src/HOL/Library/Commutative_Ring.thy
author chaieb
Mon Jun 11 11:06:04 2007 +0200 (2007-06-11)
changeset 23315 df3a7e9ebadb
parent 22742 06165e40e7bd
child 23477 f4b83f03cac9
permissions -rw-r--r--
tuned Proof
wenzelm@17516
     1
(*  ID:         $Id$
wenzelm@17516
     2
    Author:     Bernhard Haeupler
wenzelm@17516
     3
wenzelm@17516
     4
Proving equalities in commutative rings done "right" in Isabelle/HOL.
wenzelm@17516
     5
*)
wenzelm@17516
     6
wenzelm@17516
     7
header {* Proving equalities in commutative rings *}
wenzelm@17516
     8
wenzelm@17516
     9
theory Commutative_Ring
wenzelm@21256
    10
imports Main Parity
wenzelm@17516
    11
uses ("comm_ring.ML")
wenzelm@17516
    12
begin
wenzelm@17516
    13
wenzelm@17516
    14
text {* Syntax of multivariate polynomials (pol) and polynomial expressions. *}
wenzelm@17516
    15
wenzelm@17516
    16
datatype 'a pol =
wenzelm@17516
    17
    Pc 'a
wenzelm@17516
    18
  | Pinj nat "'a pol"
wenzelm@17516
    19
  | PX "'a pol" nat "'a pol"
wenzelm@17516
    20
wenzelm@17516
    21
datatype 'a polex =
wenzelm@20622
    22
    Pol "'a pol"
wenzelm@17516
    23
  | Add "'a polex" "'a polex"
wenzelm@17516
    24
  | Sub "'a polex" "'a polex"
wenzelm@17516
    25
  | Mul "'a polex" "'a polex"
wenzelm@17516
    26
  | Pow "'a polex" nat
wenzelm@17516
    27
  | Neg "'a polex"
wenzelm@17516
    28
wenzelm@17516
    29
text {* Interpretation functions for the shadow syntax. *}
wenzelm@17516
    30
haftmann@22742
    31
fun
wenzelm@17516
    32
  Ipol :: "'a::{comm_ring,recpower} list \<Rightarrow> 'a pol \<Rightarrow> 'a"
haftmann@22742
    33
where
haftmann@22742
    34
    "Ipol l (Pc c) = c"
haftmann@22742
    35
  | "Ipol l (Pinj i P) = Ipol (drop i l) P"
haftmann@22742
    36
  | "Ipol l (PX P x Q) = Ipol l P * (hd l)^x + Ipol (drop 1 l) Q"
wenzelm@17516
    37
haftmann@22742
    38
fun
haftmann@22742
    39
  Ipolex :: "'a::{comm_ring,recpower} list \<Rightarrow> 'a polex \<Rightarrow> 'a"
haftmann@22742
    40
where
haftmann@22742
    41
    "Ipolex l (Pol P) = Ipol l P"
haftmann@22742
    42
  | "Ipolex l (Add P Q) = Ipolex l P + Ipolex l Q"
haftmann@22742
    43
  | "Ipolex l (Sub P Q) = Ipolex l P - Ipolex l Q"
haftmann@22742
    44
  | "Ipolex l (Mul P Q) = Ipolex l P * Ipolex l Q"
haftmann@22742
    45
  | "Ipolex l (Pow p n) = Ipolex l p ^ n"
haftmann@22742
    46
  | "Ipolex l (Neg P) = - Ipolex l P"
wenzelm@17516
    47
wenzelm@17516
    48
text {* Create polynomial normalized polynomials given normalized inputs. *}
wenzelm@17516
    49
wenzelm@19736
    50
definition
wenzelm@21404
    51
  mkPinj :: "nat \<Rightarrow> 'a pol \<Rightarrow> 'a pol" where
wenzelm@19736
    52
  "mkPinj x P = (case P of
wenzelm@17516
    53
    Pc c \<Rightarrow> Pc c |
wenzelm@17516
    54
    Pinj y P \<Rightarrow> Pinj (x + y) P |
wenzelm@17516
    55
    PX p1 y p2 \<Rightarrow> Pinj x P)"
wenzelm@17516
    56
wenzelm@19736
    57
definition
wenzelm@21404
    58
  mkPX :: "'a::{comm_ring,recpower} pol \<Rightarrow> nat \<Rightarrow> 'a pol \<Rightarrow> 'a pol" where
wenzelm@19736
    59
  "mkPX P i Q = (case P of
wenzelm@17516
    60
    Pc c \<Rightarrow> (if (c = 0) then (mkPinj 1 Q) else (PX P i Q)) |
wenzelm@17516
    61
    Pinj j R \<Rightarrow> PX P i Q |
wenzelm@17516
    62
    PX P2 i2 Q2 \<Rightarrow> (if (Q2 = (Pc 0)) then (PX P2 (i+i2) Q) else (PX P i Q)) )"
wenzelm@17516
    63
wenzelm@17516
    64
text {* Defining the basic ring operations on normalized polynomials *}
wenzelm@17516
    65
haftmann@22742
    66
function
haftmann@22742
    67
  add :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol \<Rightarrow> 'a pol" (infixl "\<oplus>" 65)
haftmann@22742
    68
where
haftmann@22742
    69
    "Pc a \<oplus> Pc b = Pc (a + b)"
haftmann@22742
    70
  | "Pc c \<oplus> Pinj i P = Pinj i (P \<oplus> Pc c)"
haftmann@22742
    71
  | "Pinj i P \<oplus> Pc c = Pinj i (P \<oplus> Pc c)"
haftmann@22742
    72
  | "Pc c \<oplus> PX P i Q = PX P i (Q \<oplus> Pc c)"
haftmann@22742
    73
  | "PX P i Q \<oplus> Pc c = PX P i (Q \<oplus> Pc c)"
haftmann@22742
    74
  | "Pinj x P \<oplus> Pinj y Q =
haftmann@22742
    75
      (if x = y then mkPinj x (P \<oplus> Q)
haftmann@22742
    76
       else (if x > y then mkPinj y (Pinj (x - y) P \<oplus> Q)
haftmann@22742
    77
         else mkPinj x (Pinj (y - x) Q \<oplus> P)))"
haftmann@22742
    78
  | "Pinj x P \<oplus> PX Q y R =
haftmann@22742
    79
      (if x = 0 then P \<oplus> PX Q y R
haftmann@22742
    80
       else (if x = 1 then PX Q y (R \<oplus> P)
haftmann@22742
    81
         else PX Q y (R \<oplus> Pinj (x - 1) P)))"
haftmann@22742
    82
  | "PX P x R \<oplus> Pinj y Q =
haftmann@22742
    83
      (if y = 0 then PX P x R \<oplus> Q
haftmann@22742
    84
       else (if y = 1 then PX P x (R \<oplus> Q)
haftmann@22742
    85
         else PX P x (R \<oplus> Pinj (y - 1) Q)))"
haftmann@22742
    86
  | "PX P1 x P2 \<oplus> PX Q1 y Q2 =
haftmann@22742
    87
      (if x = y then mkPX (P1 \<oplus> Q1) x (P2 \<oplus> Q2)
haftmann@22742
    88
       else (if x > y then mkPX (PX P1 (x - y) (Pc 0) \<oplus> Q1) y (P2 \<oplus> Q2)
haftmann@22742
    89
         else mkPX (PX Q1 (y-x) (Pc 0) \<oplus> P1) x (P2 \<oplus> Q2)))"
haftmann@22742
    90
by pat_completeness auto
haftmann@22742
    91
termination by (relation "measure (\<lambda>(x, y). size x + size y)") auto
wenzelm@17516
    92
haftmann@22742
    93
function
haftmann@22742
    94
  mul :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol \<Rightarrow> 'a pol" (infixl "\<otimes>" 70)
haftmann@22742
    95
where
haftmann@22742
    96
    "Pc a \<otimes> Pc b = Pc (a * b)"
haftmann@22742
    97
  | "Pc c \<otimes> Pinj i P =
haftmann@22742
    98
      (if c = 0 then Pc 0 else mkPinj i (P \<otimes> Pc c))"
haftmann@22742
    99
  | "Pinj i P \<otimes> Pc c =
haftmann@22742
   100
      (if c = 0 then Pc 0 else mkPinj i (P \<otimes> Pc c))"
haftmann@22742
   101
  | "Pc c \<otimes> PX P i Q =
haftmann@22742
   102
      (if c = 0 then Pc 0 else mkPX (P \<otimes> Pc c) i (Q \<otimes> Pc c))"
haftmann@22742
   103
  | "PX P i Q \<otimes> Pc c =
haftmann@22742
   104
      (if c = 0 then Pc 0 else mkPX (P \<otimes> Pc c) i (Q \<otimes> Pc c))"
haftmann@22742
   105
  | "Pinj x P \<otimes> Pinj y Q =
haftmann@22742
   106
      (if x = y then mkPinj x (P \<otimes> Q) else
haftmann@22742
   107
         (if x > y then mkPinj y (Pinj (x-y) P \<otimes> Q)
haftmann@22742
   108
           else mkPinj x (Pinj (y - x) Q \<otimes> P)))"
haftmann@22742
   109
  | "Pinj x P \<otimes> PX Q y R =
haftmann@22742
   110
      (if x = 0 then P \<otimes> PX Q y R else
haftmann@22742
   111
         (if x = 1 then mkPX (Pinj x P \<otimes> Q) y (R \<otimes> P)
haftmann@22742
   112
           else mkPX (Pinj x P \<otimes> Q) y (R \<otimes> Pinj (x - 1) P)))"
haftmann@22742
   113
  | "PX P x R \<otimes> Pinj y Q =
haftmann@22742
   114
      (if y = 0 then PX P x R \<otimes> Q else
haftmann@22742
   115
         (if y = 1 then mkPX (Pinj y Q \<otimes> P) x (R \<otimes> Q)
haftmann@22742
   116
           else mkPX (Pinj y Q \<otimes> P) x (R \<otimes> Pinj (y - 1) Q)))"
haftmann@22742
   117
  | "PX P1 x P2 \<otimes> PX Q1 y Q2 =
haftmann@22742
   118
      mkPX (P1 \<otimes> Q1) (x + y) (P2 \<otimes> Q2) \<oplus>
haftmann@22742
   119
        (mkPX (P1 \<otimes> mkPinj 1 Q2) x (Pc 0) \<oplus>
haftmann@22742
   120
          (mkPX (Q1 \<otimes> mkPinj 1 P2) y (Pc 0)))"
haftmann@22742
   121
by pat_completeness auto
haftmann@22742
   122
termination by (relation "measure (\<lambda>(x, y). size x + size y)")
haftmann@22742
   123
  (auto simp add: mkPinj_def split: pol.split)
wenzelm@17516
   124
wenzelm@17516
   125
text {* Negation*}
haftmann@22742
   126
fun
haftmann@22742
   127
  neg :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol"
haftmann@22742
   128
where
haftmann@22742
   129
    "neg (Pc c) = Pc (-c)"
haftmann@22742
   130
  | "neg (Pinj i P) = Pinj i (neg P)"
haftmann@22742
   131
  | "neg (PX P x Q) = PX (neg P) x (neg Q)"
wenzelm@17516
   132
wenzelm@17516
   133
text {* Substraction *}
wenzelm@19736
   134
definition
haftmann@22742
   135
  sub :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol \<Rightarrow> 'a pol" (infixl "\<ominus>" 65)
haftmann@22742
   136
where
haftmann@22742
   137
  "sub P Q = P \<oplus> neg Q"
wenzelm@17516
   138
wenzelm@17516
   139
text {* Square for Fast Exponentation *}
haftmann@22742
   140
fun
haftmann@22742
   141
  sqr :: "'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol"
haftmann@22742
   142
where
haftmann@22742
   143
    "sqr (Pc c) = Pc (c * c)"
haftmann@22742
   144
  | "sqr (Pinj i P) = mkPinj i (sqr P)"
haftmann@22742
   145
  | "sqr (PX A x B) = mkPX (sqr A) (x + x) (sqr B) \<oplus>
haftmann@22742
   146
      mkPX (Pc (1 + 1) \<otimes> A \<otimes> mkPinj 1 B) x (Pc 0)"
wenzelm@17516
   147
wenzelm@17516
   148
text {* Fast Exponentation *}
haftmann@22742
   149
fun
haftmann@22742
   150
  pow :: "nat \<Rightarrow> 'a::{comm_ring,recpower} pol \<Rightarrow> 'a pol"
haftmann@22742
   151
where
haftmann@22742
   152
    "pow 0 P = Pc 1"
haftmann@22742
   153
  | "pow n P = (if even n then pow (n div 2) (sqr P)
haftmann@22742
   154
       else P \<otimes> pow (n div 2) (sqr P))"
haftmann@22742
   155
  
wenzelm@17516
   156
lemma pow_if:
haftmann@22742
   157
  "pow n P =
haftmann@22742
   158
   (if n = 0 then Pc 1 else if even n then pow (n div 2) (sqr P)
haftmann@22742
   159
    else P \<otimes> pow (n div 2) (sqr P))"
wenzelm@17516
   160
  by (cases n) simp_all
wenzelm@17516
   161
wenzelm@17516
   162
wenzelm@17516
   163
text {* Normalization of polynomial expressions *}
wenzelm@17516
   164
haftmann@22742
   165
fun
haftmann@22742
   166
  norm :: "'a::{comm_ring,recpower} polex \<Rightarrow> 'a pol"
haftmann@22742
   167
where
haftmann@22742
   168
    "norm (Pol P) = P"
haftmann@22742
   169
  | "norm (Add P Q) = norm P \<oplus> norm Q"
haftmann@22742
   170
  | "norm (Sub P Q) = norm P \<ominus> norm Q"
haftmann@22742
   171
  | "norm (Mul P Q) = norm P \<otimes> norm Q"
haftmann@22742
   172
  | "norm (Pow P n) = pow n (norm P)"
haftmann@22742
   173
  | "norm (Neg P) = neg (norm P)"
wenzelm@17516
   174
wenzelm@17516
   175
text {* mkPinj preserve semantics *}
wenzelm@17516
   176
lemma mkPinj_ci: "Ipol l (mkPinj a B) = Ipol l (Pinj a B)"
wenzelm@17516
   177
  by (induct B) (auto simp add: mkPinj_def ring_eq_simps)
wenzelm@17516
   178
wenzelm@17516
   179
text {* mkPX preserves semantics *}
wenzelm@17516
   180
lemma mkPX_ci: "Ipol l (mkPX A b C) = Ipol l (PX A b C)"
wenzelm@17516
   181
  by (cases A) (auto simp add: mkPX_def mkPinj_ci power_add ring_eq_simps)
wenzelm@17516
   182
wenzelm@17516
   183
text {* Correctness theorems for the implemented operations *}
wenzelm@17516
   184
wenzelm@17516
   185
text {* Negation *}
wenzelm@20622
   186
lemma neg_ci: "Ipol l (neg P) = -(Ipol l P)"
wenzelm@20622
   187
  by (induct P arbitrary: l) auto
wenzelm@17516
   188
wenzelm@17516
   189
text {* Addition *}
haftmann@22742
   190
lemma add_ci: "Ipol l (P \<oplus> Q) = Ipol l P + Ipol l Q"
wenzelm@20622
   191
proof (induct P Q arbitrary: l rule: add.induct)
wenzelm@17516
   192
  case (6 x P y Q)
wenzelm@17516
   193
  show ?case
wenzelm@17516
   194
  proof (rule linorder_cases)
wenzelm@17516
   195
    assume "x < y"
wenzelm@17516
   196
    with 6 show ?case by (simp add: mkPinj_ci ring_eq_simps)
wenzelm@17516
   197
  next
wenzelm@17516
   198
    assume "x = y"
wenzelm@17516
   199
    with 6 show ?case by (simp add: mkPinj_ci)
wenzelm@17516
   200
  next
wenzelm@17516
   201
    assume "x > y"
wenzelm@17516
   202
    with 6 show ?case by (simp add: mkPinj_ci ring_eq_simps)
wenzelm@17516
   203
  qed
wenzelm@17516
   204
next
wenzelm@17516
   205
  case (7 x P Q y R)
wenzelm@17516
   206
  have "x = 0 \<or> x = 1 \<or> x > 1" by arith
wenzelm@17516
   207
  moreover
wenzelm@17516
   208
  { assume "x = 0" with 7 have ?case by simp }
wenzelm@17516
   209
  moreover
wenzelm@17516
   210
  { assume "x = 1" with 7 have ?case by (simp add: ring_eq_simps) }
wenzelm@17516
   211
  moreover
wenzelm@17516
   212
  { assume "x > 1" from 7 have ?case by (cases x) simp_all }
wenzelm@17516
   213
  ultimately show ?case by blast
wenzelm@17516
   214
next
wenzelm@17516
   215
  case (8 P x R y Q)
wenzelm@17516
   216
  have "y = 0 \<or> y = 1 \<or> y > 1" by arith
wenzelm@17516
   217
  moreover
wenzelm@17516
   218
  { assume "y = 0" with 8 have ?case by simp }
wenzelm@17516
   219
  moreover
wenzelm@17516
   220
  { assume "y = 1" with 8 have ?case by simp }
wenzelm@17516
   221
  moreover
wenzelm@17516
   222
  { assume "y > 1" with 8 have ?case by simp }
wenzelm@17516
   223
  ultimately show ?case by blast
wenzelm@17516
   224
next
wenzelm@17516
   225
  case (9 P1 x P2 Q1 y Q2)
wenzelm@17516
   226
  show ?case
wenzelm@17516
   227
  proof (rule linorder_cases)
wenzelm@17516
   228
    assume a: "x < y" hence "EX d. d + x = y" by arith
wenzelm@17516
   229
    with 9 a show ?case by (auto simp add: mkPX_ci power_add ring_eq_simps)
wenzelm@17516
   230
  next
wenzelm@17516
   231
    assume a: "y < x" hence "EX d. d + y = x" by arith
wenzelm@17516
   232
    with 9 a show ?case by (auto simp add: power_add mkPX_ci ring_eq_simps)
wenzelm@17516
   233
  next
wenzelm@17516
   234
    assume "x = y"
wenzelm@17516
   235
    with 9 show ?case by (simp add: mkPX_ci ring_eq_simps)
wenzelm@17516
   236
  qed
wenzelm@17516
   237
qed (auto simp add: ring_eq_simps)
wenzelm@17516
   238
wenzelm@17516
   239
text {* Multiplication *}
haftmann@22742
   240
lemma mul_ci: "Ipol l (P \<otimes> Q) = Ipol l P * Ipol l Q"
wenzelm@20622
   241
  by (induct P Q arbitrary: l rule: mul.induct)
wenzelm@17516
   242
    (simp_all add: mkPX_ci mkPinj_ci ring_eq_simps add_ci power_add)
wenzelm@17516
   243
wenzelm@17516
   244
text {* Substraction *}
haftmann@22742
   245
lemma sub_ci: "Ipol l (P \<ominus> Q) = Ipol l P - Ipol l Q"
wenzelm@17516
   246
  by (simp add: add_ci neg_ci sub_def)
wenzelm@17516
   247
wenzelm@17516
   248
text {* Square *}
haftmann@22742
   249
lemma sqr_ci: "Ipol ls (sqr P) = Ipol ls P * Ipol ls P"
haftmann@22742
   250
  by (induct P arbitrary: ls)
wenzelm@20622
   251
    (simp_all add: add_ci mkPinj_ci mkPX_ci mul_ci ring_eq_simps power_add)
wenzelm@17516
   252
wenzelm@17516
   253
text {* Power *}
haftmann@22742
   254
lemma even_pow:"even n \<Longrightarrow> pow n P = pow (n div 2) (sqr P)"
wenzelm@20622
   255
  by (induct n) simp_all
wenzelm@17516
   256
haftmann@22742
   257
lemma pow_ci: "Ipol ls (pow n P) = Ipol ls P ^ n"
haftmann@22742
   258
proof (induct n arbitrary: P rule: nat_less_induct)
wenzelm@17516
   259
  case (1 k)
wenzelm@17516
   260
  show ?case
wenzelm@17516
   261
  proof (cases k)
wenzelm@20622
   262
    case 0
wenzelm@20622
   263
    then show ?thesis by simp
wenzelm@20622
   264
  next
wenzelm@17516
   265
    case (Suc l)
wenzelm@17516
   266
    show ?thesis
wenzelm@17516
   267
    proof cases
wenzelm@20622
   268
      assume "even l"
wenzelm@20622
   269
      then have "Suc l div 2 = l div 2"
wenzelm@20622
   270
        by (simp add: nat_number even_nat_plus_one_div_two)
wenzelm@17516
   271
      moreover
wenzelm@17516
   272
      from Suc have "l < k" by simp
haftmann@22742
   273
      with 1 have "\<And>P. Ipol ls (pow l P) = Ipol ls P ^ l" by simp
wenzelm@17516
   274
      moreover
wenzelm@20622
   275
      note Suc `even l` even_nat_plus_one_div_two
wenzelm@17516
   276
      ultimately show ?thesis by (auto simp add: mul_ci power_Suc even_pow)
wenzelm@17516
   277
    next
wenzelm@20622
   278
      assume "odd l"
wenzelm@20622
   279
      {
wenzelm@20622
   280
        fix p
haftmann@22742
   281
        have "Ipol ls (sqr P) ^ (Suc l div 2) = Ipol ls P ^ Suc l"
wenzelm@20622
   282
        proof (cases l)
wenzelm@20622
   283
          case 0
wenzelm@20622
   284
          with `odd l` show ?thesis by simp
wenzelm@20622
   285
        next
wenzelm@20622
   286
          case (Suc w)
wenzelm@20622
   287
          with `odd l` have "even w" by simp
wenzelm@20678
   288
          have two_times: "2 * (w div 2) = w"
wenzelm@20678
   289
            by (simp only: numerals even_nat_div_two_times_two [OF `even w`])
haftmann@22742
   290
          have "Ipol ls P * Ipol ls P = Ipol ls P ^ Suc (Suc 0)"
wenzelm@20622
   291
            by (simp add: power_Suc)
haftmann@22742
   292
	  then have "Ipol ls P * Ipol ls P = Ipol ls P ^ 2"
wenzelm@20678
   293
	    by (simp add: numerals)
wenzelm@20622
   294
          with Suc show ?thesis
wenzelm@20678
   295
            by (auto simp add: power_mult [symmetric, of _ 2 _] two_times mul_ci sqr_ci)
wenzelm@20622
   296
        qed
wenzelm@20622
   297
      } with 1 Suc `odd l` show ?thesis by simp
wenzelm@17516
   298
    qed
wenzelm@17516
   299
  qed
wenzelm@17516
   300
qed
wenzelm@17516
   301
wenzelm@17516
   302
text {* Normalization preserves semantics  *}
wenzelm@20622
   303
lemma norm_ci: "Ipolex l Pe = Ipol l (norm Pe)"
wenzelm@17516
   304
  by (induct Pe) (simp_all add: add_ci sub_ci mul_ci neg_ci pow_ci)
wenzelm@17516
   305
wenzelm@17516
   306
text {* Reflection lemma: Key to the (incomplete) decision procedure *}
wenzelm@17516
   307
lemma norm_eq:
wenzelm@20622
   308
  assumes "norm P1 = norm P2"
wenzelm@17516
   309
  shows "Ipolex l P1 = Ipolex l P2"
wenzelm@17516
   310
proof -
wenzelm@20622
   311
  from prems have "Ipol l (norm P1) = Ipol l (norm P2)" by simp
wenzelm@20622
   312
  then show ?thesis by (simp only: norm_ci)
wenzelm@17516
   313
qed
wenzelm@17516
   314
wenzelm@17516
   315
wenzelm@17516
   316
use "comm_ring.ML"
wenzelm@18708
   317
setup CommRing.setup
wenzelm@17516
   318
wenzelm@17516
   319
end