berghofe@22259
|
1 |
(* Title: HOL/Predicate.thy
|
haftmann@46664
|
2 |
Author: Lukas Bulwahn and Florian Haftmann, TU Muenchen
|
berghofe@22259
|
3 |
*)
|
berghofe@22259
|
4 |
|
haftmann@46664
|
5 |
header {* Predicates as enumerations *}
|
berghofe@22259
|
6 |
|
berghofe@22259
|
7 |
theory Predicate
|
haftmann@46664
|
8 |
imports List
|
berghofe@22259
|
9 |
begin
|
berghofe@22259
|
10 |
|
haftmann@46664
|
11 |
subsection {* The type of predicate enumerations (a monad) *}
|
haftmann@30328
|
12 |
|
haftmann@30328
|
13 |
datatype 'a pred = Pred "'a \<Rightarrow> bool"
|
haftmann@30328
|
14 |
|
haftmann@30328
|
15 |
primrec eval :: "'a pred \<Rightarrow> 'a \<Rightarrow> bool" where
|
haftmann@30328
|
16 |
eval_pred: "eval (Pred f) = f"
|
haftmann@30328
|
17 |
|
haftmann@30328
|
18 |
lemma Pred_eval [simp]:
|
haftmann@30328
|
19 |
"Pred (eval x) = x"
|
haftmann@30328
|
20 |
by (cases x) simp
|
haftmann@30328
|
21 |
|
haftmann@40616
|
22 |
lemma pred_eqI:
|
haftmann@40616
|
23 |
"(\<And>w. eval P w \<longleftrightarrow> eval Q w) \<Longrightarrow> P = Q"
|
haftmann@40616
|
24 |
by (cases P, cases Q) (auto simp add: fun_eq_iff)
|
haftmann@30328
|
25 |
|
haftmann@46038
|
26 |
lemma pred_eq_iff:
|
haftmann@46038
|
27 |
"P = Q \<Longrightarrow> (\<And>w. eval P w \<longleftrightarrow> eval Q w)"
|
haftmann@46038
|
28 |
by (simp add: pred_eqI)
|
haftmann@46038
|
29 |
|
haftmann@44033
|
30 |
instantiation pred :: (type) complete_lattice
|
haftmann@30328
|
31 |
begin
|
haftmann@30328
|
32 |
|
haftmann@30328
|
33 |
definition
|
haftmann@30328
|
34 |
"P \<le> Q \<longleftrightarrow> eval P \<le> eval Q"
|
haftmann@30328
|
35 |
|
haftmann@30328
|
36 |
definition
|
haftmann@30328
|
37 |
"P < Q \<longleftrightarrow> eval P < eval Q"
|
haftmann@30328
|
38 |
|
haftmann@30328
|
39 |
definition
|
haftmann@30328
|
40 |
"\<bottom> = Pred \<bottom>"
|
haftmann@30328
|
41 |
|
haftmann@40616
|
42 |
lemma eval_bot [simp]:
|
haftmann@40616
|
43 |
"eval \<bottom> = \<bottom>"
|
haftmann@40616
|
44 |
by (simp add: bot_pred_def)
|
haftmann@40616
|
45 |
|
haftmann@30328
|
46 |
definition
|
haftmann@30328
|
47 |
"\<top> = Pred \<top>"
|
haftmann@30328
|
48 |
|
haftmann@40616
|
49 |
lemma eval_top [simp]:
|
haftmann@40616
|
50 |
"eval \<top> = \<top>"
|
haftmann@40616
|
51 |
by (simp add: top_pred_def)
|
haftmann@40616
|
52 |
|
haftmann@30328
|
53 |
definition
|
haftmann@30328
|
54 |
"P \<sqinter> Q = Pred (eval P \<sqinter> eval Q)"
|
haftmann@30328
|
55 |
|
haftmann@40616
|
56 |
lemma eval_inf [simp]:
|
haftmann@40616
|
57 |
"eval (P \<sqinter> Q) = eval P \<sqinter> eval Q"
|
haftmann@40616
|
58 |
by (simp add: inf_pred_def)
|
haftmann@40616
|
59 |
|
haftmann@30328
|
60 |
definition
|
haftmann@30328
|
61 |
"P \<squnion> Q = Pred (eval P \<squnion> eval Q)"
|
haftmann@30328
|
62 |
|
haftmann@40616
|
63 |
lemma eval_sup [simp]:
|
haftmann@40616
|
64 |
"eval (P \<squnion> Q) = eval P \<squnion> eval Q"
|
haftmann@40616
|
65 |
by (simp add: sup_pred_def)
|
haftmann@40616
|
66 |
|
haftmann@30328
|
67 |
definition
|
haftmann@37767
|
68 |
"\<Sqinter>A = Pred (INFI A eval)"
|
haftmann@30328
|
69 |
|
haftmann@40616
|
70 |
lemma eval_Inf [simp]:
|
haftmann@40616
|
71 |
"eval (\<Sqinter>A) = INFI A eval"
|
haftmann@40616
|
72 |
by (simp add: Inf_pred_def)
|
haftmann@40616
|
73 |
|
haftmann@30328
|
74 |
definition
|
haftmann@37767
|
75 |
"\<Squnion>A = Pred (SUPR A eval)"
|
haftmann@30328
|
76 |
|
haftmann@40616
|
77 |
lemma eval_Sup [simp]:
|
haftmann@40616
|
78 |
"eval (\<Squnion>A) = SUPR A eval"
|
haftmann@40616
|
79 |
by (simp add: Sup_pred_def)
|
haftmann@40616
|
80 |
|
haftmann@44033
|
81 |
instance proof
|
haftmann@44415
|
82 |
qed (auto intro!: pred_eqI simp add: less_eq_pred_def less_pred_def le_fun_def less_fun_def)
|
haftmann@44033
|
83 |
|
haftmann@44033
|
84 |
end
|
haftmann@44033
|
85 |
|
haftmann@44033
|
86 |
lemma eval_INFI [simp]:
|
haftmann@44033
|
87 |
"eval (INFI A f) = INFI A (eval \<circ> f)"
|
hoelzl@44928
|
88 |
by (simp only: INF_def eval_Inf image_compose)
|
haftmann@44033
|
89 |
|
haftmann@44033
|
90 |
lemma eval_SUPR [simp]:
|
haftmann@44033
|
91 |
"eval (SUPR A f) = SUPR A (eval \<circ> f)"
|
hoelzl@44928
|
92 |
by (simp only: SUP_def eval_Sup image_compose)
|
haftmann@44033
|
93 |
|
haftmann@44033
|
94 |
instantiation pred :: (type) complete_boolean_algebra
|
haftmann@44033
|
95 |
begin
|
haftmann@44033
|
96 |
|
haftmann@32578
|
97 |
definition
|
haftmann@32578
|
98 |
"- P = Pred (- eval P)"
|
haftmann@32578
|
99 |
|
haftmann@40616
|
100 |
lemma eval_compl [simp]:
|
haftmann@40616
|
101 |
"eval (- P) = - eval P"
|
haftmann@40616
|
102 |
by (simp add: uminus_pred_def)
|
haftmann@40616
|
103 |
|
haftmann@32578
|
104 |
definition
|
haftmann@32578
|
105 |
"P - Q = Pred (eval P - eval Q)"
|
haftmann@32578
|
106 |
|
haftmann@40616
|
107 |
lemma eval_minus [simp]:
|
haftmann@40616
|
108 |
"eval (P - Q) = eval P - eval Q"
|
haftmann@40616
|
109 |
by (simp add: minus_pred_def)
|
haftmann@40616
|
110 |
|
haftmann@32578
|
111 |
instance proof
|
noschinl@46884
|
112 |
qed (auto intro!: pred_eqI)
|
haftmann@30328
|
113 |
|
berghofe@22259
|
114 |
end
|
haftmann@30328
|
115 |
|
haftmann@40616
|
116 |
definition single :: "'a \<Rightarrow> 'a pred" where
|
haftmann@40616
|
117 |
"single x = Pred ((op =) x)"
|
haftmann@40616
|
118 |
|
haftmann@40616
|
119 |
lemma eval_single [simp]:
|
haftmann@40616
|
120 |
"eval (single x) = (op =) x"
|
haftmann@40616
|
121 |
by (simp add: single_def)
|
haftmann@40616
|
122 |
|
haftmann@40616
|
123 |
definition bind :: "'a pred \<Rightarrow> ('a \<Rightarrow> 'b pred) \<Rightarrow> 'b pred" (infixl "\<guillemotright>=" 70) where
|
haftmann@41080
|
124 |
"P \<guillemotright>= f = (SUPR {x. eval P x} f)"
|
haftmann@40616
|
125 |
|
haftmann@40616
|
126 |
lemma eval_bind [simp]:
|
haftmann@41080
|
127 |
"eval (P \<guillemotright>= f) = eval (SUPR {x. eval P x} f)"
|
haftmann@40616
|
128 |
by (simp add: bind_def)
|
haftmann@40616
|
129 |
|
haftmann@30328
|
130 |
lemma bind_bind:
|
haftmann@30328
|
131 |
"(P \<guillemotright>= Q) \<guillemotright>= R = P \<guillemotright>= (\<lambda>x. Q x \<guillemotright>= R)"
|
noschinl@46884
|
132 |
by (rule pred_eqI) auto
|
haftmann@30328
|
133 |
|
haftmann@30328
|
134 |
lemma bind_single:
|
haftmann@30328
|
135 |
"P \<guillemotright>= single = P"
|
haftmann@40616
|
136 |
by (rule pred_eqI) auto
|
haftmann@30328
|
137 |
|
haftmann@30328
|
138 |
lemma single_bind:
|
haftmann@30328
|
139 |
"single x \<guillemotright>= P = P x"
|
haftmann@40616
|
140 |
by (rule pred_eqI) auto
|
haftmann@30328
|
141 |
|
haftmann@30328
|
142 |
lemma bottom_bind:
|
haftmann@30328
|
143 |
"\<bottom> \<guillemotright>= P = \<bottom>"
|
haftmann@40674
|
144 |
by (rule pred_eqI) auto
|
haftmann@30328
|
145 |
|
haftmann@30328
|
146 |
lemma sup_bind:
|
haftmann@30328
|
147 |
"(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R"
|
haftmann@40674
|
148 |
by (rule pred_eqI) auto
|
haftmann@30328
|
149 |
|
haftmann@40616
|
150 |
lemma Sup_bind:
|
haftmann@40616
|
151 |
"(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)"
|
noschinl@46884
|
152 |
by (rule pred_eqI) auto
|
haftmann@30328
|
153 |
|
haftmann@30328
|
154 |
lemma pred_iffI:
|
haftmann@30328
|
155 |
assumes "\<And>x. eval A x \<Longrightarrow> eval B x"
|
haftmann@30328
|
156 |
and "\<And>x. eval B x \<Longrightarrow> eval A x"
|
haftmann@30328
|
157 |
shows "A = B"
|
haftmann@40616
|
158 |
using assms by (auto intro: pred_eqI)
|
haftmann@30328
|
159 |
|
haftmann@30328
|
160 |
lemma singleI: "eval (single x) x"
|
haftmann@40616
|
161 |
by simp
|
haftmann@30328
|
162 |
|
haftmann@30328
|
163 |
lemma singleI_unit: "eval (single ()) x"
|
haftmann@40616
|
164 |
by simp
|
haftmann@30328
|
165 |
|
haftmann@30328
|
166 |
lemma singleE: "eval (single x) y \<Longrightarrow> (y = x \<Longrightarrow> P) \<Longrightarrow> P"
|
haftmann@40616
|
167 |
by simp
|
haftmann@30328
|
168 |
|
haftmann@30328
|
169 |
lemma singleE': "eval (single x) y \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P"
|
haftmann@40616
|
170 |
by simp
|
haftmann@30328
|
171 |
|
haftmann@30328
|
172 |
lemma bindI: "eval P x \<Longrightarrow> eval (Q x) y \<Longrightarrow> eval (P \<guillemotright>= Q) y"
|
haftmann@40616
|
173 |
by auto
|
haftmann@30328
|
174 |
|
haftmann@30328
|
175 |
lemma bindE: "eval (R \<guillemotright>= Q) y \<Longrightarrow> (\<And>x. eval R x \<Longrightarrow> eval (Q x) y \<Longrightarrow> P) \<Longrightarrow> P"
|
haftmann@40616
|
176 |
by auto
|
haftmann@30328
|
177 |
|
haftmann@30328
|
178 |
lemma botE: "eval \<bottom> x \<Longrightarrow> P"
|
haftmann@40616
|
179 |
by auto
|
haftmann@30328
|
180 |
|
haftmann@30328
|
181 |
lemma supI1: "eval A x \<Longrightarrow> eval (A \<squnion> B) x"
|
haftmann@40616
|
182 |
by auto
|
haftmann@30328
|
183 |
|
haftmann@30328
|
184 |
lemma supI2: "eval B x \<Longrightarrow> eval (A \<squnion> B) x"
|
haftmann@40616
|
185 |
by auto
|
haftmann@30328
|
186 |
|
haftmann@30328
|
187 |
lemma supE: "eval (A \<squnion> B) x \<Longrightarrow> (eval A x \<Longrightarrow> P) \<Longrightarrow> (eval B x \<Longrightarrow> P) \<Longrightarrow> P"
|
haftmann@40616
|
188 |
by auto
|
haftmann@30328
|
189 |
|
haftmann@32578
|
190 |
lemma single_not_bot [simp]:
|
haftmann@32578
|
191 |
"single x \<noteq> \<bottom>"
|
nipkow@39302
|
192 |
by (auto simp add: single_def bot_pred_def fun_eq_iff)
|
haftmann@32578
|
193 |
|
haftmann@32578
|
194 |
lemma not_bot:
|
haftmann@32578
|
195 |
assumes "A \<noteq> \<bottom>"
|
haftmann@32578
|
196 |
obtains x where "eval A x"
|
haftmann@45970
|
197 |
using assms by (cases A) (auto simp add: bot_pred_def)
|
haftmann@45970
|
198 |
|
haftmann@32578
|
199 |
|
haftmann@46664
|
200 |
subsection {* Emptiness check and definite choice *}
|
haftmann@32578
|
201 |
|
haftmann@32578
|
202 |
definition is_empty :: "'a pred \<Rightarrow> bool" where
|
haftmann@32578
|
203 |
"is_empty A \<longleftrightarrow> A = \<bottom>"
|
haftmann@32578
|
204 |
|
haftmann@32578
|
205 |
lemma is_empty_bot:
|
haftmann@32578
|
206 |
"is_empty \<bottom>"
|
haftmann@32578
|
207 |
by (simp add: is_empty_def)
|
haftmann@32578
|
208 |
|
haftmann@32578
|
209 |
lemma not_is_empty_single:
|
haftmann@32578
|
210 |
"\<not> is_empty (single x)"
|
nipkow@39302
|
211 |
by (auto simp add: is_empty_def single_def bot_pred_def fun_eq_iff)
|
haftmann@32578
|
212 |
|
haftmann@32578
|
213 |
lemma is_empty_sup:
|
haftmann@32578
|
214 |
"is_empty (A \<squnion> B) \<longleftrightarrow> is_empty A \<and> is_empty B"
|
huffman@36008
|
215 |
by (auto simp add: is_empty_def)
|
haftmann@32578
|
216 |
|
haftmann@40616
|
217 |
definition singleton :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a pred \<Rightarrow> 'a" where
|
bulwahn@33111
|
218 |
"singleton dfault A = (if \<exists>!x. eval A x then THE x. eval A x else dfault ())"
|
haftmann@32578
|
219 |
|
haftmann@32578
|
220 |
lemma singleton_eqI:
|
bulwahn@33110
|
221 |
"\<exists>!x. eval A x \<Longrightarrow> eval A x \<Longrightarrow> singleton dfault A = x"
|
haftmann@32578
|
222 |
by (auto simp add: singleton_def)
|
haftmann@32578
|
223 |
|
haftmann@32578
|
224 |
lemma eval_singletonI:
|
bulwahn@33110
|
225 |
"\<exists>!x. eval A x \<Longrightarrow> eval A (singleton dfault A)"
|
haftmann@32578
|
226 |
proof -
|
haftmann@32578
|
227 |
assume assm: "\<exists>!x. eval A x"
|
haftmann@32578
|
228 |
then obtain x where "eval A x" ..
|
bulwahn@33110
|
229 |
moreover with assm have "singleton dfault A = x" by (rule singleton_eqI)
|
haftmann@32578
|
230 |
ultimately show ?thesis by simp
|
haftmann@32578
|
231 |
qed
|
haftmann@32578
|
232 |
|
haftmann@32578
|
233 |
lemma single_singleton:
|
bulwahn@33110
|
234 |
"\<exists>!x. eval A x \<Longrightarrow> single (singleton dfault A) = A"
|
haftmann@32578
|
235 |
proof -
|
haftmann@32578
|
236 |
assume assm: "\<exists>!x. eval A x"
|
bulwahn@33110
|
237 |
then have "eval A (singleton dfault A)"
|
haftmann@32578
|
238 |
by (rule eval_singletonI)
|
bulwahn@33110
|
239 |
moreover from assm have "\<And>x. eval A x \<Longrightarrow> singleton dfault A = x"
|
haftmann@32578
|
240 |
by (rule singleton_eqI)
|
bulwahn@33110
|
241 |
ultimately have "eval (single (singleton dfault A)) = eval A"
|
nipkow@39302
|
242 |
by (simp (no_asm_use) add: single_def fun_eq_iff) blast
|
haftmann@40616
|
243 |
then have "\<And>x. eval (single (singleton dfault A)) x = eval A x"
|
haftmann@40616
|
244 |
by simp
|
haftmann@40616
|
245 |
then show ?thesis by (rule pred_eqI)
|
haftmann@32578
|
246 |
qed
|
haftmann@32578
|
247 |
|
haftmann@32578
|
248 |
lemma singleton_undefinedI:
|
bulwahn@33111
|
249 |
"\<not> (\<exists>!x. eval A x) \<Longrightarrow> singleton dfault A = dfault ()"
|
haftmann@32578
|
250 |
by (simp add: singleton_def)
|
haftmann@32578
|
251 |
|
haftmann@32578
|
252 |
lemma singleton_bot:
|
bulwahn@33111
|
253 |
"singleton dfault \<bottom> = dfault ()"
|
haftmann@32578
|
254 |
by (auto simp add: bot_pred_def intro: singleton_undefinedI)
|
haftmann@32578
|
255 |
|
haftmann@32578
|
256 |
lemma singleton_single:
|
bulwahn@33110
|
257 |
"singleton dfault (single x) = x"
|
haftmann@32578
|
258 |
by (auto simp add: intro: singleton_eqI singleI elim: singleE)
|
haftmann@32578
|
259 |
|
haftmann@32578
|
260 |
lemma singleton_sup_single_single:
|
bulwahn@33111
|
261 |
"singleton dfault (single x \<squnion> single y) = (if x = y then x else dfault ())"
|
haftmann@32578
|
262 |
proof (cases "x = y")
|
haftmann@32578
|
263 |
case True then show ?thesis by (simp add: singleton_single)
|
haftmann@32578
|
264 |
next
|
haftmann@32578
|
265 |
case False
|
haftmann@32578
|
266 |
have "eval (single x \<squnion> single y) x"
|
haftmann@32578
|
267 |
and "eval (single x \<squnion> single y) y"
|
haftmann@32578
|
268 |
by (auto intro: supI1 supI2 singleI)
|
haftmann@32578
|
269 |
with False have "\<not> (\<exists>!z. eval (single x \<squnion> single y) z)"
|
haftmann@32578
|
270 |
by blast
|
bulwahn@33111
|
271 |
then have "singleton dfault (single x \<squnion> single y) = dfault ()"
|
haftmann@32578
|
272 |
by (rule singleton_undefinedI)
|
haftmann@32578
|
273 |
with False show ?thesis by simp
|
haftmann@32578
|
274 |
qed
|
haftmann@32578
|
275 |
|
haftmann@32578
|
276 |
lemma singleton_sup_aux:
|
bulwahn@33110
|
277 |
"singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B
|
bulwahn@33110
|
278 |
else if B = \<bottom> then singleton dfault A
|
bulwahn@33110
|
279 |
else singleton dfault
|
bulwahn@33110
|
280 |
(single (singleton dfault A) \<squnion> single (singleton dfault B)))"
|
haftmann@32578
|
281 |
proof (cases "(\<exists>!x. eval A x) \<and> (\<exists>!y. eval B y)")
|
haftmann@32578
|
282 |
case True then show ?thesis by (simp add: single_singleton)
|
haftmann@32578
|
283 |
next
|
haftmann@32578
|
284 |
case False
|
haftmann@32578
|
285 |
from False have A_or_B:
|
bulwahn@33111
|
286 |
"singleton dfault A = dfault () \<or> singleton dfault B = dfault ()"
|
haftmann@32578
|
287 |
by (auto intro!: singleton_undefinedI)
|
bulwahn@33110
|
288 |
then have rhs: "singleton dfault
|
bulwahn@33111
|
289 |
(single (singleton dfault A) \<squnion> single (singleton dfault B)) = dfault ()"
|
haftmann@32578
|
290 |
by (auto simp add: singleton_sup_single_single singleton_single)
|
haftmann@32578
|
291 |
from False have not_unique:
|
haftmann@32578
|
292 |
"\<not> (\<exists>!x. eval A x) \<or> \<not> (\<exists>!y. eval B y)" by simp
|
haftmann@32578
|
293 |
show ?thesis proof (cases "A \<noteq> \<bottom> \<and> B \<noteq> \<bottom>")
|
haftmann@32578
|
294 |
case True
|
haftmann@32578
|
295 |
then obtain a b where a: "eval A a" and b: "eval B b"
|
haftmann@32578
|
296 |
by (blast elim: not_bot)
|
haftmann@32578
|
297 |
with True not_unique have "\<not> (\<exists>!x. eval (A \<squnion> B) x)"
|
haftmann@32578
|
298 |
by (auto simp add: sup_pred_def bot_pred_def)
|
bulwahn@33111
|
299 |
then have "singleton dfault (A \<squnion> B) = dfault ()" by (rule singleton_undefinedI)
|
haftmann@32578
|
300 |
with True rhs show ?thesis by simp
|
haftmann@32578
|
301 |
next
|
haftmann@32578
|
302 |
case False then show ?thesis by auto
|
haftmann@32578
|
303 |
qed
|
haftmann@32578
|
304 |
qed
|
haftmann@32578
|
305 |
|
haftmann@32578
|
306 |
lemma singleton_sup:
|
bulwahn@33110
|
307 |
"singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B
|
bulwahn@33110
|
308 |
else if B = \<bottom> then singleton dfault A
|
bulwahn@33111
|
309 |
else if singleton dfault A = singleton dfault B then singleton dfault A else dfault ())"
|
bulwahn@33110
|
310 |
using singleton_sup_aux [of dfault A B] by (simp only: singleton_sup_single_single)
|
haftmann@32578
|
311 |
|
haftmann@30328
|
312 |
|
haftmann@46664
|
313 |
subsection {* Derived operations *}
|
haftmann@30328
|
314 |
|
haftmann@30328
|
315 |
definition if_pred :: "bool \<Rightarrow> unit pred" where
|
haftmann@30328
|
316 |
if_pred_eq: "if_pred b = (if b then single () else \<bottom>)"
|
haftmann@30328
|
317 |
|
bulwahn@33754
|
318 |
definition holds :: "unit pred \<Rightarrow> bool" where
|
bulwahn@33754
|
319 |
holds_eq: "holds P = eval P ()"
|
bulwahn@33754
|
320 |
|
haftmann@30328
|
321 |
definition not_pred :: "unit pred \<Rightarrow> unit pred" where
|
haftmann@30328
|
322 |
not_pred_eq: "not_pred P = (if eval P () then \<bottom> else single ())"
|
haftmann@30328
|
323 |
|
haftmann@30328
|
324 |
lemma if_predI: "P \<Longrightarrow> eval (if_pred P) ()"
|
haftmann@30328
|
325 |
unfolding if_pred_eq by (auto intro: singleI)
|
haftmann@30328
|
326 |
|
haftmann@30328
|
327 |
lemma if_predE: "eval (if_pred b) x \<Longrightarrow> (b \<Longrightarrow> x = () \<Longrightarrow> P) \<Longrightarrow> P"
|
haftmann@30328
|
328 |
unfolding if_pred_eq by (cases b) (auto elim: botE)
|
haftmann@30328
|
329 |
|
haftmann@30328
|
330 |
lemma not_predI: "\<not> P \<Longrightarrow> eval (not_pred (Pred (\<lambda>u. P))) ()"
|
haftmann@30328
|
331 |
unfolding not_pred_eq eval_pred by (auto intro: singleI)
|
haftmann@30328
|
332 |
|
haftmann@30328
|
333 |
lemma not_predI': "\<not> eval P () \<Longrightarrow> eval (not_pred P) ()"
|
haftmann@30328
|
334 |
unfolding not_pred_eq by (auto intro: singleI)
|
haftmann@30328
|
335 |
|
haftmann@30328
|
336 |
lemma not_predE: "eval (not_pred (Pred (\<lambda>u. P))) x \<Longrightarrow> (\<not> P \<Longrightarrow> thesis) \<Longrightarrow> thesis"
|
haftmann@30328
|
337 |
unfolding not_pred_eq
|
haftmann@30328
|
338 |
by (auto split: split_if_asm elim: botE)
|
haftmann@30328
|
339 |
|
haftmann@30328
|
340 |
lemma not_predE': "eval (not_pred P) x \<Longrightarrow> (\<not> eval P x \<Longrightarrow> thesis) \<Longrightarrow> thesis"
|
haftmann@30328
|
341 |
unfolding not_pred_eq
|
haftmann@30328
|
342 |
by (auto split: split_if_asm elim: botE)
|
bulwahn@33754
|
343 |
lemma "f () = False \<or> f () = True"
|
bulwahn@33754
|
344 |
by simp
|
haftmann@30328
|
345 |
|
blanchet@37549
|
346 |
lemma closure_of_bool_cases [no_atp]:
|
haftmann@44007
|
347 |
fixes f :: "unit \<Rightarrow> bool"
|
haftmann@44007
|
348 |
assumes "f = (\<lambda>u. False) \<Longrightarrow> P f"
|
haftmann@44007
|
349 |
assumes "f = (\<lambda>u. True) \<Longrightarrow> P f"
|
haftmann@44007
|
350 |
shows "P f"
|
bulwahn@33754
|
351 |
proof -
|
haftmann@44007
|
352 |
have "f = (\<lambda>u. False) \<or> f = (\<lambda>u. True)"
|
bulwahn@33754
|
353 |
apply (cases "f ()")
|
bulwahn@33754
|
354 |
apply (rule disjI2)
|
bulwahn@33754
|
355 |
apply (rule ext)
|
bulwahn@33754
|
356 |
apply (simp add: unit_eq)
|
bulwahn@33754
|
357 |
apply (rule disjI1)
|
bulwahn@33754
|
358 |
apply (rule ext)
|
bulwahn@33754
|
359 |
apply (simp add: unit_eq)
|
bulwahn@33754
|
360 |
done
|
wenzelm@41550
|
361 |
from this assms show ?thesis by blast
|
bulwahn@33754
|
362 |
qed
|
bulwahn@33754
|
363 |
|
bulwahn@33754
|
364 |
lemma unit_pred_cases:
|
haftmann@44007
|
365 |
assumes "P \<bottom>"
|
haftmann@44007
|
366 |
assumes "P (single ())"
|
haftmann@44007
|
367 |
shows "P Q"
|
haftmann@44415
|
368 |
using assms unfolding bot_pred_def bot_fun_def bot_bool_def empty_def single_def proof (cases Q)
|
haftmann@44007
|
369 |
fix f
|
haftmann@44007
|
370 |
assume "P (Pred (\<lambda>u. False))" "P (Pred (\<lambda>u. () = u))"
|
haftmann@44007
|
371 |
then have "P (Pred f)"
|
haftmann@44007
|
372 |
by (cases _ f rule: closure_of_bool_cases) simp_all
|
haftmann@44007
|
373 |
moreover assume "Q = Pred f"
|
haftmann@44007
|
374 |
ultimately show "P Q" by simp
|
haftmann@44007
|
375 |
qed
|
haftmann@44007
|
376 |
|
bulwahn@33754
|
377 |
lemma holds_if_pred:
|
bulwahn@33754
|
378 |
"holds (if_pred b) = b"
|
bulwahn@33754
|
379 |
unfolding if_pred_eq holds_eq
|
bulwahn@33754
|
380 |
by (cases b) (auto intro: singleI elim: botE)
|
bulwahn@33754
|
381 |
|
bulwahn@33754
|
382 |
lemma if_pred_holds:
|
bulwahn@33754
|
383 |
"if_pred (holds P) = P"
|
bulwahn@33754
|
384 |
unfolding if_pred_eq holds_eq
|
bulwahn@33754
|
385 |
by (rule unit_pred_cases) (auto intro: singleI elim: botE)
|
bulwahn@33754
|
386 |
|
bulwahn@33754
|
387 |
lemma is_empty_holds:
|
bulwahn@33754
|
388 |
"is_empty P \<longleftrightarrow> \<not> holds P"
|
bulwahn@33754
|
389 |
unfolding is_empty_def holds_eq
|
bulwahn@33754
|
390 |
by (rule unit_pred_cases) (auto elim: botE intro: singleI)
|
haftmann@30328
|
391 |
|
haftmann@41311
|
392 |
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a pred \<Rightarrow> 'b pred" where
|
haftmann@41311
|
393 |
"map f P = P \<guillemotright>= (single o f)"
|
haftmann@41311
|
394 |
|
haftmann@41311
|
395 |
lemma eval_map [simp]:
|
haftmann@44363
|
396 |
"eval (map f P) = (\<Squnion>x\<in>{x. eval P x}. (\<lambda>y. f x = y))"
|
haftmann@44415
|
397 |
by (auto simp add: map_def comp_def)
|
haftmann@41311
|
398 |
|
haftmann@41505
|
399 |
enriched_type map: map
|
haftmann@44363
|
400 |
by (rule ext, rule pred_eqI, auto)+
|
haftmann@41311
|
401 |
|
haftmann@41311
|
402 |
|
haftmann@46664
|
403 |
subsection {* Implementation *}
|
haftmann@30328
|
404 |
|
haftmann@30328
|
405 |
datatype 'a seq = Empty | Insert "'a" "'a pred" | Join "'a pred" "'a seq"
|
haftmann@30328
|
406 |
|
haftmann@30328
|
407 |
primrec pred_of_seq :: "'a seq \<Rightarrow> 'a pred" where
|
haftmann@44414
|
408 |
"pred_of_seq Empty = \<bottom>"
|
haftmann@44414
|
409 |
| "pred_of_seq (Insert x P) = single x \<squnion> P"
|
haftmann@44414
|
410 |
| "pred_of_seq (Join P xq) = P \<squnion> pred_of_seq xq"
|
haftmann@30328
|
411 |
|
haftmann@30328
|
412 |
definition Seq :: "(unit \<Rightarrow> 'a seq) \<Rightarrow> 'a pred" where
|
haftmann@30328
|
413 |
"Seq f = pred_of_seq (f ())"
|
haftmann@30328
|
414 |
|
haftmann@30328
|
415 |
code_datatype Seq
|
haftmann@30328
|
416 |
|
haftmann@30328
|
417 |
primrec member :: "'a seq \<Rightarrow> 'a \<Rightarrow> bool" where
|
haftmann@30328
|
418 |
"member Empty x \<longleftrightarrow> False"
|
haftmann@44414
|
419 |
| "member (Insert y P) x \<longleftrightarrow> x = y \<or> eval P x"
|
haftmann@44414
|
420 |
| "member (Join P xq) x \<longleftrightarrow> eval P x \<or> member xq x"
|
haftmann@30328
|
421 |
|
haftmann@30328
|
422 |
lemma eval_member:
|
haftmann@30328
|
423 |
"member xq = eval (pred_of_seq xq)"
|
haftmann@30328
|
424 |
proof (induct xq)
|
haftmann@30328
|
425 |
case Empty show ?case
|
nipkow@39302
|
426 |
by (auto simp add: fun_eq_iff elim: botE)
|
haftmann@30328
|
427 |
next
|
haftmann@30328
|
428 |
case Insert show ?case
|
nipkow@39302
|
429 |
by (auto simp add: fun_eq_iff elim: supE singleE intro: supI1 supI2 singleI)
|
haftmann@30328
|
430 |
next
|
haftmann@30328
|
431 |
case Join then show ?case
|
nipkow@39302
|
432 |
by (auto simp add: fun_eq_iff elim: supE intro: supI1 supI2)
|
haftmann@30328
|
433 |
qed
|
haftmann@30328
|
434 |
|
haftmann@46038
|
435 |
lemma eval_code [(* FIXME declare simp *)code]: "eval (Seq f) = member (f ())"
|
haftmann@30328
|
436 |
unfolding Seq_def by (rule sym, rule eval_member)
|
haftmann@30328
|
437 |
|
haftmann@30328
|
438 |
lemma single_code [code]:
|
haftmann@30328
|
439 |
"single x = Seq (\<lambda>u. Insert x \<bottom>)"
|
haftmann@30328
|
440 |
unfolding Seq_def by simp
|
haftmann@30328
|
441 |
|
haftmann@41080
|
442 |
primrec "apply" :: "('a \<Rightarrow> 'b pred) \<Rightarrow> 'a seq \<Rightarrow> 'b seq" where
|
haftmann@44415
|
443 |
"apply f Empty = Empty"
|
haftmann@44415
|
444 |
| "apply f (Insert x P) = Join (f x) (Join (P \<guillemotright>= f) Empty)"
|
haftmann@44415
|
445 |
| "apply f (Join P xq) = Join (P \<guillemotright>= f) (apply f xq)"
|
haftmann@30328
|
446 |
|
haftmann@30328
|
447 |
lemma apply_bind:
|
haftmann@30328
|
448 |
"pred_of_seq (apply f xq) = pred_of_seq xq \<guillemotright>= f"
|
haftmann@30328
|
449 |
proof (induct xq)
|
haftmann@30328
|
450 |
case Empty show ?case
|
haftmann@30328
|
451 |
by (simp add: bottom_bind)
|
haftmann@30328
|
452 |
next
|
haftmann@30328
|
453 |
case Insert show ?case
|
haftmann@30328
|
454 |
by (simp add: single_bind sup_bind)
|
haftmann@30328
|
455 |
next
|
haftmann@30328
|
456 |
case Join then show ?case
|
haftmann@30328
|
457 |
by (simp add: sup_bind)
|
haftmann@30328
|
458 |
qed
|
haftmann@30328
|
459 |
|
haftmann@30328
|
460 |
lemma bind_code [code]:
|
haftmann@30328
|
461 |
"Seq g \<guillemotright>= f = Seq (\<lambda>u. apply f (g ()))"
|
haftmann@30328
|
462 |
unfolding Seq_def by (rule sym, rule apply_bind)
|
haftmann@30328
|
463 |
|
haftmann@30328
|
464 |
lemma bot_set_code [code]:
|
haftmann@30328
|
465 |
"\<bottom> = Seq (\<lambda>u. Empty)"
|
haftmann@30328
|
466 |
unfolding Seq_def by simp
|
haftmann@30328
|
467 |
|
haftmann@30376
|
468 |
primrec adjunct :: "'a pred \<Rightarrow> 'a seq \<Rightarrow> 'a seq" where
|
haftmann@44415
|
469 |
"adjunct P Empty = Join P Empty"
|
haftmann@44415
|
470 |
| "adjunct P (Insert x Q) = Insert x (Q \<squnion> P)"
|
haftmann@44415
|
471 |
| "adjunct P (Join Q xq) = Join Q (adjunct P xq)"
|
haftmann@30376
|
472 |
|
haftmann@30376
|
473 |
lemma adjunct_sup:
|
haftmann@30376
|
474 |
"pred_of_seq (adjunct P xq) = P \<squnion> pred_of_seq xq"
|
haftmann@30376
|
475 |
by (induct xq) (simp_all add: sup_assoc sup_commute sup_left_commute)
|
haftmann@30376
|
476 |
|
haftmann@30328
|
477 |
lemma sup_code [code]:
|
haftmann@30328
|
478 |
"Seq f \<squnion> Seq g = Seq (\<lambda>u. case f ()
|
haftmann@30328
|
479 |
of Empty \<Rightarrow> g ()
|
haftmann@30328
|
480 |
| Insert x P \<Rightarrow> Insert x (P \<squnion> Seq g)
|
haftmann@30376
|
481 |
| Join P xq \<Rightarrow> adjunct (Seq g) (Join P xq))"
|
haftmann@30328
|
482 |
proof (cases "f ()")
|
haftmann@30328
|
483 |
case Empty
|
haftmann@30328
|
484 |
thus ?thesis
|
haftmann@34007
|
485 |
unfolding Seq_def by (simp add: sup_commute [of "\<bottom>"])
|
haftmann@30328
|
486 |
next
|
haftmann@30328
|
487 |
case Insert
|
haftmann@30328
|
488 |
thus ?thesis
|
haftmann@30328
|
489 |
unfolding Seq_def by (simp add: sup_assoc)
|
haftmann@30328
|
490 |
next
|
haftmann@30328
|
491 |
case Join
|
haftmann@30328
|
492 |
thus ?thesis
|
haftmann@30376
|
493 |
unfolding Seq_def
|
haftmann@30376
|
494 |
by (simp add: adjunct_sup sup_assoc sup_commute sup_left_commute)
|
haftmann@30328
|
495 |
qed
|
haftmann@30328
|
496 |
|
haftmann@46664
|
497 |
lemma [code]:
|
haftmann@46664
|
498 |
"size (P :: 'a Predicate.pred) = 0" by (cases P) simp
|
haftmann@46664
|
499 |
|
haftmann@46664
|
500 |
lemma [code]:
|
haftmann@46664
|
501 |
"pred_size f P = 0" by (cases P) simp
|
haftmann@46664
|
502 |
|
haftmann@30430
|
503 |
primrec contained :: "'a seq \<Rightarrow> 'a pred \<Rightarrow> bool" where
|
haftmann@44415
|
504 |
"contained Empty Q \<longleftrightarrow> True"
|
haftmann@44415
|
505 |
| "contained (Insert x P) Q \<longleftrightarrow> eval Q x \<and> P \<le> Q"
|
haftmann@44415
|
506 |
| "contained (Join P xq) Q \<longleftrightarrow> P \<le> Q \<and> contained xq Q"
|
haftmann@30430
|
507 |
|
haftmann@30430
|
508 |
lemma single_less_eq_eval:
|
haftmann@30430
|
509 |
"single x \<le> P \<longleftrightarrow> eval P x"
|
haftmann@44415
|
510 |
by (auto simp add: less_eq_pred_def le_fun_def)
|
haftmann@30430
|
511 |
|
haftmann@30430
|
512 |
lemma contained_less_eq:
|
haftmann@30430
|
513 |
"contained xq Q \<longleftrightarrow> pred_of_seq xq \<le> Q"
|
haftmann@30430
|
514 |
by (induct xq) (simp_all add: single_less_eq_eval)
|
haftmann@30430
|
515 |
|
haftmann@30430
|
516 |
lemma less_eq_pred_code [code]:
|
haftmann@30430
|
517 |
"Seq f \<le> Q = (case f ()
|
haftmann@30430
|
518 |
of Empty \<Rightarrow> True
|
haftmann@30430
|
519 |
| Insert x P \<Rightarrow> eval Q x \<and> P \<le> Q
|
haftmann@30430
|
520 |
| Join P xq \<Rightarrow> P \<le> Q \<and> contained xq Q)"
|
haftmann@30430
|
521 |
by (cases "f ()")
|
haftmann@30430
|
522 |
(simp_all add: Seq_def single_less_eq_eval contained_less_eq)
|
haftmann@30430
|
523 |
|
haftmann@30430
|
524 |
lemma eq_pred_code [code]:
|
haftmann@31133
|
525 |
fixes P Q :: "'a pred"
|
haftmann@38857
|
526 |
shows "HOL.equal P Q \<longleftrightarrow> P \<le> Q \<and> Q \<le> P"
|
haftmann@38857
|
527 |
by (auto simp add: equal)
|
haftmann@38857
|
528 |
|
haftmann@38857
|
529 |
lemma [code nbe]:
|
haftmann@38857
|
530 |
"HOL.equal (x :: 'a pred) x \<longleftrightarrow> True"
|
haftmann@38857
|
531 |
by (fact equal_refl)
|
haftmann@30430
|
532 |
|
haftmann@30430
|
533 |
lemma [code]:
|
haftmann@30430
|
534 |
"pred_case f P = f (eval P)"
|
haftmann@30430
|
535 |
by (cases P) simp
|
haftmann@30430
|
536 |
|
haftmann@30430
|
537 |
lemma [code]:
|
haftmann@30430
|
538 |
"pred_rec f P = f (eval P)"
|
haftmann@30430
|
539 |
by (cases P) simp
|
haftmann@30328
|
540 |
|
bulwahn@31105
|
541 |
inductive eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where "eq x x"
|
bulwahn@31105
|
542 |
|
bulwahn@31105
|
543 |
lemma eq_is_eq: "eq x y \<equiv> (x = y)"
|
haftmann@31108
|
544 |
by (rule eq_reflection) (auto intro: eq.intros elim: eq.cases)
|
haftmann@30948
|
545 |
|
haftmann@32578
|
546 |
primrec null :: "'a seq \<Rightarrow> bool" where
|
haftmann@44415
|
547 |
"null Empty \<longleftrightarrow> True"
|
haftmann@44415
|
548 |
| "null (Insert x P) \<longleftrightarrow> False"
|
haftmann@44415
|
549 |
| "null (Join P xq) \<longleftrightarrow> is_empty P \<and> null xq"
|
haftmann@32578
|
550 |
|
haftmann@32578
|
551 |
lemma null_is_empty:
|
haftmann@32578
|
552 |
"null xq \<longleftrightarrow> is_empty (pred_of_seq xq)"
|
haftmann@32578
|
553 |
by (induct xq) (simp_all add: is_empty_bot not_is_empty_single is_empty_sup)
|
haftmann@32578
|
554 |
|
haftmann@32578
|
555 |
lemma is_empty_code [code]:
|
haftmann@32578
|
556 |
"is_empty (Seq f) \<longleftrightarrow> null (f ())"
|
haftmann@32578
|
557 |
by (simp add: null_is_empty Seq_def)
|
haftmann@32578
|
558 |
|
bulwahn@33111
|
559 |
primrec the_only :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a seq \<Rightarrow> 'a" where
|
bulwahn@33111
|
560 |
[code del]: "the_only dfault Empty = dfault ()"
|
haftmann@44415
|
561 |
| "the_only dfault (Insert x P) = (if is_empty P then x else let y = singleton dfault P in if x = y then x else dfault ())"
|
haftmann@44415
|
562 |
| "the_only dfault (Join P xq) = (if is_empty P then the_only dfault xq else if null xq then singleton dfault P
|
bulwahn@33110
|
563 |
else let x = singleton dfault P; y = the_only dfault xq in
|
bulwahn@33111
|
564 |
if x = y then x else dfault ())"
|
haftmann@32578
|
565 |
|
haftmann@32578
|
566 |
lemma the_only_singleton:
|
bulwahn@33110
|
567 |
"the_only dfault xq = singleton dfault (pred_of_seq xq)"
|
haftmann@32578
|
568 |
by (induct xq)
|
haftmann@32578
|
569 |
(auto simp add: singleton_bot singleton_single is_empty_def
|
haftmann@32578
|
570 |
null_is_empty Let_def singleton_sup)
|
haftmann@32578
|
571 |
|
haftmann@32578
|
572 |
lemma singleton_code [code]:
|
bulwahn@33110
|
573 |
"singleton dfault (Seq f) = (case f ()
|
bulwahn@33111
|
574 |
of Empty \<Rightarrow> dfault ()
|
haftmann@32578
|
575 |
| Insert x P \<Rightarrow> if is_empty P then x
|
bulwahn@33110
|
576 |
else let y = singleton dfault P in
|
bulwahn@33111
|
577 |
if x = y then x else dfault ()
|
bulwahn@33110
|
578 |
| Join P xq \<Rightarrow> if is_empty P then the_only dfault xq
|
bulwahn@33110
|
579 |
else if null xq then singleton dfault P
|
bulwahn@33110
|
580 |
else let x = singleton dfault P; y = the_only dfault xq in
|
bulwahn@33111
|
581 |
if x = y then x else dfault ())"
|
haftmann@32578
|
582 |
by (cases "f ()")
|
haftmann@32578
|
583 |
(auto simp add: Seq_def the_only_singleton is_empty_def
|
haftmann@32578
|
584 |
null_is_empty singleton_bot singleton_single singleton_sup Let_def)
|
haftmann@32578
|
585 |
|
haftmann@44414
|
586 |
definition the :: "'a pred \<Rightarrow> 'a" where
|
haftmann@37767
|
587 |
"the A = (THE x. eval A x)"
|
bulwahn@33111
|
588 |
|
haftmann@40674
|
589 |
lemma the_eqI:
|
haftmann@41080
|
590 |
"(THE x. eval P x) = x \<Longrightarrow> the P = x"
|
haftmann@40674
|
591 |
by (simp add: the_def)
|
haftmann@40674
|
592 |
|
haftmann@44414
|
593 |
definition not_unique :: "'a pred \<Rightarrow> 'a" where
|
haftmann@44414
|
594 |
[code del]: "not_unique A = (THE x. eval A x)"
|
haftmann@44414
|
595 |
|
haftmann@44414
|
596 |
code_abort not_unique
|
haftmann@44414
|
597 |
|
haftmann@40674
|
598 |
lemma the_eq [code]: "the A = singleton (\<lambda>x. not_unique A) A"
|
haftmann@40674
|
599 |
by (rule the_eqI) (simp add: singleton_def not_unique_def)
|
bulwahn@33110
|
600 |
|
haftmann@36531
|
601 |
code_reflect Predicate
|
haftmann@36513
|
602 |
datatypes pred = Seq and seq = Empty | Insert | Join
|
haftmann@36513
|
603 |
|
haftmann@30948
|
604 |
ML {*
|
haftmann@30948
|
605 |
signature PREDICATE =
|
haftmann@30948
|
606 |
sig
|
haftmann@51126
|
607 |
val anamorph: ('a -> ('b * 'a) option) -> int -> 'a -> 'b list * 'a
|
haftmann@30948
|
608 |
datatype 'a pred = Seq of (unit -> 'a seq)
|
haftmann@30948
|
609 |
and 'a seq = Empty | Insert of 'a * 'a pred | Join of 'a pred * 'a seq
|
haftmann@51126
|
610 |
val map: ('a -> 'b) -> 'a pred -> 'b pred
|
haftmann@30959
|
611 |
val yield: 'a pred -> ('a * 'a pred) option
|
haftmann@30959
|
612 |
val yieldn: int -> 'a pred -> 'a list * 'a pred
|
haftmann@30948
|
613 |
end;
|
haftmann@30948
|
614 |
|
haftmann@30948
|
615 |
structure Predicate : PREDICATE =
|
haftmann@30948
|
616 |
struct
|
haftmann@30948
|
617 |
|
haftmann@51126
|
618 |
fun anamorph f k x =
|
haftmann@51126
|
619 |
(if k = 0 then ([], x)
|
haftmann@51126
|
620 |
else case f x
|
haftmann@51126
|
621 |
of NONE => ([], x)
|
haftmann@51126
|
622 |
| SOME (v, y) => let
|
haftmann@51126
|
623 |
val k' = k - 1;
|
haftmann@51126
|
624 |
val (vs, z) = anamorph f k' y
|
haftmann@51126
|
625 |
in (v :: vs, z) end);
|
haftmann@51126
|
626 |
|
haftmann@36513
|
627 |
datatype pred = datatype Predicate.pred
|
haftmann@36513
|
628 |
datatype seq = datatype Predicate.seq
|
haftmann@36513
|
629 |
|
haftmann@51126
|
630 |
fun map f = @{code Predicate.map} f;
|
haftmann@30959
|
631 |
|
haftmann@36513
|
632 |
fun yield (Seq f) = next (f ())
|
haftmann@36513
|
633 |
and next Empty = NONE
|
haftmann@36513
|
634 |
| next (Insert (x, P)) = SOME (x, P)
|
haftmann@36513
|
635 |
| next (Join (P, xq)) = (case yield P
|
haftmann@30959
|
636 |
of NONE => next xq
|
haftmann@36513
|
637 |
| SOME (x, Q) => SOME (x, Seq (fn _ => Join (Q, xq))));
|
haftmann@30959
|
638 |
|
haftmann@51126
|
639 |
fun yieldn k = anamorph yield k;
|
haftmann@30948
|
640 |
|
haftmann@30948
|
641 |
end;
|
haftmann@30948
|
642 |
*}
|
haftmann@30948
|
643 |
|
haftmann@46038
|
644 |
text {* Conversion from and to sets *}
|
haftmann@46038
|
645 |
|
haftmann@46038
|
646 |
definition pred_of_set :: "'a set \<Rightarrow> 'a pred" where
|
haftmann@46038
|
647 |
"pred_of_set = Pred \<circ> (\<lambda>A x. x \<in> A)"
|
haftmann@46038
|
648 |
|
haftmann@46038
|
649 |
lemma eval_pred_of_set [simp]:
|
haftmann@46038
|
650 |
"eval (pred_of_set A) x \<longleftrightarrow> x \<in>A"
|
haftmann@46038
|
651 |
by (simp add: pred_of_set_def)
|
haftmann@46038
|
652 |
|
haftmann@46038
|
653 |
definition set_of_pred :: "'a pred \<Rightarrow> 'a set" where
|
haftmann@46038
|
654 |
"set_of_pred = Collect \<circ> eval"
|
haftmann@46038
|
655 |
|
haftmann@46038
|
656 |
lemma member_set_of_pred [simp]:
|
haftmann@46038
|
657 |
"x \<in> set_of_pred P \<longleftrightarrow> Predicate.eval P x"
|
haftmann@46038
|
658 |
by (simp add: set_of_pred_def)
|
haftmann@46038
|
659 |
|
haftmann@46038
|
660 |
definition set_of_seq :: "'a seq \<Rightarrow> 'a set" where
|
haftmann@46038
|
661 |
"set_of_seq = set_of_pred \<circ> pred_of_seq"
|
haftmann@46038
|
662 |
|
haftmann@46038
|
663 |
lemma member_set_of_seq [simp]:
|
haftmann@46038
|
664 |
"x \<in> set_of_seq xq = Predicate.member xq x"
|
haftmann@46038
|
665 |
by (simp add: set_of_seq_def eval_member)
|
haftmann@46038
|
666 |
|
haftmann@46038
|
667 |
lemma of_pred_code [code]:
|
haftmann@46038
|
668 |
"set_of_pred (Predicate.Seq f) = (case f () of
|
haftmann@46038
|
669 |
Predicate.Empty \<Rightarrow> {}
|
haftmann@46038
|
670 |
| Predicate.Insert x P \<Rightarrow> insert x (set_of_pred P)
|
haftmann@46038
|
671 |
| Predicate.Join P xq \<Rightarrow> set_of_pred P \<union> set_of_seq xq)"
|
haftmann@46038
|
672 |
by (auto split: seq.split simp add: eval_code)
|
haftmann@46038
|
673 |
|
haftmann@46038
|
674 |
lemma of_seq_code [code]:
|
haftmann@46038
|
675 |
"set_of_seq Predicate.Empty = {}"
|
haftmann@46038
|
676 |
"set_of_seq (Predicate.Insert x P) = insert x (set_of_pred P)"
|
haftmann@46038
|
677 |
"set_of_seq (Predicate.Join P xq) = set_of_pred P \<union> set_of_seq xq"
|
haftmann@46038
|
678 |
by auto
|
haftmann@46038
|
679 |
|
haftmann@46664
|
680 |
text {* Lazy Evaluation of an indexed function *}
|
haftmann@46664
|
681 |
|
haftmann@46664
|
682 |
function iterate_upto :: "(code_numeral \<Rightarrow> 'a) \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> 'a Predicate.pred"
|
haftmann@46664
|
683 |
where
|
haftmann@46664
|
684 |
"iterate_upto f n m =
|
haftmann@46664
|
685 |
Predicate.Seq (%u. if n > m then Predicate.Empty
|
haftmann@46664
|
686 |
else Predicate.Insert (f n) (iterate_upto f (n + 1) m))"
|
haftmann@46664
|
687 |
by pat_completeness auto
|
haftmann@46664
|
688 |
|
haftmann@46664
|
689 |
termination by (relation "measure (%(f, n, m). Code_Numeral.nat_of (m + 1 - n))") auto
|
haftmann@46664
|
690 |
|
haftmann@46664
|
691 |
text {* Misc *}
|
haftmann@46664
|
692 |
|
haftmann@47399
|
693 |
declare Inf_set_fold [where 'a = "'a Predicate.pred", code]
|
haftmann@47399
|
694 |
declare Sup_set_fold [where 'a = "'a Predicate.pred", code]
|
haftmann@46664
|
695 |
|
haftmann@46664
|
696 |
(* FIXME: better implement conversion by bisection *)
|
haftmann@46664
|
697 |
|
haftmann@46664
|
698 |
lemma pred_of_set_fold_sup:
|
haftmann@46664
|
699 |
assumes "finite A"
|
haftmann@46664
|
700 |
shows "pred_of_set A = Finite_Set.fold sup bot (Predicate.single ` A)" (is "?lhs = ?rhs")
|
haftmann@46664
|
701 |
proof (rule sym)
|
haftmann@46664
|
702 |
interpret comp_fun_idem "sup :: 'a Predicate.pred \<Rightarrow> 'a Predicate.pred \<Rightarrow> 'a Predicate.pred"
|
haftmann@46664
|
703 |
by (fact comp_fun_idem_sup)
|
haftmann@46664
|
704 |
from `finite A` show "?rhs = ?lhs" by (induct A) (auto intro!: pred_eqI)
|
haftmann@46664
|
705 |
qed
|
haftmann@46664
|
706 |
|
haftmann@46664
|
707 |
lemma pred_of_set_set_fold_sup:
|
haftmann@46664
|
708 |
"pred_of_set (set xs) = fold sup (List.map Predicate.single xs) bot"
|
haftmann@46664
|
709 |
proof -
|
haftmann@46664
|
710 |
interpret comp_fun_idem "sup :: 'a Predicate.pred \<Rightarrow> 'a Predicate.pred \<Rightarrow> 'a Predicate.pred"
|
haftmann@46664
|
711 |
by (fact comp_fun_idem_sup)
|
haftmann@46664
|
712 |
show ?thesis by (simp add: pred_of_set_fold_sup fold_set_fold [symmetric])
|
haftmann@46664
|
713 |
qed
|
haftmann@46664
|
714 |
|
haftmann@46664
|
715 |
lemma pred_of_set_set_foldr_sup [code]:
|
haftmann@46664
|
716 |
"pred_of_set (set xs) = foldr sup (List.map Predicate.single xs) bot"
|
haftmann@46664
|
717 |
by (simp add: pred_of_set_set_fold_sup ac_simps foldr_fold fun_eq_iff)
|
haftmann@46664
|
718 |
|
haftmann@30328
|
719 |
no_notation
|
haftmann@30328
|
720 |
bind (infixl "\<guillemotright>=" 70)
|
haftmann@30328
|
721 |
|
wenzelm@36176
|
722 |
hide_type (open) pred seq
|
wenzelm@36176
|
723 |
hide_const (open) Pred eval single bind is_empty singleton if_pred not_pred holds
|
bulwahn@33111
|
724 |
Empty Insert Join Seq member pred_of_seq "apply" adjunct null the_only eq map not_unique the
|
haftmann@46664
|
725 |
iterate_upto
|
haftmann@46664
|
726 |
hide_fact (open) null_def member_def
|
haftmann@30328
|
727 |
|
haftmann@30328
|
728 |
end
|
haftmann@46664
|
729 |
|