src/HOL/HOL.ML
author nipkow
Wed Sep 09 17:34:58 1998 +0200 (1998-09-09)
changeset 5447 df03d330aeab
parent 5346 bc9748ad8491
child 5760 7e2cf2820684
permissions -rw-r--r--
Proved and added rewrite rule (@x. x=y) = y to simpset.
Strange that only the symetric version was present!
clasohm@1465
     1
(*  Title:      HOL/HOL.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
clasohm@1465
     6
For HOL.thy
clasohm@923
     7
Derived rules from Appendix of Mike Gordons HOL Report, Cambridge TR 68 
clasohm@923
     8
*)
clasohm@923
     9
clasohm@923
    10
open HOL;
clasohm@923
    11
clasohm@923
    12
clasohm@923
    13
(** Equality **)
oheimb@1660
    14
section "=";
clasohm@923
    15
clasohm@923
    16
qed_goal "sym" HOL.thy "s=t ==> t=s"
clasohm@923
    17
 (fn prems => [cut_facts_tac prems 1, etac subst 1, rtac refl 1]);
clasohm@923
    18
clasohm@923
    19
(*calling "standard" reduces maxidx to 0*)
clasohm@923
    20
bind_thm ("ssubst", (sym RS subst));
clasohm@923
    21
clasohm@923
    22
qed_goal "trans" HOL.thy "[| r=s; s=t |] ==> r=t"
clasohm@923
    23
 (fn prems =>
clasohm@1465
    24
        [rtac subst 1, resolve_tac prems 1, resolve_tac prems 1]);
clasohm@923
    25
paulson@5309
    26
val prems = goal thy "(A == B) ==> A = B";
paulson@5309
    27
by (rewrite_goals_tac prems);
paulson@5309
    28
by (rtac refl 1);
paulson@5309
    29
qed "def_imp_eq";
paulson@5309
    30
clasohm@923
    31
(*Useful with eresolve_tac for proving equalties from known equalities.
clasohm@1465
    32
        a = b
clasohm@1465
    33
        |   |
clasohm@1465
    34
        c = d   *)
clasohm@923
    35
qed_goal "box_equals" HOL.thy
clasohm@923
    36
    "[| a=b;  a=c;  b=d |] ==> c=d"  
clasohm@923
    37
 (fn prems=>
clasohm@923
    38
  [ (rtac trans 1),
clasohm@923
    39
    (rtac trans 1),
clasohm@923
    40
    (rtac sym 1),
clasohm@923
    41
    (REPEAT (resolve_tac prems 1)) ]);
clasohm@923
    42
oheimb@1660
    43
clasohm@923
    44
(** Congruence rules for meta-application **)
oheimb@1660
    45
section "Congruence";
clasohm@923
    46
clasohm@923
    47
(*similar to AP_THM in Gordon's HOL*)
clasohm@923
    48
qed_goal "fun_cong" HOL.thy "(f::'a=>'b) = g ==> f(x)=g(x)"
clasohm@923
    49
  (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]);
clasohm@923
    50
clasohm@923
    51
(*similar to AP_TERM in Gordon's HOL and FOL's subst_context*)
clasohm@923
    52
qed_goal "arg_cong" HOL.thy "x=y ==> f(x)=f(y)"
clasohm@923
    53
 (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]);
clasohm@923
    54
clasohm@923
    55
qed_goal "cong" HOL.thy
clasohm@923
    56
   "[| f = g; (x::'a) = y |] ==> f(x) = g(y)"
clasohm@923
    57
 (fn [prem1,prem2] =>
clasohm@923
    58
   [rtac (prem1 RS subst) 1, rtac (prem2 RS subst) 1, rtac refl 1]);
clasohm@923
    59
oheimb@1660
    60
clasohm@923
    61
(** Equality of booleans -- iff **)
oheimb@1660
    62
section "iff";
clasohm@923
    63
clasohm@923
    64
qed_goal "iffI" HOL.thy
clasohm@923
    65
   "[| P ==> Q;  Q ==> P |] ==> P=Q"
clasohm@923
    66
 (fn prems=> [ (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1)) ]);
clasohm@923
    67
clasohm@923
    68
qed_goal "iffD2" HOL.thy "[| P=Q; Q |] ==> P"
clasohm@923
    69
 (fn prems =>
clasohm@1465
    70
        [rtac ssubst 1, resolve_tac prems 1, resolve_tac prems 1]);
clasohm@923
    71
paulson@4467
    72
qed_goal "rev_iffD2" HOL.thy "!!P. [| Q; P=Q |] ==> P"
paulson@4467
    73
 (fn _ => [etac iffD2 1, assume_tac 1]);
paulson@4467
    74
paulson@4467
    75
bind_thm ("iffD1", sym RS iffD2);
paulson@4467
    76
bind_thm ("rev_iffD1", sym RSN (2, rev_iffD2));
clasohm@923
    77
clasohm@923
    78
qed_goal "iffE" HOL.thy
clasohm@923
    79
    "[| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R"
clasohm@923
    80
 (fn [p1,p2] => [REPEAT(ares_tac([p1 RS iffD2, p1 RS iffD1, p2, impI])1)]);
clasohm@923
    81
oheimb@1660
    82
clasohm@923
    83
(** True **)
oheimb@1660
    84
section "True";
clasohm@923
    85
clasohm@923
    86
qed_goalw "TrueI" HOL.thy [True_def] "True"
clasohm@923
    87
  (fn _ => [rtac refl 1]);
clasohm@923
    88
wenzelm@4025
    89
qed_goal "eqTrueI" HOL.thy "P ==> P=True" 
clasohm@923
    90
 (fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]);
clasohm@923
    91
clasohm@923
    92
qed_goal "eqTrueE" HOL.thy "P=True ==> P" 
clasohm@923
    93
 (fn prems => [REPEAT(resolve_tac (prems@[TrueI,iffD2]) 1)]);
clasohm@923
    94
oheimb@1660
    95
clasohm@923
    96
(** Universal quantifier **)
oheimb@1660
    97
section "!";
clasohm@923
    98
clasohm@923
    99
qed_goalw "allI" HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)"
clasohm@923
   100
 (fn prems => [resolve_tac (prems RL [eqTrueI RS ext]) 1]);
clasohm@923
   101
wenzelm@3842
   102
qed_goalw "spec" HOL.thy [All_def] "! x::'a. P(x) ==> P(x)"
clasohm@923
   103
 (fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]);
clasohm@923
   104
wenzelm@3842
   105
qed_goal "allE" HOL.thy "[| !x. P(x);  P(x) ==> R |] ==> R"
clasohm@923
   106
 (fn major::prems=>
clasohm@923
   107
  [ (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ]);
clasohm@923
   108
clasohm@923
   109
qed_goal "all_dupE" HOL.thy 
wenzelm@3842
   110
    "[| ! x. P(x);  [| P(x); ! x. P(x) |] ==> R |] ==> R"
clasohm@923
   111
 (fn prems =>
clasohm@923
   112
  [ (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ]);
clasohm@923
   113
clasohm@923
   114
clasohm@923
   115
(** False ** Depends upon spec; it is impossible to do propositional logic
clasohm@923
   116
             before quantifiers! **)
oheimb@1660
   117
section "False";
clasohm@923
   118
clasohm@923
   119
qed_goalw "FalseE" HOL.thy [False_def] "False ==> P"
clasohm@923
   120
 (fn [major] => [rtac (major RS spec) 1]);
clasohm@923
   121
clasohm@923
   122
qed_goal "False_neq_True" HOL.thy "False=True ==> P"
clasohm@923
   123
 (fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]);
clasohm@923
   124
clasohm@923
   125
clasohm@923
   126
(** Negation **)
oheimb@1660
   127
section "~";
clasohm@923
   128
clasohm@923
   129
qed_goalw "notI" HOL.thy [not_def] "(P ==> False) ==> ~P"
clasohm@923
   130
 (fn prems=> [rtac impI 1, eresolve_tac prems 1]);
clasohm@923
   131
clasohm@923
   132
qed_goalw "notE" HOL.thy [not_def] "[| ~P;  P |] ==> R"
clasohm@923
   133
 (fn prems => [rtac (prems MRS mp RS FalseE) 1]);
clasohm@923
   134
oheimb@2442
   135
bind_thm ("classical2", notE RS notI);
oheimb@2442
   136
paulson@1840
   137
qed_goal "rev_notE" HOL.thy "!!P R. [| P; ~P |] ==> R"
paulson@1840
   138
 (fn _ => [REPEAT (ares_tac [notE] 1)]);
paulson@1840
   139
oheimb@1660
   140
clasohm@923
   141
(** Implication **)
oheimb@1660
   142
section "-->";
clasohm@923
   143
clasohm@923
   144
qed_goal "impE" HOL.thy "[| P-->Q;  P;  Q ==> R |] ==> R"
clasohm@923
   145
 (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
clasohm@923
   146
clasohm@923
   147
(* Reduces Q to P-->Q, allowing substitution in P. *)
clasohm@923
   148
qed_goal "rev_mp" HOL.thy "[| P;  P --> Q |] ==> Q"
clasohm@923
   149
 (fn prems=>  [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
clasohm@923
   150
clasohm@923
   151
qed_goal "contrapos" HOL.thy "[| ~Q;  P==>Q |] ==> ~P"
clasohm@923
   152
 (fn [major,minor]=> 
clasohm@923
   153
  [ (rtac (major RS notE RS notI) 1), 
clasohm@923
   154
    (etac minor 1) ]);
clasohm@923
   155
nipkow@1334
   156
qed_goal "rev_contrapos" HOL.thy "[| P==>Q; ~Q |] ==> ~P"
nipkow@1334
   157
 (fn [major,minor]=> 
nipkow@1334
   158
  [ (rtac (minor RS contrapos) 1), (etac major 1) ]);
nipkow@1334
   159
clasohm@923
   160
(* ~(?t = ?s) ==> ~(?s = ?t) *)
nipkow@1334
   161
bind_thm("not_sym", sym COMP rev_contrapos);
clasohm@923
   162
clasohm@923
   163
clasohm@923
   164
(** Existential quantifier **)
oheimb@1660
   165
section "?";
clasohm@923
   166
oheimb@4527
   167
qed_goalw "exI" HOL.thy [Ex_def] "P x ==> ? x::'a. P x"
clasohm@923
   168
 (fn prems => [rtac selectI 1, resolve_tac prems 1]);
clasohm@923
   169
clasohm@923
   170
qed_goalw "exE" HOL.thy [Ex_def]
wenzelm@3842
   171
  "[| ? x::'a. P(x); !!x. P(x) ==> Q |] ==> Q"
clasohm@923
   172
  (fn prems => [REPEAT(resolve_tac prems 1)]);
clasohm@923
   173
clasohm@923
   174
clasohm@923
   175
(** Conjunction **)
oheimb@1660
   176
section "&";
clasohm@923
   177
clasohm@923
   178
qed_goalw "conjI" HOL.thy [and_def] "[| P; Q |] ==> P&Q"
clasohm@923
   179
 (fn prems =>
clasohm@923
   180
  [REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)]);
clasohm@923
   181
clasohm@923
   182
qed_goalw "conjunct1" HOL.thy [and_def] "[| P & Q |] ==> P"
clasohm@923
   183
 (fn prems =>
clasohm@923
   184
   [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
clasohm@923
   185
clasohm@923
   186
qed_goalw "conjunct2" HOL.thy [and_def] "[| P & Q |] ==> Q"
clasohm@923
   187
 (fn prems =>
clasohm@923
   188
   [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
clasohm@923
   189
clasohm@923
   190
qed_goal "conjE" HOL.thy "[| P&Q;  [| P; Q |] ==> R |] ==> R"
clasohm@923
   191
 (fn prems =>
clasohm@1465
   192
         [cut_facts_tac prems 1, resolve_tac prems 1,
clasohm@1465
   193
          etac conjunct1 1, etac conjunct2 1]);
clasohm@923
   194
oheimb@1660
   195
clasohm@923
   196
(** Disjunction *)
oheimb@1660
   197
section "|";
clasohm@923
   198
clasohm@923
   199
qed_goalw "disjI1" HOL.thy [or_def] "P ==> P|Q"
clasohm@923
   200
 (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
clasohm@923
   201
clasohm@923
   202
qed_goalw "disjI2" HOL.thy [or_def] "Q ==> P|Q"
clasohm@923
   203
 (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
clasohm@923
   204
clasohm@923
   205
qed_goalw "disjE" HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R"
clasohm@923
   206
 (fn [a1,a2,a3] =>
clasohm@1465
   207
        [rtac (mp RS mp) 1, rtac spec 1, rtac a1 1,
clasohm@1465
   208
         rtac (a2 RS impI) 1, assume_tac 1, rtac (a3 RS impI) 1, assume_tac 1]);
clasohm@923
   209
oheimb@1660
   210
clasohm@923
   211
(** CCONTR -- classical logic **)
oheimb@1660
   212
section "classical logic";
clasohm@923
   213
clasohm@923
   214
qed_goalw "classical" HOL.thy [not_def]  "(~P ==> P) ==> P"
clasohm@923
   215
 (fn [prem] =>
clasohm@923
   216
   [rtac (True_or_False RS (disjE RS eqTrueE)) 1,  assume_tac 1,
clasohm@923
   217
    rtac (impI RS prem RS eqTrueI) 1,
clasohm@923
   218
    etac subst 1,  assume_tac 1]);
clasohm@923
   219
clasohm@923
   220
val ccontr = FalseE RS classical;
clasohm@923
   221
clasohm@923
   222
(*Double negation law*)
clasohm@923
   223
qed_goal "notnotD" HOL.thy "~~P ==> P"
clasohm@923
   224
 (fn [major]=>
clasohm@923
   225
  [ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]);
clasohm@923
   226
oheimb@1660
   227
qed_goal "contrapos2" HOL.thy "[| Q; ~ P ==> ~ Q |] ==> P" (fn [p1,p2] => [
paulson@2031
   228
        rtac classical 1,
paulson@2031
   229
        dtac p2 1,
paulson@2031
   230
        etac notE 1,
paulson@2031
   231
        rtac p1 1]);
oheimb@1660
   232
oheimb@1660
   233
qed_goal "swap2" HOL.thy "[| P;  Q ==> ~ P |] ==> ~ Q" (fn [p1,p2] => [
paulson@2031
   234
        rtac notI 1,
paulson@2031
   235
        dtac p2 1,
paulson@2031
   236
        etac notE 1,
paulson@2031
   237
        rtac p1 1]);
clasohm@923
   238
clasohm@923
   239
(** Unique existence **)
oheimb@1660
   240
section "?!";
clasohm@923
   241
clasohm@923
   242
qed_goalw "ex1I" HOL.thy [Ex1_def]
paulson@2031
   243
            "[| P(a);  !!x. P(x) ==> x=a |] ==> ?! x. P(x)"
clasohm@923
   244
 (fn prems =>
clasohm@923
   245
  [REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]);
clasohm@923
   246
paulson@3003
   247
(*Sometimes easier to use: the premises have no shared variables.  Safe!*)
paulson@3003
   248
qed_goal "ex_ex1I" HOL.thy
wenzelm@3842
   249
    "[| ? x. P(x);  !!x y. [| P(x); P(y) |] ==> x=y |] ==> ?! x. P(x)"
paulson@3003
   250
 (fn [ex,eq] => [ (rtac (ex RS exE) 1),
paulson@3003
   251
                  (REPEAT (ares_tac [ex1I,eq] 1)) ]);
paulson@3003
   252
clasohm@923
   253
qed_goalw "ex1E" HOL.thy [Ex1_def]
wenzelm@3842
   254
    "[| ?! x. P(x);  !!x. [| P(x);  ! y. P(y) --> y=x |] ==> R |] ==> R"
clasohm@923
   255
 (fn major::prems =>
clasohm@923
   256
  [rtac (major RS exE) 1, REPEAT (etac conjE 1 ORELSE ares_tac prems 1)]);
clasohm@923
   257
berghofe@5185
   258
Goal "?! x. P x ==> ? x. P x";
wenzelm@5228
   259
by (etac ex1E 1);
wenzelm@5228
   260
by (rtac exI 1);
wenzelm@5228
   261
by (assume_tac 1);
berghofe@5185
   262
qed "ex1_implies_ex";
berghofe@5185
   263
clasohm@923
   264
clasohm@923
   265
(** Select: Hilbert's Epsilon-operator **)
oheimb@1660
   266
section "@";
clasohm@923
   267
clasohm@923
   268
(*Easier to apply than selectI: conclusion has only one occurrence of P*)
clasohm@923
   269
qed_goal "selectI2" HOL.thy
oheimb@4527
   270
    "[| P a;  !!x. P x ==> Q x |] ==> Q (@x. P x)"
clasohm@923
   271
 (fn prems => [ resolve_tac prems 1, 
clasohm@1465
   272
                rtac selectI 1, 
clasohm@1465
   273
                resolve_tac prems 1 ]);
clasohm@923
   274
nipkow@3646
   275
(*Easier to apply than selectI2 if witness ?a comes from an EX-formula*)
nipkow@3646
   276
qed_goal "selectI2EX" HOL.thy
oheimb@4527
   277
  "[| ? a. P a; !!x. P x ==> Q x |] ==> Q (Eps P)"
nipkow@3646
   278
(fn [major,minor] => [rtac (major RS exE) 1, etac selectI2 1, etac minor 1]);
nipkow@3646
   279
clasohm@923
   280
qed_goal "select_equality" HOL.thy
oheimb@4527
   281
    "[| P a;  !!x. P x ==> x=a |] ==> (@x. P x) = a"
clasohm@923
   282
 (fn prems => [ rtac selectI2 1, 
clasohm@1465
   283
                REPEAT (ares_tac prems 1) ]);
clasohm@923
   284
nipkow@3646
   285
qed_goalw "select1_equality" HOL.thy [Ex1_def]
oheimb@4527
   286
  "!!P. [| ?!x. P x; P a |] ==> (@x. P x) = a" (K [
oheimb@4131
   287
	  rtac select_equality 1, atac 1,
nipkow@3646
   288
          etac exE 1, etac conjE 1,
nipkow@3646
   289
          rtac allE 1, atac 1,
nipkow@3646
   290
          etac impE 1, atac 1, etac ssubst 1,
nipkow@3646
   291
          etac allE 1, etac impE 1, atac 1, etac ssubst 1,
nipkow@3646
   292
          rtac refl 1]);
nipkow@3436
   293
oheimb@4131
   294
qed_goal "select_eq_Ex" HOL.thy "P (@ x. P x) =  (? x. P x)" (K [
oheimb@1660
   295
        rtac iffI 1,
oheimb@1660
   296
        etac exI 1,
oheimb@1660
   297
        etac exE 1,
oheimb@1660
   298
        etac selectI 1]);
oheimb@1660
   299
nipkow@5447
   300
qed_goal "Eps_eq" HOL.thy "(@y. y=x) = x" (K [
nipkow@5447
   301
	rtac select_equality 1,
nipkow@5447
   302
	rtac refl 1,
nipkow@5447
   303
	atac 1]);
nipkow@5447
   304
nipkow@5447
   305
qed_goal "Eps_sym_eq" HOL.thy "(Eps (op = x)) = x" (K [
oheimb@5299
   306
	rtac select_equality 1,
oheimb@5299
   307
	rtac refl 1,
oheimb@5299
   308
	etac sym 1]);
clasohm@923
   309
clasohm@923
   310
(** Classical intro rules for disjunction and existential quantifiers *)
oheimb@1660
   311
section "classical intro rules";
clasohm@923
   312
clasohm@923
   313
qed_goal "disjCI" HOL.thy "(~Q ==> P) ==> P|Q"
clasohm@923
   314
 (fn prems=>
clasohm@923
   315
  [ (rtac classical 1),
clasohm@923
   316
    (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
clasohm@923
   317
    (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
clasohm@923
   318
clasohm@923
   319
qed_goal "excluded_middle" HOL.thy "~P | P"
clasohm@923
   320
 (fn _ => [ (REPEAT (ares_tac [disjCI] 1)) ]);
clasohm@923
   321
clasohm@923
   322
(*For disjunctive case analysis*)
clasohm@923
   323
fun excluded_middle_tac sP =
clasohm@923
   324
    res_inst_tac [("Q",sP)] (excluded_middle RS disjE);
clasohm@923
   325
clasohm@923
   326
(*Classical implies (-->) elimination. *)
clasohm@923
   327
qed_goal "impCE" HOL.thy "[| P-->Q; ~P ==> R; Q ==> R |] ==> R" 
clasohm@923
   328
 (fn major::prems=>
clasohm@923
   329
  [ rtac (excluded_middle RS disjE) 1,
clasohm@923
   330
    REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1))]);
clasohm@923
   331
paulson@4302
   332
(*This version of --> elimination works on Q before P.  It works best for
paulson@4302
   333
  those cases in which P holds "almost everywhere".  Can't install as
paulson@4302
   334
  default: would break old proofs.*)
paulson@4302
   335
qed_goal "impCE'" thy 
paulson@4302
   336
    "[| P-->Q;  Q ==> R;  ~P ==> R |] ==> R"
paulson@4302
   337
 (fn major::prems=>
paulson@4302
   338
  [ (resolve_tac [excluded_middle RS disjE] 1),
paulson@4302
   339
    (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
paulson@4302
   340
clasohm@923
   341
(*Classical <-> elimination. *)
clasohm@923
   342
qed_goal "iffCE" HOL.thy
clasohm@923
   343
    "[| P=Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R"
clasohm@923
   344
 (fn major::prems =>
clasohm@923
   345
  [ (rtac (major RS iffE) 1),
clasohm@923
   346
    (REPEAT (DEPTH_SOLVE_1 
clasohm@1465
   347
        (eresolve_tac ([asm_rl,impCE,notE]@prems) 1))) ]);
clasohm@923
   348
wenzelm@3842
   349
qed_goal "exCI" HOL.thy "(! x. ~P(x) ==> P(a)) ==> ? x. P(x)"
clasohm@923
   350
 (fn prems=>
clasohm@923
   351
  [ (rtac ccontr 1),
clasohm@923
   352
    (REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1))  ]);
clasohm@923
   353
clasohm@923
   354
clasohm@923
   355
(* case distinction *)
clasohm@923
   356
clasohm@923
   357
qed_goal "case_split_thm" HOL.thy "[| P ==> Q; ~P ==> Q |] ==> Q"
paulson@5154
   358
  (fn [p1,p2] => [rtac (excluded_middle RS disjE) 1,
clasohm@923
   359
                  etac p2 1, etac p1 1]);
clasohm@923
   360
clasohm@923
   361
fun case_tac a = res_inst_tac [("P",a)] case_split_thm;
clasohm@923
   362
oheimb@1660
   363
clasohm@923
   364
(** Standard abbreviations **)
clasohm@923
   365
paulson@5309
   366
(*Apply an equality or definition ONCE.
paulson@5309
   367
  Fails unless the substitution has an effect*)
paulson@5309
   368
fun stac th = 
paulson@5309
   369
  let val th' = th RS def_imp_eq handle _ => th
paulson@5309
   370
  in  CHANGED_GOAL (rtac (th' RS ssubst))
paulson@5309
   371
  end;
paulson@5139
   372
clasohm@923
   373
fun strip_tac i = REPEAT(resolve_tac [impI,allI] i); 
clasohm@1338
   374
paulson@2562
   375
paulson@2562
   376
(** strip ! and --> from proved goal while preserving !-bound var names **)
nipkow@1485
   377
nipkow@1485
   378
local
nipkow@1485
   379
nipkow@1515
   380
(* Use XXX to avoid forall_intr failing because of duplicate variable name *)
nipkow@1485
   381
val myspec = read_instantiate [("P","?XXX")] spec;
nipkow@1485
   382
val _ $ (_ $ (vx as Var(_,vxT))) = concl_of myspec;
nipkow@1485
   383
val cvx = cterm_of (#sign(rep_thm myspec)) vx;
nipkow@1485
   384
val aspec = forall_intr cvx myspec;
nipkow@1485
   385
nipkow@1485
   386
in
nipkow@1485
   387
nipkow@1515
   388
fun RSspec th =
nipkow@1515
   389
  (case concl_of th of
nipkow@1515
   390
     _ $ (Const("All",_) $ Abs(a,_,_)) =>
nipkow@1515
   391
         let val ca = cterm_of (#sign(rep_thm th)) (Var((a,0),vxT))
nipkow@1515
   392
         in th RS forall_elim ca aspec end
nipkow@1515
   393
  | _ => raise THM("RSspec",0,[th]));
nipkow@1515
   394
nipkow@1515
   395
fun RSmp th =
nipkow@1515
   396
  (case concl_of th of
nipkow@1515
   397
     _ $ (Const("op -->",_)$_$_) => th RS mp
nipkow@1515
   398
  | _ => raise THM("RSmp",0,[th]));
nipkow@1515
   399
nipkow@1515
   400
fun normalize_thm funs =
paulson@5346
   401
  let fun trans [] th = th
paulson@5346
   402
	| trans (f::fs) th = (trans funs (f th)) handle THM _ => trans fs th
paulson@5346
   403
  in zero_var_indexes o trans funs end;
nipkow@1515
   404
berghofe@3615
   405
fun qed_spec_mp name =
berghofe@3615
   406
  let val thm = normalize_thm [RSspec,RSmp] (result())
paulson@5346
   407
  in ml_store_thm(name, thm) end;
berghofe@3615
   408
berghofe@3615
   409
fun qed_goal_spec_mp name thy s p = 
berghofe@3615
   410
	bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goal thy s p));
berghofe@3615
   411
berghofe@3615
   412
fun qed_goalw_spec_mp name thy defs s p = 
berghofe@3615
   413
	bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goalw thy defs s p));
oheimb@1660
   414
wenzelm@3621
   415
end;