src/Pure/library.ML
author wenzelm
Wed Nov 05 11:33:05 1997 +0100 (1997-11-05)
changeset 4139 e1659fd7a221
parent 4102 f746af27164b
child 4181 fcc8b47e4c49
permissions -rw-r--r--
fixed exception OPTION;
added try, can;
wenzelm@41
     1
(*  Title:      Pure/library.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@233
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1992  University of Cambridge
clasohm@0
     5
wenzelm@233
     6
Basic library: functions, options, pairs, booleans, lists, integers,
wenzelm@233
     7
strings, lists as sets, association lists, generic tables, balanced trees,
wenzelm@2506
     8
orders, input / output, timing, filenames, misc functions.
clasohm@0
     9
*)
clasohm@0
    10
berghofe@1576
    11
infix |> ~~ \ \\ orelf ins ins_string ins_int orf andf prefix upto downto
paulson@2175
    12
      mem mem_int mem_string union union_int union_string  
paulson@2175
    13
      inter inter_int inter_string subset subset_int subset_string subdir_of;
clasohm@1364
    14
clasohm@1364
    15
clasohm@1364
    16
structure Library =
clasohm@1364
    17
struct
clasohm@0
    18
wenzelm@233
    19
(** functions **)
clasohm@0
    20
wenzelm@233
    21
(*handy combinators*)
wenzelm@233
    22
fun curry f x y = f (x, y);
wenzelm@233
    23
fun uncurry f (x, y) = f x y;
wenzelm@233
    24
fun I x = x;
wenzelm@233
    25
fun K x y = x;
clasohm@0
    26
wenzelm@380
    27
(*reverse apply*)
wenzelm@410
    28
fun (x |> f) = f x;
wenzelm@380
    29
wenzelm@233
    30
(*combine two functions forming the union of their domains*)
paulson@2175
    31
fun (f orelf g) = fn x => f x handle Match => g x;
clasohm@0
    32
wenzelm@233
    33
(*application of (infix) operator to its left or right argument*)
wenzelm@233
    34
fun apl (x, f) y = f (x, y);
wenzelm@233
    35
fun apr (f, y) x = f (x, y);
clasohm@0
    36
wenzelm@233
    37
(*functional for pairs*)
wenzelm@233
    38
fun pairself f (x, y) = (f x, f y);
clasohm@0
    39
wenzelm@233
    40
(*function exponentiation: f(...(f x)...) with n applications of f*)
wenzelm@233
    41
fun funpow n f x =
wenzelm@233
    42
  let fun rep (0, x) = x
wenzelm@233
    43
        | rep (n, x) = rep (n - 1, f x)
wenzelm@233
    44
  in rep (n, x) end;
wenzelm@160
    45
wenzelm@160
    46
wenzelm@160
    47
wenzelm@2471
    48
(** stamps **)
wenzelm@2471
    49
wenzelm@2471
    50
type stamp = unit ref;
wenzelm@2471
    51
val stamp: unit -> stamp = ref;
wenzelm@2471
    52
wenzelm@2471
    53
wenzelm@2471
    54
wenzelm@233
    55
(** options **)
clasohm@0
    56
clasohm@0
    57
datatype 'a option = None | Some of 'a;
clasohm@0
    58
wenzelm@4139
    59
exception OPTION;
clasohm@0
    60
clasohm@0
    61
fun the (Some x) = x
wenzelm@4139
    62
  | the None = raise OPTION;
clasohm@0
    63
wenzelm@255
    64
fun if_none None y = y
wenzelm@255
    65
  | if_none (Some x) _ = x;
wenzelm@255
    66
clasohm@0
    67
fun is_some (Some _) = true
clasohm@0
    68
  | is_some None = false;
clasohm@0
    69
clasohm@0
    70
fun is_none (Some _) = false
clasohm@0
    71
  | is_none None = true;
clasohm@0
    72
wenzelm@233
    73
fun apsome f (Some x) = Some (f x)
wenzelm@233
    74
  | apsome _ None = None;
clasohm@0
    75
wenzelm@4046
    76
fun merge_opts _ (None, None) = None
wenzelm@4046
    77
  | merge_opts _ (some as Some _, None) = some
wenzelm@4046
    78
  | merge_opts _ (None, some as Some _) = some
wenzelm@4046
    79
  | merge_opts merge (Some x, Some y) = Some (merge (x, y));
wenzelm@4046
    80
wenzelm@4139
    81
(*handle partial functions*)
wenzelm@4139
    82
fun try f x = Some (f x) handle _ => None;
wenzelm@4139
    83
fun can f x = is_some (try f x);
wenzelm@4139
    84
wenzelm@4139
    85
wenzelm@4139
    86
wenzelm@233
    87
(** pairs **)
wenzelm@233
    88
wenzelm@233
    89
fun pair x y = (x, y);
wenzelm@233
    90
fun rpair x y = (y, x);
wenzelm@233
    91
wenzelm@233
    92
fun fst (x, y) = x;
wenzelm@233
    93
fun snd (x, y) = y;
wenzelm@233
    94
wenzelm@233
    95
fun eq_fst ((x1, _), (x2, _)) = x1 = x2;
wenzelm@233
    96
fun eq_snd ((_, y1), (_, y2)) = y1 = y2;
wenzelm@233
    97
wenzelm@233
    98
fun swap (x, y) = (y, x);
wenzelm@233
    99
wenzelm@233
   100
(*apply the function to a component of a pair*)
wenzelm@233
   101
fun apfst f (x, y) = (f x, y);
wenzelm@233
   102
fun apsnd f (x, y) = (x, f y);
wenzelm@233
   103
wenzelm@233
   104
wenzelm@233
   105
wenzelm@233
   106
(** booleans **)
wenzelm@233
   107
wenzelm@233
   108
(* equality *)
wenzelm@233
   109
wenzelm@233
   110
fun equal x y = x = y;
wenzelm@233
   111
fun not_equal x y = x <> y;
wenzelm@233
   112
wenzelm@233
   113
wenzelm@233
   114
(* operators for combining predicates *)
wenzelm@233
   115
paulson@2175
   116
fun (p orf q) = fn x => p x orelse q x;
wenzelm@233
   117
paulson@2175
   118
fun (p andf q) = fn x => p x andalso q x;
wenzelm@233
   119
wenzelm@233
   120
fun notf p x = not (p x);
clasohm@0
   121
wenzelm@233
   122
wenzelm@233
   123
(* predicates on lists *)
wenzelm@233
   124
wenzelm@233
   125
fun orl [] = false
wenzelm@233
   126
  | orl (x :: xs) = x orelse orl xs;
wenzelm@233
   127
wenzelm@233
   128
fun andl [] = true
wenzelm@233
   129
  | andl (x :: xs) = x andalso andl xs;
wenzelm@233
   130
paulson@3246
   131
(*Several object-logics declare theories named List or Option, hiding the
paulson@3246
   132
  eponymous basis library structures.*)
paulson@4063
   133
structure Basis_Library =
paulson@4063
   134
    struct
paulson@4063
   135
    structure List = List
paulson@4063
   136
    and       Option = Option
paulson@4063
   137
    end;
paulson@4063
   138
paulson@2271
   139
wenzelm@233
   140
(*exists pred [x1, ..., xn] ===> pred x1 orelse ... orelse pred xn*)
wenzelm@233
   141
fun exists (pred: 'a -> bool) : 'a list -> bool =
wenzelm@233
   142
  let fun boolf [] = false
wenzelm@233
   143
        | boolf (x :: xs) = pred x orelse boolf xs
wenzelm@233
   144
  in boolf end;
wenzelm@233
   145
wenzelm@233
   146
(*forall pred [x1, ..., xn] ===> pred x1 andalso ... andalso pred xn*)
wenzelm@233
   147
fun forall (pred: 'a -> bool) : 'a list -> bool =
wenzelm@233
   148
  let fun boolf [] = true
wenzelm@233
   149
        | boolf (x :: xs) = pred x andalso boolf xs
wenzelm@233
   150
  in boolf end;
clasohm@0
   151
wenzelm@233
   152
wenzelm@380
   153
(* flags *)
wenzelm@380
   154
wenzelm@380
   155
fun set flag = (flag := true; true);
wenzelm@380
   156
fun reset flag = (flag := false; false);
wenzelm@380
   157
fun toggle flag = (flag := not (! flag); ! flag);
wenzelm@380
   158
wenzelm@2978
   159
fun setmp flag value f x =
wenzelm@2958
   160
  let
wenzelm@2958
   161
    val orig_value = ! flag;
wenzelm@2958
   162
    fun return y = (flag := orig_value; y);
wenzelm@2958
   163
  in
wenzelm@2958
   164
    flag := value;
wenzelm@2958
   165
    return (f x handle exn => (return (); raise exn))
wenzelm@2958
   166
  end;
wenzelm@2958
   167
wenzelm@380
   168
wenzelm@233
   169
wenzelm@233
   170
(** lists **)
wenzelm@233
   171
wenzelm@233
   172
exception LIST of string;
wenzelm@233
   173
wenzelm@233
   174
fun null [] = true
wenzelm@233
   175
  | null (_ :: _) = false;
wenzelm@233
   176
wenzelm@233
   177
fun hd [] = raise LIST "hd"
wenzelm@233
   178
  | hd (x :: _) = x;
wenzelm@233
   179
wenzelm@233
   180
fun tl [] = raise LIST "tl"
wenzelm@233
   181
  | tl (_ :: xs) = xs;
wenzelm@233
   182
wenzelm@233
   183
fun cons x xs = x :: xs;
wenzelm@233
   184
wenzelm@233
   185
wenzelm@233
   186
(* fold *)
wenzelm@233
   187
wenzelm@233
   188
(*the following versions of fold are designed to fit nicely with infixes*)
clasohm@0
   189
wenzelm@233
   190
(*  (op @) (e, [x1, ..., xn])  ===>  ((e @ x1) @ x2) ... @ xn
wenzelm@233
   191
    for operators that associate to the left (TAIL RECURSIVE)*)
wenzelm@233
   192
fun foldl (f: 'a * 'b -> 'a) : 'a * 'b list -> 'a =
wenzelm@233
   193
  let fun itl (e, [])  = e
wenzelm@233
   194
        | itl (e, a::l) = itl (f(e, a), l)
wenzelm@233
   195
  in  itl end;
wenzelm@233
   196
wenzelm@233
   197
(*  (op @) ([x1, ..., xn], e)  ===>   x1 @ (x2 ... @ (xn @ e))
wenzelm@233
   198
    for operators that associate to the right (not tail recursive)*)
wenzelm@233
   199
fun foldr f (l, e) =
wenzelm@233
   200
  let fun itr [] = e
wenzelm@233
   201
        | itr (a::l) = f(a, itr l)
wenzelm@233
   202
  in  itr l  end;
wenzelm@233
   203
wenzelm@233
   204
(*  (op @) [x1, ..., xn]  ===>   x1 @ (x2 ... @ (x[n-1] @ xn))
wenzelm@233
   205
    for n > 0, operators that associate to the right (not tail recursive)*)
wenzelm@233
   206
fun foldr1 f l =
wenzelm@233
   207
  let fun itr [x] = x                       (* FIXME [] case: elim warn (?) *)
wenzelm@233
   208
        | itr (x::l) = f(x, itr l)
wenzelm@233
   209
  in  itr l  end;
wenzelm@233
   210
wenzelm@233
   211
wenzelm@233
   212
(* basic list functions *)
wenzelm@233
   213
wenzelm@233
   214
(*length of a list, should unquestionably be a standard function*)
wenzelm@233
   215
local fun length1 (n, [])  = n   (*TAIL RECURSIVE*)
wenzelm@233
   216
        | length1 (n, x :: xs) = length1 (n + 1, xs)
wenzelm@233
   217
in  fun length l = length1 (0, l) end;
wenzelm@233
   218
wenzelm@233
   219
(*take the first n elements from a list*)
wenzelm@233
   220
fun take (n, []) = []
wenzelm@233
   221
  | take (n, x :: xs) =
wenzelm@233
   222
      if n > 0 then x :: take (n - 1, xs) else [];
wenzelm@233
   223
wenzelm@233
   224
(*drop the first n elements from a list*)
wenzelm@233
   225
fun drop (n, []) = []
wenzelm@233
   226
  | drop (n, x :: xs) =
wenzelm@233
   227
      if n > 0 then drop (n - 1, xs) else x :: xs;
clasohm@0
   228
wenzelm@233
   229
(*return nth element of a list, where 0 designates the first element;
wenzelm@233
   230
  raise EXCEPTION if list too short*)
wenzelm@233
   231
fun nth_elem NL =
wenzelm@233
   232
  (case drop NL of
wenzelm@233
   233
    [] => raise LIST "nth_elem"
wenzelm@233
   234
  | x :: _ => x);
wenzelm@233
   235
wenzelm@233
   236
(*last element of a list*)
wenzelm@233
   237
fun last_elem [] = raise LIST "last_elem"
wenzelm@233
   238
  | last_elem [x] = x
wenzelm@233
   239
  | last_elem (_ :: xs) = last_elem xs;
wenzelm@233
   240
wenzelm@3762
   241
(*rear decomposition*)
wenzelm@3762
   242
fun split_last [] = raise LIST "split_last"
wenzelm@3762
   243
  | split_last [x] = ([], x)
wenzelm@3762
   244
  | split_last (x :: xs) = apfst (cons x) (split_last xs);
wenzelm@3762
   245
wenzelm@3762
   246
wenzelm@233
   247
(*find the position of an element in a list*)
wenzelm@233
   248
fun find (x, ys) =
wenzelm@233
   249
  let fun f (y :: ys, i) = if x = y then i else f (ys, i + 1)
wenzelm@233
   250
        | f (_, _) = raise LIST "find"
wenzelm@233
   251
  in f (ys, 0) end;
wenzelm@233
   252
wenzelm@233
   253
(*flatten a list of lists to a list*)
wenzelm@233
   254
fun flat (ls: 'c list list) : 'c list = foldr (op @) (ls, []);
wenzelm@233
   255
wenzelm@233
   256
wenzelm@233
   257
(*like Lisp's MAPC -- seq proc [x1, ..., xn] evaluates
wenzelm@233
   258
  (proc x1; ...; proc xn) for side effects*)
wenzelm@233
   259
fun seq (proc: 'a -> unit) : 'a list -> unit =
wenzelm@233
   260
  let fun seqf [] = ()
wenzelm@233
   261
        | seqf (x :: xs) = (proc x; seqf xs)
wenzelm@233
   262
  in seqf end;
wenzelm@233
   263
wenzelm@233
   264
wenzelm@233
   265
(*separate s [x1, x2, ..., xn]  ===>  [x1, s, x2, s, ..., s, xn]*)
wenzelm@233
   266
fun separate s (x :: (xs as _ :: _)) = x :: s :: separate s xs
wenzelm@233
   267
  | separate _ xs = xs;
wenzelm@233
   268
wenzelm@233
   269
(*make the list [x, x, ..., x] of length n*)
wenzelm@233
   270
fun replicate n (x: 'a) : 'a list =
wenzelm@233
   271
  let fun rep (0, xs) = xs
wenzelm@233
   272
        | rep (n, xs) = rep (n - 1, x :: xs)
wenzelm@233
   273
  in
wenzelm@233
   274
    if n < 0 then raise LIST "replicate"
wenzelm@233
   275
    else rep (n, [])
wenzelm@233
   276
  end;
wenzelm@233
   277
wenzelm@233
   278
wenzelm@233
   279
(* filter *)
wenzelm@233
   280
wenzelm@233
   281
(*copy the list preserving elements that satisfy the predicate*)
wenzelm@233
   282
fun filter (pred: 'a->bool) : 'a list -> 'a list =
clasohm@0
   283
  let fun filt [] = []
wenzelm@233
   284
        | filt (x :: xs) = if pred x then x :: filt xs else filt xs
wenzelm@233
   285
  in filt end;
clasohm@0
   286
clasohm@0
   287
fun filter_out f = filter (not o f);
clasohm@0
   288
clasohm@0
   289
wenzelm@233
   290
fun mapfilter (f: 'a -> 'b option) ([]: 'a list) = [] : 'b list
wenzelm@233
   291
  | mapfilter f (x :: xs) =
wenzelm@233
   292
      (case f x of
wenzelm@233
   293
        None => mapfilter f xs
wenzelm@233
   294
      | Some y => y :: mapfilter f xs);
wenzelm@233
   295
wenzelm@233
   296
wenzelm@380
   297
fun find_first _ [] = None
wenzelm@380
   298
  | find_first pred (x :: xs) =
wenzelm@380
   299
      if pred x then Some x else find_first pred xs;
wenzelm@380
   300
wenzelm@380
   301
wenzelm@233
   302
(* lists of pairs *)
wenzelm@233
   303
wenzelm@380
   304
fun map2 _ ([], []) = []
wenzelm@380
   305
  | map2 f (x :: xs, y :: ys) = (f (x, y) :: map2 f (xs, ys))
wenzelm@380
   306
  | map2 _ _ = raise LIST "map2";
wenzelm@380
   307
wenzelm@380
   308
fun exists2 _ ([], []) = false
wenzelm@380
   309
  | exists2 pred (x :: xs, y :: ys) = pred (x, y) orelse exists2 pred (xs, ys)
wenzelm@380
   310
  | exists2 _ _ = raise LIST "exists2";
wenzelm@380
   311
wenzelm@380
   312
fun forall2 _ ([], []) = true
wenzelm@380
   313
  | forall2 pred (x :: xs, y :: ys) = pred (x, y) andalso forall2 pred (xs, ys)
wenzelm@380
   314
  | forall2 _ _ = raise LIST "forall2";
wenzelm@380
   315
wenzelm@233
   316
(*combine two lists forming a list of pairs:
wenzelm@233
   317
  [x1, ..., xn] ~~ [y1, ..., yn]  ===>  [(x1, y1), ..., (xn, yn)]*)
wenzelm@233
   318
fun [] ~~ [] = []
wenzelm@233
   319
  | (x :: xs) ~~ (y :: ys) = (x, y) :: (xs ~~ ys)
wenzelm@233
   320
  | _ ~~ _ = raise LIST "~~";
wenzelm@233
   321
wenzelm@233
   322
wenzelm@233
   323
(*inverse of ~~; the old 'split':
wenzelm@233
   324
  [(x1, y1), ..., (xn, yn)]  ===>  ([x1, ..., xn], [y1, ..., yn])*)
wenzelm@233
   325
fun split_list (l: ('a * 'b) list) = (map #1 l, map #2 l);
wenzelm@233
   326
wenzelm@233
   327
wenzelm@233
   328
(* prefixes, suffixes *)
wenzelm@233
   329
wenzelm@233
   330
fun [] prefix _ = true
wenzelm@233
   331
  | (x :: xs) prefix (y :: ys) = x = y andalso (xs prefix ys)
wenzelm@233
   332
  | _ prefix _ = false;
wenzelm@233
   333
wenzelm@233
   334
(* [x1, ..., xi, ..., xn]  --->  ([x1, ..., x(i-1)], [xi, ..., xn])
wenzelm@233
   335
   where xi is the first element that does not satisfy the predicate*)
wenzelm@233
   336
fun take_prefix (pred : 'a -> bool)  (xs: 'a list) : 'a list * 'a list =
wenzelm@233
   337
  let fun take (rxs, []) = (rev rxs, [])
wenzelm@255
   338
        | take (rxs, x :: xs) =
wenzelm@255
   339
            if  pred x  then  take(x :: rxs, xs)  else  (rev rxs, x :: xs)
wenzelm@233
   340
  in  take([], xs)  end;
wenzelm@233
   341
wenzelm@233
   342
(* [x1, ..., xi, ..., xn]  --->  ([x1, ..., xi], [x(i+1), ..., xn])
wenzelm@233
   343
   where xi is the last element that does not satisfy the predicate*)
wenzelm@233
   344
fun take_suffix _ [] = ([], [])
wenzelm@233
   345
  | take_suffix pred (x :: xs) =
wenzelm@233
   346
      (case take_suffix pred xs of
wenzelm@233
   347
        ([], sffx) => if pred x then ([], x :: sffx) else ([x], sffx)
wenzelm@233
   348
      | (prfx, sffx) => (x :: prfx, sffx));
wenzelm@233
   349
wenzelm@233
   350
wenzelm@233
   351
wenzelm@233
   352
(** integers **)
wenzelm@233
   353
wenzelm@2958
   354
fun inc i = (i := ! i + 1; ! i);
wenzelm@2958
   355
fun dec i = (i := ! i - 1; ! i);
wenzelm@233
   356
wenzelm@233
   357
wenzelm@233
   358
(* lists of integers *)
wenzelm@233
   359
wenzelm@233
   360
(*make the list [from, from + 1, ..., to]*)
paulson@2175
   361
fun (from upto to) =
wenzelm@233
   362
  if from > to then [] else from :: ((from + 1) upto to);
wenzelm@233
   363
wenzelm@233
   364
(*make the list [from, from - 1, ..., to]*)
paulson@2175
   365
fun (from downto to) =
wenzelm@233
   366
  if from < to then [] else from :: ((from - 1) downto to);
wenzelm@233
   367
wenzelm@233
   368
(*predicate: downto0 (is, n) <=> is = [n, n - 1, ..., 0]*)
wenzelm@233
   369
fun downto0 (i :: is, n) = i = n andalso downto0 (is, n - 1)
wenzelm@233
   370
  | downto0 ([], n) = n = ~1;
wenzelm@233
   371
wenzelm@233
   372
wenzelm@233
   373
(* convert integers to strings *)
wenzelm@233
   374
wenzelm@233
   375
(*expand the number in the given base;
wenzelm@233
   376
  example: radixpand (2, 8) gives [1, 0, 0, 0]*)
wenzelm@233
   377
fun radixpand (base, num) : int list =
wenzelm@233
   378
  let
wenzelm@233
   379
    fun radix (n, tail) =
wenzelm@233
   380
      if n < base then n :: tail
wenzelm@233
   381
      else radix (n div base, (n mod base) :: tail)
wenzelm@233
   382
  in radix (num, []) end;
wenzelm@233
   383
wenzelm@233
   384
(*expands a number into a string of characters starting from "zerochar";
wenzelm@233
   385
  example: radixstring (2, "0", 8) gives "1000"*)
wenzelm@233
   386
fun radixstring (base, zerochar, num) =
wenzelm@233
   387
  let val offset = ord zerochar;
wenzelm@233
   388
      fun chrof n = chr (offset + n)
wenzelm@233
   389
  in implode (map chrof (radixpand (base, num))) end;
wenzelm@233
   390
wenzelm@233
   391
paulson@3407
   392
val string_of_int = Int.toString;
wenzelm@233
   393
paulson@3407
   394
fun string_of_indexname (a,0) = a
paulson@3407
   395
  | string_of_indexname (a,i) = a ^ "_" ^ Int.toString i;
wenzelm@233
   396
wenzelm@233
   397
wenzelm@233
   398
(** strings **)
wenzelm@233
   399
wenzelm@233
   400
fun is_letter ch =
wenzelm@233
   401
  ord "A" <= ord ch andalso ord ch <= ord "Z" orelse
wenzelm@233
   402
  ord "a" <= ord ch andalso ord ch <= ord "z";
wenzelm@233
   403
wenzelm@233
   404
fun is_digit ch =
wenzelm@233
   405
  ord "0" <= ord ch andalso ord ch <= ord "9";
wenzelm@233
   406
wenzelm@233
   407
(*letter or _ or prime (')*)
wenzelm@233
   408
fun is_quasi_letter "_" = true
wenzelm@233
   409
  | is_quasi_letter "'" = true
wenzelm@233
   410
  | is_quasi_letter ch = is_letter ch;
wenzelm@233
   411
lcp@512
   412
(*white space: blanks, tabs, newlines, formfeeds*)
wenzelm@233
   413
val is_blank : string -> bool =
wenzelm@3393
   414
  fn " " => true | "\t" => true | "\n" => true | "\^L" => true | "\160" => true
wenzelm@3063
   415
    | _ => false;
wenzelm@233
   416
wenzelm@233
   417
val is_letdig = is_quasi_letter orf is_digit;
wenzelm@233
   418
wenzelm@2196
   419
(*printable chars*)
wenzelm@2196
   420
fun is_printable c = ord c > ord " " andalso ord c <= ord "~";
wenzelm@2196
   421
wenzelm@233
   422
wenzelm@233
   423
(*lower all chars of string*)
wenzelm@233
   424
val to_lower =
wenzelm@233
   425
  let
wenzelm@233
   426
    fun lower ch =
wenzelm@233
   427
      if ch >= "A" andalso ch <= "Z" then
wenzelm@233
   428
        chr (ord ch - ord "A" + ord "a")
wenzelm@233
   429
      else ch;
wenzelm@233
   430
  in implode o (map lower) o explode end;
wenzelm@233
   431
wenzelm@233
   432
lcp@512
   433
(*enclose in brackets*)
lcp@512
   434
fun enclose lpar rpar str = lpar ^ str ^ rpar;
wenzelm@255
   435
wenzelm@233
   436
(*simple quoting (does not escape special chars)*)
lcp@512
   437
val quote = enclose "\"" "\"";
wenzelm@233
   438
wenzelm@233
   439
(*space_implode "..." (explode "hello"); gives "h...e...l...l...o"*)
wenzelm@233
   440
fun space_implode a bs = implode (separate a bs);
wenzelm@233
   441
wenzelm@255
   442
val commas = space_implode ", ";
wenzelm@380
   443
val commas_quote = commas o map quote;
wenzelm@255
   444
wenzelm@233
   445
(*concatenate messages, one per line, into a string*)
wenzelm@255
   446
val cat_lines = space_implode "\n";
wenzelm@233
   447
wenzelm@3832
   448
(*BAD_space_explode "." "h.e..l.lo"; gives ["h", "e", "l", "lo"]*)
wenzelm@3832
   449
fun BAD_space_explode sep s =
clasohm@1290
   450
  let fun divide [] "" = []
clasohm@1290
   451
        | divide [] part = [part]
clasohm@1290
   452
        | divide (c::s) part =
clasohm@1290
   453
            if c = sep then
clasohm@1290
   454
              (if part = "" then divide s "" else part :: divide s "")
clasohm@1290
   455
            else divide s (part ^ c)
clasohm@1290
   456
  in divide (explode s) "" end;
wenzelm@233
   457
wenzelm@3832
   458
(*space_explode "." "h.e..l.lo"; gives ["h", "e", "", "l", "lo"]*)
wenzelm@3832
   459
fun space_explode _ "" = []
wenzelm@3832
   460
  | space_explode sep str =
wenzelm@3832
   461
      let
wenzelm@3832
   462
        fun expl chs =
wenzelm@3832
   463
          (case take_prefix (not_equal sep) chs of
wenzelm@3832
   464
            (cs, []) => [implode cs]
wenzelm@3832
   465
          | (cs, _ :: cs') => implode cs :: expl cs');
wenzelm@3832
   466
      in expl (explode str) end;
wenzelm@3832
   467
wenzelm@3832
   468
val split_lines = space_explode "\n";
wenzelm@3832
   469
wenzelm@3832
   470
wenzelm@233
   471
wenzelm@233
   472
(** lists as sets **)
wenzelm@233
   473
wenzelm@233
   474
(*membership in a list*)
wenzelm@233
   475
fun x mem [] = false
wenzelm@233
   476
  | x mem (y :: ys) = x = y orelse x mem ys;
clasohm@0
   477
paulson@2175
   478
(*membership in a list, optimized version for ints*)
berghofe@1576
   479
fun (x:int) mem_int [] = false
berghofe@1576
   480
  | x mem_int (y :: ys) = x = y orelse x mem_int ys;
berghofe@1576
   481
paulson@2175
   482
(*membership in a list, optimized version for strings*)
berghofe@1576
   483
fun (x:string) mem_string [] = false
berghofe@1576
   484
  | x mem_string (y :: ys) = x = y orelse x mem_string ys;
berghofe@1576
   485
clasohm@0
   486
(*generalized membership test*)
wenzelm@233
   487
fun gen_mem eq (x, []) = false
wenzelm@233
   488
  | gen_mem eq (x, y :: ys) = eq (x, y) orelse gen_mem eq (x, ys);
wenzelm@233
   489
wenzelm@233
   490
wenzelm@233
   491
(*insertion into list if not already there*)
paulson@2175
   492
fun (x ins xs) = if x mem xs then xs else x :: xs;
clasohm@0
   493
paulson@2175
   494
(*insertion into list, optimized version for ints*)
paulson@2175
   495
fun (x ins_int xs) = if x mem_int xs then xs else x :: xs;
berghofe@1576
   496
paulson@2175
   497
(*insertion into list, optimized version for strings*)
paulson@2175
   498
fun (x ins_string xs) = if x mem_string xs then xs else x :: xs;
berghofe@1576
   499
clasohm@0
   500
(*generalized insertion*)
wenzelm@233
   501
fun gen_ins eq (x, xs) = if gen_mem eq (x, xs) then xs else x :: xs;
wenzelm@233
   502
wenzelm@233
   503
wenzelm@233
   504
(*union of sets represented as lists: no repetitions*)
wenzelm@233
   505
fun xs union [] = xs
wenzelm@233
   506
  | [] union ys = ys
wenzelm@233
   507
  | (x :: xs) union ys = xs union (x ins ys);
clasohm@0
   508
paulson@2175
   509
(*union of sets, optimized version for ints*)
berghofe@1576
   510
fun (xs:int list) union_int [] = xs
berghofe@1576
   511
  | [] union_int ys = ys
berghofe@1576
   512
  | (x :: xs) union_int ys = xs union_int (x ins_int ys);
berghofe@1576
   513
paulson@2175
   514
(*union of sets, optimized version for strings*)
berghofe@1576
   515
fun (xs:string list) union_string [] = xs
berghofe@1576
   516
  | [] union_string ys = ys
berghofe@1576
   517
  | (x :: xs) union_string ys = xs union_string (x ins_string ys);
berghofe@1576
   518
clasohm@0
   519
(*generalized union*)
wenzelm@233
   520
fun gen_union eq (xs, []) = xs
wenzelm@233
   521
  | gen_union eq ([], ys) = ys
wenzelm@233
   522
  | gen_union eq (x :: xs, ys) = gen_union eq (xs, gen_ins eq (x, ys));
wenzelm@233
   523
wenzelm@233
   524
wenzelm@233
   525
(*intersection*)
wenzelm@233
   526
fun [] inter ys = []
wenzelm@233
   527
  | (x :: xs) inter ys =
wenzelm@233
   528
      if x mem ys then x :: (xs inter ys) else xs inter ys;
wenzelm@233
   529
paulson@2175
   530
(*intersection, optimized version for ints*)
berghofe@1576
   531
fun ([]:int list) inter_int ys = []
berghofe@1576
   532
  | (x :: xs) inter_int ys =
berghofe@1576
   533
      if x mem_int ys then x :: (xs inter_int ys) else xs inter_int ys;
berghofe@1576
   534
paulson@2175
   535
(*intersection, optimized version for strings *)
berghofe@1576
   536
fun ([]:string list) inter_string ys = []
berghofe@1576
   537
  | (x :: xs) inter_string ys =
berghofe@1576
   538
      if x mem_string ys then x :: (xs inter_string ys) else xs inter_string ys;
berghofe@1576
   539
wenzelm@233
   540
wenzelm@233
   541
(*subset*)
wenzelm@233
   542
fun [] subset ys = true
wenzelm@233
   543
  | (x :: xs) subset ys = x mem ys andalso xs subset ys;
wenzelm@233
   544
paulson@2175
   545
(*subset, optimized version for ints*)
berghofe@1576
   546
fun ([]:int list) subset_int ys = true
berghofe@1576
   547
  | (x :: xs) subset_int ys = x mem_int ys andalso xs subset_int ys;
berghofe@1576
   548
paulson@2175
   549
(*subset, optimized version for strings*)
berghofe@1576
   550
fun ([]:string list) subset_string ys = true
berghofe@1576
   551
  | (x :: xs) subset_string ys = x mem_string ys andalso xs subset_string ys;
berghofe@1576
   552
paulson@2182
   553
(*set equality for strings*)
berghofe@1576
   554
fun eq_set_string ((xs:string list), ys) =
berghofe@1576
   555
  xs = ys orelse (xs subset_string ys andalso ys subset_string xs);
berghofe@1576
   556
paulson@2182
   557
fun gen_subset eq (xs, ys) = forall (fn x => gen_mem eq (x, ys)) xs;
paulson@2182
   558
wenzelm@265
   559
wenzelm@233
   560
(*removing an element from a list WITHOUT duplicates*)
wenzelm@233
   561
fun (y :: ys) \ x = if x = y then ys else y :: (ys \ x)
wenzelm@233
   562
  | [] \ x = [];
wenzelm@233
   563
paulson@2243
   564
fun ys \\ xs = foldl (op \) (ys,xs);
clasohm@0
   565
wenzelm@233
   566
(*removing an element from a list -- possibly WITH duplicates*)
wenzelm@233
   567
fun gen_rem eq (xs, y) = filter_out (fn x => eq (x, y)) xs;
wenzelm@233
   568
paulson@2243
   569
fun gen_rems eq = foldl (gen_rem eq);
wenzelm@233
   570
wenzelm@233
   571
wenzelm@233
   572
(*makes a list of the distinct members of the input; preserves order, takes
wenzelm@233
   573
  first of equal elements*)
wenzelm@233
   574
fun gen_distinct eq lst =
wenzelm@233
   575
  let
wenzelm@233
   576
    val memb = gen_mem eq;
clasohm@0
   577
wenzelm@233
   578
    fun dist (rev_seen, []) = rev rev_seen
wenzelm@233
   579
      | dist (rev_seen, x :: xs) =
wenzelm@233
   580
          if memb (x, rev_seen) then dist (rev_seen, xs)
wenzelm@233
   581
          else dist (x :: rev_seen, xs);
wenzelm@233
   582
  in
wenzelm@233
   583
    dist ([], lst)
wenzelm@233
   584
  end;
wenzelm@233
   585
paulson@2243
   586
fun distinct l = gen_distinct (op =) l;
wenzelm@233
   587
wenzelm@4102
   588
(*tuned version of distinct -- eq wrt. strings in fst component*)
wenzelm@4102
   589
fun distinct_fst_string lst =
wenzelm@4102
   590
  let
wenzelm@4102
   591
    fun mem_str ((_:string, _), []) = false
wenzelm@4102
   592
      | mem_str (p as (x, _), ((y, _) :: qs)) = x = y orelse mem_str (p, qs);
wenzelm@4102
   593
wenzelm@4102
   594
    fun dist (rev_seen, []) = rev rev_seen
wenzelm@4102
   595
      | dist (rev_seen, p :: ps) =
wenzelm@4102
   596
          if mem_str (p, rev_seen) then dist (rev_seen, ps)
wenzelm@4102
   597
          else dist (p :: rev_seen, ps);
wenzelm@4102
   598
  in
wenzelm@4102
   599
    dist ([], lst)
wenzelm@4102
   600
  end;
wenzelm@4102
   601
wenzelm@233
   602
wenzelm@233
   603
(*returns the tail beginning with the first repeated element, or []*)
wenzelm@233
   604
fun findrep [] = []
wenzelm@233
   605
  | findrep (x :: xs) = if x mem xs then x :: xs else findrep xs;
wenzelm@233
   606
wenzelm@233
   607
wenzelm@255
   608
(*returns a list containing all repeated elements exactly once; preserves
wenzelm@255
   609
  order, takes first of equal elements*)
wenzelm@255
   610
fun gen_duplicates eq lst =
wenzelm@255
   611
  let
wenzelm@255
   612
    val memb = gen_mem eq;
wenzelm@255
   613
wenzelm@255
   614
    fun dups (rev_dups, []) = rev rev_dups
wenzelm@255
   615
      | dups (rev_dups, x :: xs) =
wenzelm@255
   616
          if memb (x, rev_dups) orelse not (memb (x, xs)) then
wenzelm@255
   617
            dups (rev_dups, xs)
wenzelm@255
   618
          else dups (x :: rev_dups, xs);
wenzelm@255
   619
  in
wenzelm@255
   620
    dups ([], lst)
wenzelm@255
   621
  end;
wenzelm@255
   622
paulson@2243
   623
fun duplicates l = gen_duplicates (op =) l;
wenzelm@255
   624
wenzelm@255
   625
wenzelm@233
   626
wenzelm@233
   627
(** association lists **)
clasohm@0
   628
wenzelm@233
   629
(*association list lookup*)
wenzelm@233
   630
fun assoc ([], key) = None
wenzelm@233
   631
  | assoc ((keyi, xi) :: pairs, key) =
wenzelm@233
   632
      if key = keyi then Some xi else assoc (pairs, key);
wenzelm@233
   633
paulson@2175
   634
(*association list lookup, optimized version for ints*)
berghofe@1576
   635
fun assoc_int ([], (key:int)) = None
berghofe@1576
   636
  | assoc_int ((keyi, xi) :: pairs, key) =
berghofe@1576
   637
      if key = keyi then Some xi else assoc_int (pairs, key);
berghofe@1576
   638
paulson@2175
   639
(*association list lookup, optimized version for strings*)
berghofe@1576
   640
fun assoc_string ([], (key:string)) = None
berghofe@1576
   641
  | assoc_string ((keyi, xi) :: pairs, key) =
berghofe@1576
   642
      if key = keyi then Some xi else assoc_string (pairs, key);
berghofe@1576
   643
paulson@2175
   644
(*association list lookup, optimized version for string*ints*)
berghofe@1576
   645
fun assoc_string_int ([], (key:string*int)) = None
berghofe@1576
   646
  | assoc_string_int ((keyi, xi) :: pairs, key) =
berghofe@1576
   647
      if key = keyi then Some xi else assoc_string_int (pairs, key);
berghofe@1576
   648
wenzelm@233
   649
fun assocs ps x =
wenzelm@233
   650
  (case assoc (ps, x) of
wenzelm@233
   651
    None => []
wenzelm@233
   652
  | Some ys => ys);
wenzelm@233
   653
wenzelm@255
   654
(*two-fold association list lookup*)
wenzelm@255
   655
fun assoc2 (aal, (key1, key2)) =
wenzelm@255
   656
  (case assoc (aal, key1) of
wenzelm@255
   657
    Some al => assoc (al, key2)
wenzelm@255
   658
  | None => None);
wenzelm@255
   659
wenzelm@233
   660
(*generalized association list lookup*)
wenzelm@233
   661
fun gen_assoc eq ([], key) = None
wenzelm@233
   662
  | gen_assoc eq ((keyi, xi) :: pairs, key) =
wenzelm@233
   663
      if eq (key, keyi) then Some xi else gen_assoc eq (pairs, key);
wenzelm@233
   664
wenzelm@233
   665
(*association list update*)
wenzelm@233
   666
fun overwrite (al, p as (key, _)) =
wenzelm@233
   667
  let fun over ((q as (keyi, _)) :: pairs) =
wenzelm@233
   668
            if keyi = key then p :: pairs else q :: (over pairs)
wenzelm@233
   669
        | over [] = [p]
wenzelm@233
   670
  in over al end;
wenzelm@233
   671
wenzelm@2522
   672
fun gen_overwrite eq (al, p as (key, _)) =
wenzelm@2522
   673
  let fun over ((q as (keyi, _)) :: pairs) =
wenzelm@2522
   674
            if eq (keyi, key) then p :: pairs else q :: (over pairs)
wenzelm@2522
   675
        | over [] = [p]
wenzelm@2522
   676
  in over al end;
wenzelm@2522
   677
wenzelm@233
   678
wenzelm@233
   679
wenzelm@233
   680
(** generic tables **)
clasohm@0
   681
wenzelm@233
   682
(*Tables are supposed to be 'efficient' encodings of lists of elements distinct
wenzelm@233
   683
  wrt. an equality "eq". The extend and merge operations below are optimized
wenzelm@233
   684
  for long-term space efficiency.*)
wenzelm@233
   685
wenzelm@233
   686
(*append (new) elements to a table*)
wenzelm@233
   687
fun generic_extend _ _ _ tab [] = tab
wenzelm@233
   688
  | generic_extend eq dest_tab mk_tab tab1 lst2 =
wenzelm@233
   689
      let
wenzelm@233
   690
        val lst1 = dest_tab tab1;
wenzelm@233
   691
        val new_lst2 = gen_rems eq (lst2, lst1);
wenzelm@233
   692
      in
wenzelm@233
   693
        if null new_lst2 then tab1
wenzelm@233
   694
        else mk_tab (lst1 @ new_lst2)
wenzelm@233
   695
      end;
clasohm@0
   696
wenzelm@233
   697
(*append (new) elements of 2nd table to 1st table*)
wenzelm@233
   698
fun generic_merge eq dest_tab mk_tab tab1 tab2 =
wenzelm@233
   699
  let
wenzelm@233
   700
    val lst1 = dest_tab tab1;
wenzelm@233
   701
    val lst2 = dest_tab tab2;
wenzelm@233
   702
    val new_lst2 = gen_rems eq (lst2, lst1);
wenzelm@233
   703
  in
wenzelm@233
   704
    if null new_lst2 then tab1
wenzelm@233
   705
    else if gen_subset eq (lst1, lst2) then tab2
wenzelm@233
   706
    else mk_tab (lst1 @ new_lst2)
wenzelm@233
   707
  end;
clasohm@0
   708
wenzelm@233
   709
wenzelm@233
   710
(*lists as tables*)
paulson@2243
   711
fun extend_list tab = generic_extend (op =) I I tab;
paulson@2243
   712
fun merge_lists tab = generic_merge (op =) I I tab;
wenzelm@233
   713
wenzelm@380
   714
fun merge_rev_lists xs [] = xs
wenzelm@380
   715
  | merge_rev_lists [] ys = ys
wenzelm@380
   716
  | merge_rev_lists xs (y :: ys) =
wenzelm@380
   717
      (if y mem xs then I else cons y) (merge_rev_lists xs ys);
wenzelm@380
   718
clasohm@0
   719
clasohm@0
   720
wenzelm@233
   721
(** balanced trees **)
wenzelm@233
   722
wenzelm@233
   723
exception Balance;      (*indicates non-positive argument to balancing fun*)
wenzelm@233
   724
wenzelm@233
   725
(*balanced folding; avoids deep nesting*)
wenzelm@233
   726
fun fold_bal f [x] = x
wenzelm@233
   727
  | fold_bal f [] = raise Balance
wenzelm@233
   728
  | fold_bal f xs =
wenzelm@233
   729
      let val k = length xs div 2
wenzelm@233
   730
      in  f (fold_bal f (take(k, xs)),
wenzelm@233
   731
             fold_bal f (drop(k, xs)))
wenzelm@233
   732
      end;
wenzelm@233
   733
wenzelm@233
   734
(*construct something of the form f(...g(...(x)...)) for balanced access*)
wenzelm@233
   735
fun access_bal (f, g, x) n i =
wenzelm@233
   736
  let fun acc n i =     (*1<=i<=n*)
wenzelm@233
   737
          if n=1 then x else
wenzelm@233
   738
          let val n2 = n div 2
wenzelm@233
   739
          in  if i<=n2 then f (acc n2 i)
wenzelm@233
   740
                       else g (acc (n-n2) (i-n2))
wenzelm@233
   741
          end
wenzelm@233
   742
  in  if 1<=i andalso i<=n then acc n i else raise Balance  end;
wenzelm@233
   743
wenzelm@233
   744
(*construct ALL such accesses; could try harder to share recursive calls!*)
wenzelm@233
   745
fun accesses_bal (f, g, x) n =
wenzelm@233
   746
  let fun acc n =
wenzelm@233
   747
          if n=1 then [x] else
wenzelm@233
   748
          let val n2 = n div 2
wenzelm@233
   749
              val acc2 = acc n2
wenzelm@233
   750
          in  if n-n2=n2 then map f acc2 @ map g acc2
wenzelm@233
   751
                         else map f acc2 @ map g (acc (n-n2)) end
wenzelm@233
   752
  in  if 1<=n then acc n else raise Balance  end;
wenzelm@233
   753
wenzelm@233
   754
wenzelm@233
   755
wenzelm@2506
   756
(** orders **)
wenzelm@2506
   757
wenzelm@2506
   758
datatype order = LESS | EQUAL | GREATER;
wenzelm@2506
   759
wenzelm@2506
   760
fun intord (i, j: int) =
wenzelm@2506
   761
  if i < j then LESS
wenzelm@2506
   762
  else if i = j then EQUAL
wenzelm@2506
   763
  else GREATER;
wenzelm@2506
   764
wenzelm@2506
   765
fun stringord (a, b: string) =
wenzelm@2506
   766
  if a < b then LESS
wenzelm@2506
   767
  else if a = b then EQUAL
wenzelm@2506
   768
  else GREATER;
wenzelm@2506
   769
wenzelm@2506
   770
wenzelm@2506
   771
wenzelm@3525
   772
(** input / output and diagnostics **)
wenzelm@233
   773
paulson@2243
   774
val cd = OS.FileSys.chDir;
wenzelm@2317
   775
val pwd = OS.FileSys.getDir;
paulson@2243
   776
wenzelm@3525
   777
wenzelm@3525
   778
local
wenzelm@3525
   779
  fun out s =
wenzelm@3525
   780
    (TextIO.output (TextIO.stdOut, s); TextIO.flushOut TextIO.stdOut);
wenzelm@3525
   781
wenzelm@3525
   782
  fun prefix_lines prfx txt =
wenzelm@3832
   783
    txt |> split_lines |> map (fn s => prfx ^ s ^ "\n") |> implode;
wenzelm@3525
   784
in
wenzelm@3525
   785
wenzelm@3525
   786
(*hooks for output channels: normal, warning, error*)
wenzelm@3525
   787
val prs_fn = ref (fn s => out s);
wenzelm@3525
   788
val warning_fn = ref (fn s => out (prefix_lines "### " s));
wenzelm@3525
   789
val error_fn = ref (fn s => out (prefix_lines "*** " s));
wenzelm@3525
   790
wenzelm@3525
   791
end;
berghofe@1580
   792
berghofe@1580
   793
fun prs s = !prs_fn s;
wenzelm@233
   794
fun writeln s = prs (s ^ "\n");
wenzelm@233
   795
wenzelm@3525
   796
fun warning s = !warning_fn s;
wenzelm@233
   797
wenzelm@233
   798
(*print error message and abort to top level*)
wenzelm@233
   799
exception ERROR;
wenzelm@3874
   800
fun error_msg s = !error_fn s;			(*promise to raise ERROR later!*)
wenzelm@3553
   801
fun error s = (error_msg s; raise ERROR);
wenzelm@3553
   802
fun sys_error msg = (error_msg " !! SYSTEM ERROR !!\n"; error msg);
wenzelm@233
   803
wenzelm@233
   804
fun assert p msg = if p then () else error msg;
wenzelm@233
   805
fun deny p msg = if p then error msg else ();
wenzelm@233
   806
lcp@544
   807
(*Assert pred for every member of l, generating a message if pred fails*)
lcp@544
   808
fun assert_all pred l msg_fn = 
lcp@544
   809
  let fun asl [] = ()
paulson@2243
   810
        | asl (x::xs) = if pred x then asl xs
paulson@2243
   811
                        else error (msg_fn x)
lcp@544
   812
  in  asl l  end;
wenzelm@233
   813
wenzelm@3624
   814
wenzelm@3699
   815
(* handle errors (capturing messages) *)
wenzelm@3699
   816
wenzelm@3699
   817
datatype 'a error =
wenzelm@3699
   818
  Error of string |
wenzelm@3699
   819
  OK of 'a;
wenzelm@3699
   820
wenzelm@3699
   821
fun handle_error f x =
wenzelm@3699
   822
  let
wenzelm@3699
   823
    val buffer = ref "";
wenzelm@3699
   824
    fun capture s = buffer := ! buffer ^ s ^ "\n";
wenzelm@3699
   825
    val result = Some (setmp error_fn capture f x) handle ERROR => None;
wenzelm@3699
   826
  in
wenzelm@3699
   827
    case result of
wenzelm@3699
   828
      None => Error (! buffer)
wenzelm@3699
   829
    | Some y => OK y
wenzelm@3699
   830
  end;
wenzelm@3699
   831
wenzelm@3699
   832
wenzelm@3624
   833
(* read / write files *)
wenzelm@3624
   834
wenzelm@3624
   835
fun read_file name =
wenzelm@3624
   836
  let
wenzelm@3624
   837
    val instream  = TextIO.openIn name;
wenzelm@3624
   838
    val intext = TextIO.inputAll instream;
wenzelm@3624
   839
  in
wenzelm@3624
   840
    TextIO.closeIn instream;
wenzelm@3624
   841
    intext
wenzelm@3624
   842
  end;
wenzelm@3624
   843
wenzelm@3624
   844
fun write_file name txt =
wenzelm@3645
   845
  let val outstream = TextIO.openOut name in
wenzelm@3645
   846
    TextIO.output (outstream, txt);
wenzelm@3645
   847
    TextIO.closeOut outstream
wenzelm@3645
   848
  end;
wenzelm@3645
   849
wenzelm@3645
   850
fun append_file name txt =
wenzelm@3645
   851
  let val outstream = TextIO.openAppend name in
wenzelm@3624
   852
    TextIO.output (outstream, txt);
wenzelm@3624
   853
    TextIO.closeOut outstream
wenzelm@3624
   854
  end;
wenzelm@3624
   855
wenzelm@3624
   856
wenzelm@3624
   857
(*for the "test" target in IsaMakefiles -- signifies successful termination*)
wenzelm@233
   858
fun maketest msg =
wenzelm@3624
   859
  (writeln msg; write_file "test" "Test examples ran successfully\n");
wenzelm@233
   860
wenzelm@233
   861
wenzelm@233
   862
(*print a list surrounded by the brackets lpar and rpar, with comma separator
wenzelm@233
   863
  print nothing for empty list*)
wenzelm@233
   864
fun print_list (lpar, rpar, pre: 'a -> unit) (l : 'a list) =
wenzelm@233
   865
  let fun prec x = (prs ","; pre x)
wenzelm@233
   866
  in
wenzelm@233
   867
    (case l of
wenzelm@233
   868
      [] => ()
wenzelm@233
   869
    | x::l => (prs lpar; pre x; seq prec l; prs rpar))
wenzelm@233
   870
  end;
wenzelm@233
   871
wenzelm@233
   872
(*print a list of items separated by newlines*)
wenzelm@233
   873
fun print_list_ln (pre: 'a -> unit) : 'a list -> unit =
wenzelm@233
   874
  seq (fn x => (pre x; writeln ""));
wenzelm@233
   875
wenzelm@233
   876
wenzelm@233
   877
val print_int = prs o string_of_int;
wenzelm@233
   878
wenzelm@233
   879
wenzelm@3525
   880
(* output to LaTeX / xdvi *)
wenzelm@3525
   881
fun latex s =
wenzelm@3525
   882
  execute ("( cd /tmp ; echo \"" ^ s ^
wenzelm@3525
   883
    "\" | isa2latex -s > $$.tex ; latex $$.tex ; xdvi $$.dvi ; rm $$.* ) > /dev/null &");
wenzelm@3525
   884
wenzelm@233
   885
wenzelm@233
   886
(** timing **)
wenzelm@233
   887
wenzelm@233
   888
(*unconditional timing function*)
paulson@2243
   889
fun timeit x = cond_timeit true x;
wenzelm@233
   890
wenzelm@233
   891
(*timed application function*)
wenzelm@233
   892
fun timeap f x = timeit (fn () => f x);
wenzelm@233
   893
wenzelm@233
   894
(*timed "use" function, printing filenames*)
wenzelm@233
   895
fun time_use fname = timeit (fn () =>
wenzelm@233
   896
  (writeln ("\n**** Starting " ^ fname ^ " ****"); use fname;
wenzelm@233
   897
   writeln ("\n**** Finished " ^ fname ^ " ****")));
wenzelm@233
   898
wenzelm@3624
   899
(*use the file, but exit with error code if errors found.*)
lcp@955
   900
fun exit_use fname = use fname handle _ => exit 1;
wenzelm@233
   901
wenzelm@233
   902
clasohm@1407
   903
(** filenames and paths **)
wenzelm@233
   904
clasohm@1290
   905
(*Convert UNIX filename of the form "path/file" to "path/" and "file";
wenzelm@233
   906
  if filename contains no slash, then it returns "" and "file"*)
wenzelm@233
   907
val split_filename =
wenzelm@233
   908
  (pairself implode) o take_suffix (not_equal "/") o explode;
wenzelm@233
   909
wenzelm@233
   910
val base_name = #2 o split_filename;
wenzelm@233
   911
clasohm@1290
   912
(*Merge splitted filename (path and file);
wenzelm@233
   913
  if path does not end with one a slash is appended*)
wenzelm@233
   914
fun tack_on "" name = name
wenzelm@233
   915
  | tack_on path name =
wenzelm@233
   916
      if last_elem (explode path) = "/" then path ^ name
wenzelm@233
   917
      else path ^ "/" ^ name;
wenzelm@233
   918
clasohm@1290
   919
(*Remove the extension of a filename, i.e. the part after the last '.'*)
wenzelm@233
   920
val remove_ext = implode o #1 o take_suffix (not_equal ".") o explode;
wenzelm@233
   921
clasohm@1290
   922
(*Make relative path to reach an absolute location from a different one*)
clasohm@1290
   923
fun relative_path cur_path dest_path =
clasohm@1290
   924
  let (*Remove common beginning of both paths and make relative path*)
clasohm@1290
   925
      fun mk_relative [] [] = []
clasohm@1290
   926
        | mk_relative [] ds = ds
clasohm@1290
   927
        | mk_relative cs [] = map (fn _ => "..") cs
clasohm@1290
   928
        | mk_relative (c::cs) (d::ds) =
clasohm@1290
   929
            if c = d then mk_relative cs ds
clasohm@1290
   930
            else ".." :: map (fn _ => "..") cs @ (d::ds);
clasohm@1290
   931
  in if cur_path = "" orelse hd (explode cur_path) <> "/" orelse
clasohm@1290
   932
        dest_path = "" orelse hd (explode dest_path) <> "/" then
clasohm@1290
   933
       error "Relative or empty path passed to relative_path"
clasohm@1290
   934
     else ();
wenzelm@3832
   935
     space_implode "/" (mk_relative (BAD_space_explode "/" cur_path)
wenzelm@3832
   936
                                    (BAD_space_explode "/" dest_path))
clasohm@1290
   937
  end;
wenzelm@233
   938
clasohm@1407
   939
(*Determine if absolute path1 is a subdirectory of absolute path2*)
clasohm@1407
   940
fun path1 subdir_of path2 =
clasohm@1407
   941
  if hd (explode path1) <> "/" orelse hd (explode path2) <> "/" then
clasohm@1407
   942
    error "Relative or empty path passed to subdir_of"
wenzelm@3832
   943
  else (BAD_space_explode "/" path2) prefix (BAD_space_explode "/" path1);
clasohm@1407
   944
clasohm@1456
   945
fun absolute_path cwd file =
clasohm@1456
   946
  let fun rm_points [] result = rev result
clasohm@1456
   947
        | rm_points (".."::ds) result = rm_points ds (tl result)
clasohm@1456
   948
        | rm_points ("."::ds) result = rm_points ds result
clasohm@1456
   949
        | rm_points (d::ds) result = rm_points ds (d::result);
clasohm@1456
   950
  in if file = "" then ""
clasohm@1456
   951
     else if hd (explode file) = "/" then file
clasohm@1456
   952
     else "/" ^ space_implode "/"
wenzelm@3832
   953
                  (rm_points (BAD_space_explode "/" (tack_on cwd file)) [])
clasohm@1456
   954
  end;
clasohm@1456
   955
berghofe@3606
   956
fun file_exists file = (file_info file <> "");
berghofe@3606
   957
wenzelm@233
   958
wenzelm@233
   959
(** misc functions **)
wenzelm@233
   960
wenzelm@233
   961
(*use the keyfun to make a list of (x, key) pairs*)
clasohm@0
   962
fun make_keylist (keyfun: 'a->'b) : 'a list -> ('a * 'b) list =
wenzelm@233
   963
  let fun keypair x = (x, keyfun x)
wenzelm@233
   964
  in map keypair end;
clasohm@0
   965
wenzelm@233
   966
(*given a list of (x, key) pairs and a searchkey
clasohm@0
   967
  return the list of xs from each pair whose key equals searchkey*)
clasohm@0
   968
fun keyfilter [] searchkey = []
wenzelm@233
   969
  | keyfilter ((x, key) :: pairs) searchkey =
wenzelm@233
   970
      if key = searchkey then x :: keyfilter pairs searchkey
wenzelm@233
   971
      else keyfilter pairs searchkey;
clasohm@0
   972
clasohm@0
   973
clasohm@0
   974
(*Partition list into elements that satisfy predicate and those that don't.
wenzelm@233
   975
  Preserves order of elements in both lists.*)
clasohm@0
   976
fun partition (pred: 'a->bool) (ys: 'a list) : ('a list * 'a list) =
clasohm@0
   977
    let fun part ([], answer) = answer
wenzelm@233
   978
          | part (x::xs, (ys, ns)) = if pred(x)
wenzelm@233
   979
            then  part (xs, (x::ys, ns))
wenzelm@233
   980
            else  part (xs, (ys, x::ns))
wenzelm@233
   981
    in  part (rev ys, ([], []))  end;
clasohm@0
   982
clasohm@0
   983
clasohm@0
   984
fun partition_eq (eq:'a * 'a -> bool) =
clasohm@0
   985
    let fun part [] = []
wenzelm@233
   986
          | part (x::ys) = let val (xs, xs') = partition (apl(x, eq)) ys
wenzelm@233
   987
                           in (x::xs)::(part xs') end
clasohm@0
   988
    in part end;
clasohm@0
   989
clasohm@0
   990
wenzelm@233
   991
(*Partition a list into buckets  [ bi, b(i+1), ..., bj ]
clasohm@0
   992
   putting x in bk if p(k)(x) holds.  Preserve order of elements if possible.*)
clasohm@0
   993
fun partition_list p i j =
wenzelm@233
   994
  let fun part k xs =
wenzelm@233
   995
            if k>j then
clasohm@0
   996
              (case xs of [] => []
clasohm@0
   997
                         | _ => raise LIST "partition_list")
clasohm@0
   998
            else
wenzelm@233
   999
            let val (ns, rest) = partition (p k) xs;
wenzelm@233
  1000
            in  ns :: part(k+1)rest  end
clasohm@0
  1001
  in  part i end;
clasohm@0
  1002
clasohm@0
  1003
wenzelm@233
  1004
(* sorting *)
wenzelm@233
  1005
wenzelm@233
  1006
(*insertion sort; stable (does not reorder equal elements)
wenzelm@233
  1007
  'less' is less-than test on type 'a*)
wenzelm@233
  1008
fun sort (less: 'a*'a -> bool) =
clasohm@0
  1009
  let fun insert (x, []) = [x]
wenzelm@233
  1010
        | insert (x, y::ys) =
wenzelm@233
  1011
              if less(y, x) then y :: insert (x, ys) else x::y::ys;
clasohm@0
  1012
      fun sort1 [] = []
clasohm@0
  1013
        | sort1 (x::xs) = insert (x, sort1 xs)
clasohm@0
  1014
  in  sort1  end;
clasohm@0
  1015
wenzelm@41
  1016
(*sort strings*)
wenzelm@3973
  1017
fun sort_wrt sel xs = sort (op <= o pairself (sel: 'a -> string)) xs;
wenzelm@3973
  1018
val sort_strings = sort_wrt I;
wenzelm@41
  1019
wenzelm@41
  1020
wenzelm@233
  1021
(* transitive closure (not Warshall's algorithm) *)
clasohm@0
  1022
wenzelm@233
  1023
fun transitive_closure [] = []
wenzelm@233
  1024
  | transitive_closure ((x, ys)::ps) =
wenzelm@233
  1025
      let val qs = transitive_closure ps
paulson@2182
  1026
          val zs = foldl (fn (zs, y) => assocs qs y union_string zs) (ys, ys)
paulson@2182
  1027
          fun step(u, us) = (u, if x mem_string us then zs union_string us 
paulson@2243
  1028
                                else us)
wenzelm@233
  1029
      in (x, zs) :: map step qs end;
clasohm@0
  1030
clasohm@0
  1031
wenzelm@233
  1032
(* generating identifiers *)
clasohm@0
  1033
paulson@4063
  1034
(** Freshly generated identifiers; supplied prefix MUST start with a letter **)
clasohm@0
  1035
local
paulson@4063
  1036
(*Maps 0-63 to A-Z, a-z, 0-9 or _ or ' for generating random identifiers*)
paulson@4063
  1037
fun char i =      if i<26 then chr (ord "A" + i)
paulson@4063
  1038
	     else if i<52 then chr (ord "a" + i - 26)
paulson@4063
  1039
	     else if i<62 then chr (ord"0" + i - 52)
paulson@4063
  1040
	     else if i=62 then "_"
paulson@4063
  1041
	     else  (*i=63*)    "'";
paulson@4063
  1042
paulson@4063
  1043
val charVec = Vector.tabulate (64, char);
paulson@4063
  1044
paulson@4063
  1045
fun newid n = 
paulson@4063
  1046
  let 
paulson@4063
  1047
  in  implode (map (fn i => Vector.sub(charVec,i)) (radixpand (64,n)))  end
paulson@2003
  1048
paulson@2806
  1049
  val seedr = ref 0;
clasohm@0
  1050
paulson@4063
  1051
in
paulson@4063
  1052
fun init_gensym() = (seedr := 0);
paulson@2003
  1053
paulson@2003
  1054
fun gensym pre = pre ^ 
paulson@2806
  1055
                 (#1(newid (!seedr), 
paulson@2806
  1056
                     seedr := 1+ !seedr))
paulson@4063
  1057
end;
paulson@4063
  1058
paulson@4063
  1059
paulson@4063
  1060
local
paulson@4063
  1061
(*Identifies those character codes legal in identifiers.
paulson@4063
  1062
  chould use Basis Library character functions if Poly/ML provided characters*)
paulson@4063
  1063
fun idCode k = (ord "a" <= k andalso k < ord "z") orelse 
paulson@4063
  1064
               (ord "A" <= k andalso k < ord "Z") orelse
paulson@4063
  1065
               (ord "0" <= k andalso k < ord "9");
paulson@4063
  1066
paulson@4063
  1067
val idCodeVec = Vector.tabulate (256, idCode);
paulson@4063
  1068
paulson@4063
  1069
in
paulson@2003
  1070
clasohm@0
  1071
(*Increment a list of letters like a reversed base 26 number.
wenzelm@233
  1072
  If head is "z", bumps chars in tail.
clasohm@0
  1073
  Digits are incremented as if they were integers.
clasohm@0
  1074
  "_" and "'" are not changed.
wenzelm@233
  1075
  For making variants of identifiers.*)
clasohm@0
  1076
paulson@4063
  1077
fun bump_int_list(c::cs) = 
paulson@4063
  1078
	if c="9" then "0" :: bump_int_list cs 
paulson@4063
  1079
	else
paulson@4063
  1080
        if "0" <= c andalso c < "9" then chr(ord(c)+1) :: cs
wenzelm@233
  1081
        else "1" :: c :: cs
clasohm@0
  1082
  | bump_int_list([]) = error("bump_int_list: not an identifier");
clasohm@0
  1083
wenzelm@233
  1084
fun bump_list([], d) = [d]
wenzelm@233
  1085
  | bump_list(["'"], d) = [d, "'"]
wenzelm@233
  1086
  | bump_list("z"::cs, _) = "a" :: bump_list(cs, "a")
wenzelm@233
  1087
  | bump_list("Z"::cs, _) = "A" :: bump_list(cs, "A")
wenzelm@233
  1088
  | bump_list("9"::cs, _) = "0" :: bump_int_list cs
paulson@4063
  1089
  | bump_list(c::cs, _) = 
paulson@4063
  1090
        let val k = ord(c)
paulson@4063
  1091
        in if Vector.sub(idCodeVec,k) then chr(k+1) :: cs 
paulson@4063
  1092
	   else
paulson@4063
  1093
           if c="'" orelse c="_" then c :: bump_list(cs, "") 
paulson@4063
  1094
	   else error("bump_list: not legal in identifier: " ^
paulson@4063
  1095
		      implode(rev(c::cs)))
wenzelm@233
  1096
        end;
clasohm@0
  1097
clasohm@0
  1098
end;
clasohm@0
  1099
wenzelm@233
  1100
fun bump_string s : string = implode (rev (bump_list(rev(explode s), "")));
wenzelm@41
  1101
wenzelm@41
  1102
wenzelm@233
  1103
(* lexical scanning *)
clasohm@0
  1104
wenzelm@233
  1105
(*scan a list of characters into "words" composed of "letters" (recognized by
wenzelm@233
  1106
  is_let) and separated by any number of non-"letters"*)
wenzelm@233
  1107
fun scanwords is_let cs =
clasohm@0
  1108
  let fun scan1 [] = []
wenzelm@233
  1109
        | scan1 cs =
wenzelm@233
  1110
            let val (lets, rest) = take_prefix is_let cs
wenzelm@233
  1111
            in implode lets :: scanwords is_let rest end;
wenzelm@233
  1112
  in scan1 (#2 (take_prefix (not o is_let) cs)) end;
clasohm@24
  1113
clasohm@1364
  1114
end;
clasohm@1364
  1115
paulson@1592
  1116
(*Variable-branching trees: for proof terms*)
paulson@1592
  1117
datatype 'a mtree = Join of 'a * 'a mtree list;
paulson@1592
  1118
clasohm@1364
  1119
open Library;