wenzelm@14706
|
1 |
(* Title : HOL/Library/Zorn.thy
|
paulson@13652
|
2 |
ID : $Id$
|
paulson@13652
|
3 |
Author : Jacques D. Fleuriot
|
wenzelm@14706
|
4 |
Description : Zorn's Lemma -- see Larry Paulson's Zorn.thy in ZF
|
wenzelm@14706
|
5 |
*)
|
paulson@13551
|
6 |
|
wenzelm@14706
|
7 |
header {* Zorn's Lemma *}
|
paulson@13551
|
8 |
|
nipkow@15131
|
9 |
theory Zorn
|
nipkow@15140
|
10 |
imports Main
|
nipkow@15131
|
11 |
begin
|
paulson@13551
|
12 |
|
wenzelm@14706
|
13 |
text{*
|
wenzelm@14706
|
14 |
The lemma and section numbers refer to an unpublished article
|
wenzelm@14706
|
15 |
\cite{Abrial-Laffitte}.
|
wenzelm@14706
|
16 |
*}
|
paulson@13551
|
17 |
|
wenzelm@19736
|
18 |
definition
|
wenzelm@21404
|
19 |
chain :: "'a set set => 'a set set set" where
|
wenzelm@19736
|
20 |
"chain S = {F. F \<subseteq> S & (\<forall>x \<in> F. \<forall>y \<in> F. x \<subseteq> y | y \<subseteq> x)}"
|
paulson@13551
|
21 |
|
wenzelm@21404
|
22 |
definition
|
wenzelm@21404
|
23 |
super :: "['a set set,'a set set] => 'a set set set" where
|
wenzelm@19736
|
24 |
"super S c = {d. d \<in> chain S & c \<subset> d}"
|
paulson@13551
|
25 |
|
wenzelm@21404
|
26 |
definition
|
wenzelm@21404
|
27 |
maxchain :: "'a set set => 'a set set set" where
|
wenzelm@19736
|
28 |
"maxchain S = {c. c \<in> chain S & super S c = {}}"
|
paulson@13551
|
29 |
|
wenzelm@21404
|
30 |
definition
|
wenzelm@21404
|
31 |
succ :: "['a set set,'a set set] => 'a set set" where
|
wenzelm@19736
|
32 |
"succ S c =
|
wenzelm@19736
|
33 |
(if c \<notin> chain S | c \<in> maxchain S
|
wenzelm@19736
|
34 |
then c else SOME c'. c' \<in> super S c)"
|
paulson@13551
|
35 |
|
wenzelm@14706
|
36 |
consts
|
wenzelm@14706
|
37 |
TFin :: "'a set set => 'a set set set"
|
wenzelm@14706
|
38 |
inductive "TFin S"
|
paulson@13551
|
39 |
intros
|
paulson@13551
|
40 |
succI: "x \<in> TFin S ==> succ S x \<in> TFin S"
|
paulson@13551
|
41 |
Pow_UnionI: "Y \<in> Pow(TFin S) ==> Union(Y) \<in> TFin S"
|
paulson@13551
|
42 |
monos Pow_mono
|
paulson@13551
|
43 |
|
paulson@13551
|
44 |
|
paulson@13551
|
45 |
subsection{*Mathematical Preamble*}
|
paulson@13551
|
46 |
|
wenzelm@17200
|
47 |
lemma Union_lemma0:
|
paulson@18143
|
48 |
"(\<forall>x \<in> C. x \<subseteq> A | B \<subseteq> x) ==> Union(C) \<subseteq> A | B \<subseteq> Union(C)"
|
wenzelm@17200
|
49 |
by blast
|
paulson@13551
|
50 |
|
paulson@13551
|
51 |
|
paulson@13551
|
52 |
text{*This is theorem @{text increasingD2} of ZF/Zorn.thy*}
|
wenzelm@17200
|
53 |
|
paulson@13551
|
54 |
lemma Abrial_axiom1: "x \<subseteq> succ S x"
|
wenzelm@17200
|
55 |
apply (unfold succ_def)
|
wenzelm@17200
|
56 |
apply (rule split_if [THEN iffD2])
|
wenzelm@17200
|
57 |
apply (auto simp add: super_def maxchain_def psubset_def)
|
wenzelm@18585
|
58 |
apply (rule contrapos_np, assumption)
|
wenzelm@17200
|
59 |
apply (rule someI2, blast+)
|
wenzelm@17200
|
60 |
done
|
paulson@13551
|
61 |
|
paulson@13551
|
62 |
lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]
|
paulson@13551
|
63 |
|
wenzelm@14706
|
64 |
lemma TFin_induct:
|
wenzelm@14706
|
65 |
"[| n \<in> TFin S;
|
wenzelm@14706
|
66 |
!!x. [| x \<in> TFin S; P(x) |] ==> P(succ S x);
|
wenzelm@14706
|
67 |
!!Y. [| Y \<subseteq> TFin S; Ball Y P |] ==> P(Union Y) |]
|
paulson@13551
|
68 |
==> P(n)"
|
wenzelm@19736
|
69 |
apply (induct set: TFin)
|
wenzelm@17200
|
70 |
apply blast+
|
wenzelm@17200
|
71 |
done
|
paulson@13551
|
72 |
|
paulson@13551
|
73 |
lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"
|
wenzelm@17200
|
74 |
apply (erule subset_trans)
|
wenzelm@17200
|
75 |
apply (rule Abrial_axiom1)
|
wenzelm@17200
|
76 |
done
|
paulson@13551
|
77 |
|
paulson@13551
|
78 |
text{*Lemma 1 of section 3.1*}
|
paulson@13551
|
79 |
lemma TFin_linear_lemma1:
|
wenzelm@14706
|
80 |
"[| n \<in> TFin S; m \<in> TFin S;
|
wenzelm@14706
|
81 |
\<forall>x \<in> TFin S. x \<subseteq> m --> x = m | succ S x \<subseteq> m
|
paulson@13551
|
82 |
|] ==> n \<subseteq> m | succ S m \<subseteq> n"
|
wenzelm@17200
|
83 |
apply (erule TFin_induct)
|
wenzelm@17200
|
84 |
apply (erule_tac [2] Union_lemma0)
|
wenzelm@17200
|
85 |
apply (blast del: subsetI intro: succ_trans)
|
wenzelm@17200
|
86 |
done
|
paulson@13551
|
87 |
|
paulson@13551
|
88 |
text{* Lemma 2 of section 3.2 *}
|
paulson@13551
|
89 |
lemma TFin_linear_lemma2:
|
paulson@13551
|
90 |
"m \<in> TFin S ==> \<forall>n \<in> TFin S. n \<subseteq> m --> n=m | succ S n \<subseteq> m"
|
wenzelm@17200
|
91 |
apply (erule TFin_induct)
|
wenzelm@17200
|
92 |
apply (rule impI [THEN ballI])
|
wenzelm@17200
|
93 |
txt{*case split using @{text TFin_linear_lemma1}*}
|
wenzelm@17200
|
94 |
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
|
wenzelm@17200
|
95 |
assumption+)
|
wenzelm@17200
|
96 |
apply (drule_tac x = n in bspec, assumption)
|
wenzelm@17200
|
97 |
apply (blast del: subsetI intro: succ_trans, blast)
|
wenzelm@17200
|
98 |
txt{*second induction step*}
|
wenzelm@17200
|
99 |
apply (rule impI [THEN ballI])
|
wenzelm@17200
|
100 |
apply (rule Union_lemma0 [THEN disjE])
|
wenzelm@17200
|
101 |
apply (rule_tac [3] disjI2)
|
wenzelm@17200
|
102 |
prefer 2 apply blast
|
wenzelm@17200
|
103 |
apply (rule ballI)
|
wenzelm@17200
|
104 |
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
|
wenzelm@17200
|
105 |
assumption+, auto)
|
wenzelm@17200
|
106 |
apply (blast intro!: Abrial_axiom1 [THEN subsetD])
|
wenzelm@17200
|
107 |
done
|
paulson@13551
|
108 |
|
paulson@13551
|
109 |
text{*Re-ordering the premises of Lemma 2*}
|
paulson@13551
|
110 |
lemma TFin_subsetD:
|
paulson@13551
|
111 |
"[| n \<subseteq> m; m \<in> TFin S; n \<in> TFin S |] ==> n=m | succ S n \<subseteq> m"
|
wenzelm@17200
|
112 |
by (rule TFin_linear_lemma2 [rule_format])
|
paulson@13551
|
113 |
|
paulson@13551
|
114 |
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
|
paulson@13551
|
115 |
lemma TFin_subset_linear: "[| m \<in> TFin S; n \<in> TFin S|] ==> n \<subseteq> m | m \<subseteq> n"
|
wenzelm@17200
|
116 |
apply (rule disjE)
|
wenzelm@17200
|
117 |
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])
|
wenzelm@17200
|
118 |
apply (assumption+, erule disjI2)
|
wenzelm@17200
|
119 |
apply (blast del: subsetI
|
wenzelm@17200
|
120 |
intro: subsetI Abrial_axiom1 [THEN subset_trans])
|
wenzelm@17200
|
121 |
done
|
paulson@13551
|
122 |
|
paulson@13551
|
123 |
text{*Lemma 3 of section 3.3*}
|
paulson@13551
|
124 |
lemma eq_succ_upper: "[| n \<in> TFin S; m \<in> TFin S; m = succ S m |] ==> n \<subseteq> m"
|
wenzelm@17200
|
125 |
apply (erule TFin_induct)
|
wenzelm@17200
|
126 |
apply (drule TFin_subsetD)
|
wenzelm@17200
|
127 |
apply (assumption+, force, blast)
|
wenzelm@17200
|
128 |
done
|
paulson@13551
|
129 |
|
paulson@13551
|
130 |
text{*Property 3.3 of section 3.3*}
|
paulson@13551
|
131 |
lemma equal_succ_Union: "m \<in> TFin S ==> (m = succ S m) = (m = Union(TFin S))"
|
wenzelm@17200
|
132 |
apply (rule iffI)
|
wenzelm@17200
|
133 |
apply (rule Union_upper [THEN equalityI])
|
paulson@18143
|
134 |
apply assumption
|
paulson@18143
|
135 |
apply (rule eq_succ_upper [THEN Union_least], assumption+)
|
wenzelm@17200
|
136 |
apply (erule ssubst)
|
wenzelm@17200
|
137 |
apply (rule Abrial_axiom1 [THEN equalityI])
|
wenzelm@17200
|
138 |
apply (blast del: subsetI intro: subsetI TFin_UnionI TFin.succI)
|
wenzelm@17200
|
139 |
done
|
paulson@13551
|
140 |
|
paulson@13551
|
141 |
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain.*}
|
paulson@13551
|
142 |
|
wenzelm@14706
|
143 |
text{*NB: We assume the partial ordering is @{text "\<subseteq>"},
|
paulson@13551
|
144 |
the subset relation!*}
|
paulson@13551
|
145 |
|
paulson@13551
|
146 |
lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
|
wenzelm@17200
|
147 |
by (unfold chain_def) auto
|
paulson@13551
|
148 |
|
paulson@13551
|
149 |
lemma super_subset_chain: "super S c \<subseteq> chain S"
|
wenzelm@17200
|
150 |
by (unfold super_def) blast
|
paulson@13551
|
151 |
|
paulson@13551
|
152 |
lemma maxchain_subset_chain: "maxchain S \<subseteq> chain S"
|
wenzelm@17200
|
153 |
by (unfold maxchain_def) blast
|
paulson@13551
|
154 |
|
paulson@13551
|
155 |
lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> ? d. d \<in> super S c"
|
wenzelm@17200
|
156 |
by (unfold super_def maxchain_def) auto
|
paulson@13551
|
157 |
|
paulson@18143
|
158 |
lemma select_super:
|
paulson@18143
|
159 |
"c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c): super S c"
|
wenzelm@17200
|
160 |
apply (erule mem_super_Ex [THEN exE])
|
wenzelm@17200
|
161 |
apply (rule someI2, auto)
|
wenzelm@17200
|
162 |
done
|
paulson@13551
|
163 |
|
paulson@18143
|
164 |
lemma select_not_equals:
|
paulson@18143
|
165 |
"c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c) \<noteq> c"
|
wenzelm@17200
|
166 |
apply (rule notI)
|
wenzelm@17200
|
167 |
apply (drule select_super)
|
wenzelm@17200
|
168 |
apply (simp add: super_def psubset_def)
|
wenzelm@17200
|
169 |
done
|
paulson@13551
|
170 |
|
wenzelm@17200
|
171 |
lemma succI3: "c \<in> chain S - maxchain S ==> succ S c = (\<some>c'. c': super S c)"
|
wenzelm@17200
|
172 |
by (unfold succ_def) (blast intro!: if_not_P)
|
paulson@13551
|
173 |
|
paulson@13551
|
174 |
lemma succ_not_equals: "c \<in> chain S - maxchain S ==> succ S c \<noteq> c"
|
wenzelm@17200
|
175 |
apply (frule succI3)
|
wenzelm@17200
|
176 |
apply (simp (no_asm_simp))
|
wenzelm@17200
|
177 |
apply (rule select_not_equals, assumption)
|
wenzelm@17200
|
178 |
done
|
paulson@13551
|
179 |
|
paulson@13551
|
180 |
lemma TFin_chain_lemma4: "c \<in> TFin S ==> (c :: 'a set set): chain S"
|
wenzelm@17200
|
181 |
apply (erule TFin_induct)
|
wenzelm@17200
|
182 |
apply (simp add: succ_def select_super [THEN super_subset_chain[THEN subsetD]])
|
wenzelm@17200
|
183 |
apply (unfold chain_def)
|
wenzelm@17200
|
184 |
apply (rule CollectI, safe)
|
wenzelm@17200
|
185 |
apply (drule bspec, assumption)
|
wenzelm@17200
|
186 |
apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE],
|
wenzelm@17200
|
187 |
blast+)
|
wenzelm@17200
|
188 |
done
|
wenzelm@14706
|
189 |
|
paulson@13551
|
190 |
theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"
|
paulson@18143
|
191 |
apply (rule_tac x = "Union (TFin S)" in exI)
|
wenzelm@17200
|
192 |
apply (rule classical)
|
wenzelm@17200
|
193 |
apply (subgoal_tac "succ S (Union (TFin S)) = Union (TFin S) ")
|
wenzelm@17200
|
194 |
prefer 2
|
wenzelm@17200
|
195 |
apply (blast intro!: TFin_UnionI equal_succ_Union [THEN iffD2, symmetric])
|
wenzelm@17200
|
196 |
apply (cut_tac subset_refl [THEN TFin_UnionI, THEN TFin_chain_lemma4])
|
wenzelm@17200
|
197 |
apply (drule DiffI [THEN succ_not_equals], blast+)
|
wenzelm@17200
|
198 |
done
|
paulson@13551
|
199 |
|
paulson@13551
|
200 |
|
wenzelm@14706
|
201 |
subsection{*Zorn's Lemma: If All Chains Have Upper Bounds Then
|
paulson@13551
|
202 |
There Is a Maximal Element*}
|
paulson@13551
|
203 |
|
wenzelm@14706
|
204 |
lemma chain_extend:
|
wenzelm@14706
|
205 |
"[| c \<in> chain S; z \<in> S;
|
paulson@18143
|
206 |
\<forall>x \<in> c. x \<subseteq> (z:: 'a set) |] ==> {z} Un c \<in> chain S"
|
wenzelm@17200
|
207 |
by (unfold chain_def) blast
|
paulson@13551
|
208 |
|
paulson@13551
|
209 |
lemma chain_Union_upper: "[| c \<in> chain S; x \<in> c |] ==> x \<subseteq> Union(c)"
|
wenzelm@17200
|
210 |
by (unfold chain_def) auto
|
paulson@13551
|
211 |
|
paulson@13551
|
212 |
lemma chain_ball_Union_upper: "c \<in> chain S ==> \<forall>x \<in> c. x \<subseteq> Union(c)"
|
wenzelm@17200
|
213 |
by (unfold chain_def) auto
|
paulson@13551
|
214 |
|
paulson@13551
|
215 |
lemma maxchain_Zorn:
|
paulson@13551
|
216 |
"[| c \<in> maxchain S; u \<in> S; Union(c) \<subseteq> u |] ==> Union(c) = u"
|
wenzelm@17200
|
217 |
apply (rule ccontr)
|
wenzelm@17200
|
218 |
apply (simp add: maxchain_def)
|
wenzelm@17200
|
219 |
apply (erule conjE)
|
paulson@18143
|
220 |
apply (subgoal_tac "({u} Un c) \<in> super S c")
|
wenzelm@17200
|
221 |
apply simp
|
wenzelm@17200
|
222 |
apply (unfold super_def psubset_def)
|
wenzelm@17200
|
223 |
apply (blast intro: chain_extend dest: chain_Union_upper)
|
wenzelm@17200
|
224 |
done
|
paulson@13551
|
225 |
|
paulson@13551
|
226 |
theorem Zorn_Lemma:
|
wenzelm@17200
|
227 |
"\<forall>c \<in> chain S. Union(c): S ==> \<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z --> y = z"
|
wenzelm@17200
|
228 |
apply (cut_tac Hausdorff maxchain_subset_chain)
|
wenzelm@17200
|
229 |
apply (erule exE)
|
wenzelm@17200
|
230 |
apply (drule subsetD, assumption)
|
wenzelm@17200
|
231 |
apply (drule bspec, assumption)
|
paulson@18143
|
232 |
apply (rule_tac x = "Union(c)" in bexI)
|
wenzelm@17200
|
233 |
apply (rule ballI, rule impI)
|
wenzelm@17200
|
234 |
apply (blast dest!: maxchain_Zorn, assumption)
|
wenzelm@17200
|
235 |
done
|
paulson@13551
|
236 |
|
paulson@13551
|
237 |
subsection{*Alternative version of Zorn's Lemma*}
|
paulson@13551
|
238 |
|
paulson@13551
|
239 |
lemma Zorn_Lemma2:
|
wenzelm@17200
|
240 |
"\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y
|
wenzelm@17200
|
241 |
==> \<exists>y \<in> S. \<forall>x \<in> S. (y :: 'a set) \<subseteq> x --> y = x"
|
wenzelm@17200
|
242 |
apply (cut_tac Hausdorff maxchain_subset_chain)
|
wenzelm@17200
|
243 |
apply (erule exE)
|
wenzelm@17200
|
244 |
apply (drule subsetD, assumption)
|
wenzelm@17200
|
245 |
apply (drule bspec, assumption, erule bexE)
|
wenzelm@17200
|
246 |
apply (rule_tac x = y in bexI)
|
wenzelm@17200
|
247 |
prefer 2 apply assumption
|
wenzelm@17200
|
248 |
apply clarify
|
wenzelm@17200
|
249 |
apply (rule ccontr)
|
wenzelm@17200
|
250 |
apply (frule_tac z = x in chain_extend)
|
wenzelm@17200
|
251 |
apply (assumption, blast)
|
wenzelm@17200
|
252 |
apply (unfold maxchain_def super_def psubset_def)
|
wenzelm@17200
|
253 |
apply (blast elim!: equalityCE)
|
wenzelm@17200
|
254 |
done
|
paulson@13551
|
255 |
|
paulson@13551
|
256 |
text{*Various other lemmas*}
|
paulson@13551
|
257 |
|
paulson@13551
|
258 |
lemma chainD: "[| c \<in> chain S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
|
wenzelm@17200
|
259 |
by (unfold chain_def) blast
|
paulson@13551
|
260 |
|
paulson@13551
|
261 |
lemma chainD2: "!!(c :: 'a set set). c \<in> chain S ==> c \<subseteq> S"
|
wenzelm@17200
|
262 |
by (unfold chain_def) blast
|
paulson@13551
|
263 |
|
paulson@13551
|
264 |
end
|