src/HOL/Nominal/nominal_permeq.ML
author urbanc
Tue Jul 04 17:26:02 2006 +0200 (2006-07-04)
changeset 19993 e0a5783d708f
parent 19987 b97607d4d9a5
child 20289 ba7a7c56bed5
permissions -rw-r--r--
added simplification rules to the fresh_guess tactic
berghofe@19494
     1
(*  Title:      HOL/Nominal/nominal_permeq.ML
berghofe@19494
     2
    ID:         $Id$
berghofe@19494
     3
    Author:     Christian Urban, TU Muenchen
berghofe@17870
     4
berghofe@19494
     5
Methods for simplifying permutations and
berghofe@19494
     6
for analysing equations involving permutations.
berghofe@19494
     7
*)
berghofe@17870
     8
berghofe@19987
     9
signature NOMINAL_PERMEQ =
berghofe@19987
    10
sig
berghofe@19987
    11
  val perm_simp_tac : simpset -> int -> tactic
berghofe@19987
    12
  val perm_full_simp_tac : simpset -> int -> tactic
berghofe@19987
    13
  val supports_tac : simpset -> int -> tactic
berghofe@19987
    14
  val finite_guess_tac : simpset -> int -> tactic
berghofe@19987
    15
  val fresh_guess_tac : simpset -> int -> tactic
berghofe@17870
    16
berghofe@19987
    17
  val perm_eq_meth : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    18
  val perm_eq_meth_debug : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    19
  val perm_full_eq_meth : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    20
  val perm_full_eq_meth_debug : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    21
  val supports_meth : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    22
  val supports_meth_debug : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    23
  val finite_gs_meth : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    24
  val finite_gs_meth_debug : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    25
  val fresh_gs_meth : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    26
  val fresh_gs_meth_debug : Method.src -> ProofContext.context -> Method.method
berghofe@19987
    27
end
berghofe@19987
    28
berghofe@19987
    29
structure NominalPermeq : NOMINAL_PERMEQ =
berghofe@19987
    30
struct
berghofe@19987
    31
berghofe@19987
    32
(* pulls out dynamically a thm via the proof state *)
berghofe@19987
    33
fun dynamic_thms st name = PureThy.get_thms (theory_of_thm st) (Name name);
berghofe@19987
    34
fun dynamic_thm st name = PureThy.get_thm (theory_of_thm st) (Name name);
urbanc@18012
    35
urbanc@19477
    36
(* a tactic simplyfying permutations *)
berghofe@19494
    37
val perm_fun_def = thm "Nominal.perm_fun_def"
berghofe@19494
    38
val perm_eq_app = thm "Nominal.pt_fun_app_eq"
urbanc@19477
    39
berghofe@19987
    40
fun perm_eval_tac ss i = ("general simplification step", fn st =>
urbanc@18012
    41
    let
urbanc@19139
    42
        fun perm_eval_simproc sg ss redex =
urbanc@19169
    43
        let 
urbanc@19477
    44
	   (* the "application" case below is only applicable when the head   *)
urbanc@19169
    45
           (* of f is not a constant  or when it is a permuattion with two or *) 
urbanc@19169
    46
           (* more arguments                                                  *)
urbanc@19169
    47
           fun applicable t = 
urbanc@19169
    48
	       (case (strip_comb t) of
berghofe@19494
    49
		  (Const ("Nominal.perm",_),ts) => (length ts) >= 2
urbanc@19169
    50
		| (Const _,_) => false
urbanc@19169
    51
		| _ => true)
urbanc@19169
    52
urbanc@19169
    53
	in
urbanc@19139
    54
        (case redex of 
urbanc@19169
    55
        (* case pi o (f x) == (pi o f) (pi o x)          *)
urbanc@19169
    56
        (* special treatment according to the head of f  *)
berghofe@19494
    57
        (Const("Nominal.perm",
urbanc@19169
    58
          Type("fun",[Type("List.list",[Type("*",[Type(n,_),_])]),_])) $ pi $ (f $ x)) => 
urbanc@19169
    59
	   (case (applicable f) of
urbanc@19169
    60
                false => NONE  
urbanc@19163
    61
              | _ => 
urbanc@19163
    62
		let
urbanc@19163
    63
		    val name = Sign.base_name n
berghofe@19987
    64
		    val at_inst     = dynamic_thm st ("at_"^name^"_inst")
berghofe@19987
    65
		    val pt_inst     = dynamic_thm st ("pt_"^name^"_inst")  
urbanc@19163
    66
		in SOME ((at_inst RS (pt_inst RS perm_eq_app)) RS eq_reflection) end)
urbanc@19139
    67
urbanc@19139
    68
        (* case pi o (%x. f x) == (%x. pi o (f ((rev pi)o x))) *)
berghofe@19494
    69
        | (Const("Nominal.perm",_) $ pi $ (Abs _)) => SOME (perm_fun_def)
urbanc@19139
    70
urbanc@19139
    71
        (* no redex otherwise *) 
urbanc@19169
    72
        | _ => NONE) end
urbanc@19139
    73
urbanc@19139
    74
	val perm_eval =
urbanc@19139
    75
	    Simplifier.simproc (Theory.sign_of (the_context ())) "perm_eval" 
berghofe@19494
    76
	    ["Nominal.perm pi x"] perm_eval_simproc;
urbanc@19139
    77
urbanc@19477
    78
      (* these lemmas are created dynamically according to the atom types *) 
berghofe@19987
    79
      val perm_swap        = dynamic_thms st "perm_swap"
berghofe@19987
    80
      val perm_fresh       = dynamic_thms st "perm_fresh_fresh"
berghofe@19987
    81
      val perm_bij         = dynamic_thms st "perm_bij"
berghofe@19987
    82
      val perm_pi_simp     = dynamic_thms st "perm_pi_simp"
urbanc@19477
    83
      val ss' = ss addsimps (perm_swap@perm_fresh@perm_bij@perm_pi_simp)
urbanc@19477
    84
    in
berghofe@19987
    85
      asm_full_simp_tac (ss' addsimprocs [perm_eval]) i st
berghofe@19987
    86
    end);
urbanc@19477
    87
urbanc@19477
    88
(* applies the perm_compose rule such that                             *)
urbanc@19477
    89
(*                                                                     *)
urbanc@19477
    90
(*   pi o (pi' o lhs) = rhs                                            *)
urbanc@19477
    91
(*                                                                     *)
urbanc@19477
    92
(* is transformed to                                                   *) 
urbanc@19477
    93
(*                                                                     *)
urbanc@19477
    94
(*  (pi o pi') o (pi' o lhs) = rhs                                     *)
urbanc@19477
    95
(*                                                                     *)
urbanc@19477
    96
(* this rule would loop in the simplifier, so some trick is used with  *)
urbanc@19477
    97
(* generating perm_aux'es for the outermost permutation and then un-   *)
urbanc@19477
    98
(* folding the definition                                              *)
urbanc@19477
    99
val pt_perm_compose_aux = thm "pt_perm_compose_aux";
urbanc@19477
   100
val cp1_aux             = thm "cp1_aux";
urbanc@19477
   101
val perm_aux_fold       = thm "perm_aux_fold"; 
urbanc@19477
   102
urbanc@19477
   103
fun perm_compose_tac ss i = 
urbanc@19477
   104
    let
urbanc@19477
   105
	fun perm_compose_simproc sg ss redex =
urbanc@19477
   106
	(case redex of
berghofe@19494
   107
           (Const ("Nominal.perm", Type ("fun", [Type ("List.list", 
berghofe@19494
   108
             [Type ("*", [T as Type (tname,_),_])]),_])) $ pi1 $ (Const ("Nominal.perm", 
urbanc@19477
   109
               Type ("fun", [Type ("List.list", [Type ("*", [U as Type (uname,_),_])]),_])) $ 
urbanc@19477
   110
                pi2 $ t)) =>
urbanc@19350
   111
        let
urbanc@19350
   112
	    val tname' = Sign.base_name tname
urbanc@19477
   113
            val uname' = Sign.base_name uname
urbanc@19350
   114
        in
urbanc@19477
   115
            if pi1 <> pi2 then  (* only apply the composition rule in this case *)
urbanc@19477
   116
               if T = U then    
urbanc@19350
   117
                SOME (Drule.instantiate'
urbanc@19350
   118
	              [SOME (ctyp_of sg (fastype_of t))]
urbanc@19350
   119
		      [SOME (cterm_of sg pi1), SOME (cterm_of sg pi2), SOME (cterm_of sg t)]
urbanc@19350
   120
		      (mk_meta_eq ([PureThy.get_thm sg (Name ("pt_"^tname'^"_inst")),
urbanc@19477
   121
	               PureThy.get_thm sg (Name ("at_"^tname'^"_inst"))] MRS pt_perm_compose_aux)))
urbanc@19477
   122
               else
urbanc@19477
   123
                SOME (Drule.instantiate'
urbanc@19477
   124
	              [SOME (ctyp_of sg (fastype_of t))]
urbanc@19477
   125
		      [SOME (cterm_of sg pi1), SOME (cterm_of sg pi2), SOME (cterm_of sg t)]
urbanc@19477
   126
		      (mk_meta_eq (PureThy.get_thm sg (Name ("cp_"^tname'^"_"^uname'^"_inst")) RS 
urbanc@19477
   127
                       cp1_aux)))
urbanc@19350
   128
            else NONE
urbanc@19350
   129
        end
urbanc@19350
   130
       | _ => NONE);
urbanc@19477
   131
	  
urbanc@19477
   132
      val perm_compose  =
urbanc@19350
   133
	Simplifier.simproc (the_context()) "perm_compose" 
berghofe@19494
   134
	["Nominal.perm pi1 (Nominal.perm pi2 t)"] perm_compose_simproc;
urbanc@19477
   135
urbanc@19477
   136
      val ss' = Simplifier.theory_context (the_context ()) empty_ss	  
urbanc@19477
   137
urbanc@18012
   138
    in
urbanc@19477
   139
	("analysing permutation compositions on the lhs",
urbanc@19477
   140
         EVERY [rtac trans i,
urbanc@19477
   141
                asm_full_simp_tac (ss' addsimprocs [perm_compose]) i,
urbanc@19477
   142
                asm_full_simp_tac (HOL_basic_ss addsimps [perm_aux_fold]) i])
urbanc@18012
   143
    end
urbanc@18012
   144
urbanc@18012
   145
(* applying Stefan's smart congruence tac *)
urbanc@18012
   146
fun apply_cong_tac i = 
urbanc@18012
   147
    ("application of congruence",
urbanc@19477
   148
     (fn st => DatatypeAux.cong_tac i st handle Subscript => no_tac st));
berghofe@17870
   149
urbanc@19477
   150
(* unfolds the definition of permutations     *)
urbanc@19477
   151
(* applied to functions such that             *)
urbanc@19477
   152
(*                                            *)
urbanc@19477
   153
(*   pi o f = rhs                             *)  
urbanc@19477
   154
(*                                            *)
urbanc@19477
   155
(* is transformed to                          *)
urbanc@19477
   156
(*                                            *)
urbanc@19477
   157
(*   %x. pi o (f ((rev pi) o x)) = rhs        *)
urbanc@18012
   158
fun unfold_perm_fun_def_tac i = 
urbanc@18012
   159
    let
berghofe@19494
   160
	val perm_fun_def = thm "Nominal.perm_fun_def"
urbanc@18012
   161
    in
urbanc@18012
   162
	("unfolding of permutations on functions", 
urbanc@19477
   163
         rtac (perm_fun_def RS meta_eq_to_obj_eq RS trans) i)
berghofe@17870
   164
    end
berghofe@17870
   165
urbanc@19477
   166
(* applies the ext-rule such that      *)
urbanc@19477
   167
(*                                     *)
urbanc@19477
   168
(*    f = g    goes to /\x. f x = g x  *)
urbanc@19477
   169
fun ext_fun_tac i = ("extensionality expansion of functions", rtac ext i);
berghofe@17870
   170
urbanc@19477
   171
(* FIXME FIXME FIXME *)
urbanc@19477
   172
(* should be able to analyse pi o fresh_fun () = fresh_fun instances *) 
urbanc@19477
   173
fun fresh_fun_eqvt_tac i =
urbanc@19477
   174
    let
berghofe@19494
   175
	val fresh_fun_equiv = thm "Nominal.fresh_fun_equiv_ineq"
urbanc@19477
   176
    in
urbanc@19477
   177
	("fresh_fun equivariance", rtac (fresh_fun_equiv RS trans) i)
urbanc@19477
   178
    end		       
urbanc@19477
   179
		       
berghofe@17870
   180
(* debugging *)
berghofe@17870
   181
fun DEBUG_tac (msg,tac) = 
urbanc@19169
   182
    CHANGED (EVERY [tac, print_tac ("after "^msg)]); 
berghofe@17870
   183
fun NO_DEBUG_tac (_,tac) = CHANGED tac; 
berghofe@17870
   184
urbanc@19477
   185
(* Main Tactics *)
urbanc@18012
   186
fun perm_simp_tac tactical ss i = 
urbanc@19139
   187
    DETERM (tactical (perm_eval_tac ss i));
urbanc@19139
   188
urbanc@19477
   189
(* perm_full_simp_tac is perm_simp_tac plus additional tactics    *)
urbanc@19477
   190
(* to decide equation that come from support problems             *)
urbanc@19477
   191
(* since it contains looping rules the "recursion" - depth is set *)
urbanc@19477
   192
(* to 10 - this seems to be sufficient in most cases              *)
urbanc@19477
   193
fun perm_full_simp_tac tactical ss =
urbanc@19477
   194
  let fun perm_full_simp_tac_aux tactical ss n = 
urbanc@19477
   195
	  if n=0 then K all_tac
urbanc@19477
   196
	  else DETERM o 
urbanc@19477
   197
	       (FIRST'[fn i => tactical ("splitting conjunctions on the rhs", rtac conjI i),
urbanc@19477
   198
                       fn i => tactical (perm_eval_tac ss i),
urbanc@19477
   199
		       fn i => tactical (perm_compose_tac ss i),
urbanc@19477
   200
		       fn i => tactical (apply_cong_tac i), 
urbanc@19477
   201
                       fn i => tactical (unfold_perm_fun_def_tac i),
urbanc@19477
   202
                       fn i => tactical (ext_fun_tac i), 
urbanc@19477
   203
                       fn i => tactical (fresh_fun_eqvt_tac i)]
urbanc@19477
   204
		      THEN_ALL_NEW (TRY o (perm_full_simp_tac_aux tactical ss (n-1))))
urbanc@19477
   205
  in perm_full_simp_tac_aux tactical ss 10 end;
urbanc@19151
   206
urbanc@19477
   207
(* tactic that first unfolds the support definition           *)
urbanc@19477
   208
(* and strips off the intros, then applies perm_full_simp_tac *)
urbanc@18012
   209
fun supports_tac tactical ss i =
urbanc@18012
   210
  let 
berghofe@19494
   211
      val supports_def = thm "Nominal.op supports_def";
berghofe@19494
   212
      val fresh_def    = thm "Nominal.fresh_def";
berghofe@19494
   213
      val fresh_prod   = thm "Nominal.fresh_prod";
urbanc@18012
   214
      val simps        = [supports_def,symmetric fresh_def,fresh_prod]
berghofe@17870
   215
  in
urbanc@19477
   216
      EVERY [tactical ("unfolding of supports   ", simp_tac (HOL_basic_ss addsimps simps) i),
urbanc@19477
   217
             tactical ("stripping of foralls    ", REPEAT_DETERM (rtac allI i)),
urbanc@19477
   218
             tactical ("geting rid of the imps  ", rtac impI i),
urbanc@19477
   219
             tactical ("eliminating conjuncts   ", REPEAT_DETERM (etac  conjE i)),
urbanc@19477
   220
             tactical ("applying perm_full_simp ", perm_full_simp_tac tactical ss i
urbanc@19477
   221
                                                   (*perm_simp_tac tactical ss i*))]
berghofe@17870
   222
  end;
berghofe@17870
   223
urbanc@19151
   224
urbanc@19477
   225
(* tactic that guesses the finite-support of a goal       *)
urbanc@19477
   226
(* it collects all free variables and tries to show       *)
urbanc@19477
   227
(* that the support of these free variables (op supports) *)
urbanc@19477
   228
(* the goal                                               *)
urbanc@19151
   229
fun collect_vars i (Bound j) vs = if j < i then vs else Bound (j - i) ins vs
urbanc@19151
   230
  | collect_vars i (v as Free _) vs = v ins vs
urbanc@19151
   231
  | collect_vars i (v as Var _) vs = v ins vs
urbanc@19151
   232
  | collect_vars i (Const _) vs = vs
urbanc@19151
   233
  | collect_vars i (Abs (_, _, t)) vs = collect_vars (i+1) t vs
urbanc@19151
   234
  | collect_vars i (t $ u) vs = collect_vars i u (collect_vars i t vs);
urbanc@19151
   235
urbanc@19151
   236
val supports_rule = thm "supports_finite";
urbanc@19151
   237
berghofe@19987
   238
val supp_prod = thm "supp_prod";
berghofe@19987
   239
val supp_unit = thm "supp_unit";
berghofe@19987
   240
urbanc@19151
   241
fun finite_guess_tac tactical ss i st =
urbanc@19151
   242
    let val goal = List.nth(cprems_of st, i-1)
urbanc@19151
   243
    in
urbanc@19151
   244
      case Logic.strip_assums_concl (term_of goal) of
berghofe@19494
   245
          _ $ (Const ("op :", _) $ (Const ("Nominal.supp", T) $ x) $
urbanc@19151
   246
            Const ("Finite_Set.Finites", _)) =>
urbanc@19151
   247
          let
urbanc@19151
   248
            val cert = Thm.cterm_of (sign_of_thm st);
urbanc@19151
   249
            val ps = Logic.strip_params (term_of goal);
urbanc@19151
   250
            val Ts = rev (map snd ps);
urbanc@19151
   251
            val vs = collect_vars 0 x [];
urbanc@19151
   252
            val s = foldr (fn (v, s) =>
urbanc@19151
   253
                HOLogic.pair_const (fastype_of1 (Ts, v)) (fastype_of1 (Ts, s)) $ v $ s)
urbanc@19151
   254
              HOLogic.unit vs;
urbanc@19151
   255
            val s' = list_abs (ps,
berghofe@19494
   256
              Const ("Nominal.supp", fastype_of1 (Ts, s) --> body_type T) $ s);
urbanc@19151
   257
            val supports_rule' = Thm.lift_rule goal supports_rule;
urbanc@19151
   258
            val _ $ (_ $ S $ _) =
urbanc@19151
   259
              Logic.strip_assums_concl (hd (prems_of supports_rule'));
urbanc@19151
   260
            val supports_rule'' = Drule.cterm_instantiate
urbanc@19151
   261
              [(cert (head_of S), cert s')] supports_rule'
berghofe@19987
   262
            val ss' = ss addsimps [supp_prod, supp_unit, finite_Un, Finites.emptyI]
urbanc@19151
   263
          in
urbanc@19151
   264
            (tactical ("guessing of the right supports-set",
urbanc@19151
   265
                      EVERY [compose_tac (false, supports_rule'', 2) i,
berghofe@19987
   266
                             asm_full_simp_tac ss' (i+1),
urbanc@19151
   267
                             supports_tac tactical ss i])) st
urbanc@19151
   268
          end
urbanc@19151
   269
        | _ => Seq.empty
urbanc@19151
   270
    end
urbanc@19151
   271
    handle Subscript => Seq.empty
urbanc@19151
   272
berghofe@19857
   273
val supports_fresh_rule = thm "supports_fresh";
urbanc@19993
   274
val fresh_def           = thm "Nominal.fresh_def";
urbanc@19993
   275
val fresh_prod          = thm "Nominal.fresh_prod";
urbanc@19993
   276
val fresh_unit          = thm "Nominal.fresh_unit";
berghofe@19857
   277
berghofe@19857
   278
fun fresh_guess_tac tactical ss i st =
berghofe@19857
   279
    let 
berghofe@19857
   280
	val goal = List.nth(cprems_of st, i-1)
berghofe@19857
   281
    in
berghofe@19857
   282
      case Logic.strip_assums_concl (term_of goal) of
berghofe@19857
   283
          _ $ (Const ("Nominal.fresh", Type ("fun", [T, _])) $ _ $ t) => 
berghofe@19857
   284
          let
berghofe@19857
   285
            val cert = Thm.cterm_of (sign_of_thm st);
berghofe@19857
   286
            val ps = Logic.strip_params (term_of goal);
berghofe@19857
   287
            val Ts = rev (map snd ps);
berghofe@19857
   288
            val vs = collect_vars 0 t [];
berghofe@19857
   289
            val s = foldr (fn (v, s) =>
berghofe@19857
   290
                HOLogic.pair_const (fastype_of1 (Ts, v)) (fastype_of1 (Ts, s)) $ v $ s)
berghofe@19857
   291
              HOLogic.unit vs;
berghofe@19857
   292
            val s' = list_abs (ps,
berghofe@19857
   293
              Const ("Nominal.supp", fastype_of1 (Ts, s) --> (HOLogic.mk_setT T)) $ s);
berghofe@19857
   294
            val supports_fresh_rule' = Thm.lift_rule goal supports_fresh_rule;
berghofe@19857
   295
            val _ $ (_ $ S $ _) =
berghofe@19857
   296
              Logic.strip_assums_concl (hd (prems_of supports_fresh_rule'));
berghofe@19857
   297
            val supports_fresh_rule'' = Drule.cterm_instantiate
berghofe@19857
   298
              [(cert (head_of S), cert s')] supports_fresh_rule'
urbanc@19993
   299
	    val ss1 = ss addsimps [symmetric fresh_def,fresh_prod,fresh_unit]
urbanc@19993
   300
            val ss2 = ss addsimps [supp_prod,supp_unit,finite_Un,Finites.emptyI]
urbanc@19993
   301
            (* FIXME sometimes these rewrite rules are already in the ss, *)
urbanc@19993
   302
            (* which produces a warning                                   *)
berghofe@19857
   303
          in
berghofe@19857
   304
            (tactical ("guessing of the right set that supports the goal",
urbanc@19858
   305
                      EVERY [compose_tac (false, supports_fresh_rule'', 3) i,
urbanc@19993
   306
                             asm_full_simp_tac ss1 (i+2),
urbanc@19993
   307
                             asm_full_simp_tac ss2 (i+1), 
urbanc@19858
   308
                             supports_tac tactical ss i])) st
berghofe@19857
   309
          end
berghofe@19857
   310
        | _ => Seq.empty
berghofe@19857
   311
    end
berghofe@19857
   312
    handle Subscript => Seq.empty
berghofe@19857
   313
urbanc@18012
   314
fun simp_meth_setup tac =
urbanc@18046
   315
  Method.only_sectioned_args (Simplifier.simp_modifiers' @ Splitter.split_modifiers)
urbanc@18012
   316
  (Method.SIMPLE_METHOD' HEADGOAL o tac o local_simpset_of);
berghofe@17870
   317
urbanc@19477
   318
val perm_eq_meth            = simp_meth_setup (perm_simp_tac NO_DEBUG_tac);
urbanc@19477
   319
val perm_eq_meth_debug      = simp_meth_setup (perm_simp_tac DEBUG_tac);
urbanc@19477
   320
val perm_full_eq_meth       = simp_meth_setup (perm_full_simp_tac NO_DEBUG_tac);
urbanc@19477
   321
val perm_full_eq_meth_debug = simp_meth_setup (perm_full_simp_tac DEBUG_tac);
urbanc@19477
   322
val supports_meth           = simp_meth_setup (supports_tac NO_DEBUG_tac);
urbanc@19477
   323
val supports_meth_debug     = simp_meth_setup (supports_tac DEBUG_tac);
urbanc@19477
   324
val finite_gs_meth          = simp_meth_setup (finite_guess_tac NO_DEBUG_tac);
urbanc@19477
   325
val finite_gs_meth_debug    = simp_meth_setup (finite_guess_tac DEBUG_tac);
berghofe@19857
   326
val fresh_gs_meth           = simp_meth_setup (fresh_guess_tac NO_DEBUG_tac);
berghofe@19857
   327
val fresh_gs_meth_debug     = simp_meth_setup (fresh_guess_tac DEBUG_tac);
berghofe@17870
   328
berghofe@19987
   329
(* FIXME: get rid of "debug" versions? *)
berghofe@19987
   330
val perm_simp_tac = perm_simp_tac NO_DEBUG_tac;
berghofe@19987
   331
val perm_full_simp_tac = perm_full_simp_tac NO_DEBUG_tac;
berghofe@19987
   332
val supports_tac = supports_tac NO_DEBUG_tac;
berghofe@19987
   333
val finite_guess_tac = finite_guess_tac NO_DEBUG_tac;
berghofe@19987
   334
val fresh_guess_tac = fresh_guess_tac NO_DEBUG_tac;
berghofe@17870
   335
berghofe@19987
   336
end