blanchet@57230
   386
hide_const (open) Symb_Nil Symb_Cons trigger pat nopat fun_app z3div z3mod
blanchet@56078
   387
blanchet@56078
   388
end