src/HOL/Tools/meson.ML
author blanchet
Fri Jun 11 17:07:27 2010 +0200 (2010-06-11)
changeset 37398 e194213451c9
parent 37388 793618618f78
child 37410 2bf7e6136047
permissions -rw-r--r--
beta-eta-contract, to respect "first_order_match"'s specification;
Sledgehammer's Skolem cache sometimes failed without the contraction
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     3
wenzelm@9869
     4
The MESON resolution proof procedure for HOL.
wenzelm@29267
     5
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     6
*)
paulson@9840
     7
wenzelm@24300
     8
signature MESON =
paulson@15579
     9
sig
wenzelm@32955
    10
  val trace: bool Unsynchronized.ref
wenzelm@24300
    11
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
wenzelm@24300
    12
  val flexflex_first_order: thm -> thm
wenzelm@24300
    13
  val size_of_subgoals: thm -> int
paulson@26562
    14
  val too_many_clauses: Proof.context option -> term -> bool
paulson@24937
    15
  val make_cnf: thm list -> thm -> Proof.context -> thm list * Proof.context
wenzelm@24300
    16
  val finish_cnf: thm list -> thm list
wenzelm@32262
    17
  val make_nnf: Proof.context -> thm -> thm
wenzelm@32262
    18
  val skolemize: Proof.context -> thm -> thm
wenzelm@24300
    19
  val is_fol_term: theory -> term -> bool
blanchet@35869
    20
  val make_clauses_unsorted: thm list -> thm list
wenzelm@24300
    21
  val make_clauses: thm list -> thm list
wenzelm@24300
    22
  val make_horns: thm list -> thm list
wenzelm@24300
    23
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    24
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    25
  val gocls: thm list -> thm list
wenzelm@32262
    26
  val skolemize_prems_tac: Proof.context -> thm list -> int -> tactic
wenzelm@32262
    27
  val MESON: (thm list -> thm list) -> (thm list -> tactic) -> Proof.context -> int -> tactic
wenzelm@32262
    28
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32262
    29
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32262
    30
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    31
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    32
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32262
    33
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    34
  val make_meta_clause: thm -> thm
wenzelm@24300
    35
  val make_meta_clauses: thm list -> thm list
wenzelm@32262
    36
  val meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    37
  val negate_head: thm -> thm
wenzelm@24300
    38
  val select_literal: int -> thm -> thm
wenzelm@32262
    39
  val skolemize_tac: Proof.context -> int -> tactic
wenzelm@32262
    40
  val setup: theory -> theory
paulson@15579
    41
end
paulson@9840
    42
wenzelm@24300
    43
structure Meson: MESON =
paulson@15579
    44
struct
paulson@9840
    45
wenzelm@32955
    46
val trace = Unsynchronized.ref false;
wenzelm@32955
    47
fun trace_msg msg = if ! trace then tracing (msg ()) else ();
wenzelm@32955
    48
paulson@26562
    49
val max_clauses_default = 60;
wenzelm@36001
    50
val (max_clauses, setup) = Attrib.config_int "max_clauses" (K max_clauses_default);
paulson@26562
    51
haftmann@31454
    52
val disj_forward = @{thm disj_forward};
haftmann@31454
    53
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    54
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    55
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    56
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    57
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    58
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    59
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    60
val conj_forward = @{thm conj_forward};
haftmann@31454
    61
val all_forward = @{thm all_forward};
haftmann@31454
    62
val ex_forward = @{thm ex_forward};
haftmann@31454
    63
val choice = @{thm choice};
haftmann@31454
    64
paulson@15579
    65
val not_conjD = thm "meson_not_conjD";
paulson@15579
    66
val not_disjD = thm "meson_not_disjD";
paulson@15579
    67
val not_notD = thm "meson_not_notD";
paulson@15579
    68
val not_allD = thm "meson_not_allD";
paulson@15579
    69
val not_exD = thm "meson_not_exD";
paulson@15579
    70
val imp_to_disjD = thm "meson_imp_to_disjD";
paulson@15579
    71
val not_impD = thm "meson_not_impD";
paulson@15579
    72
val iff_to_disjD = thm "meson_iff_to_disjD";
paulson@15579
    73
val not_iffD = thm "meson_not_iffD";
paulson@15579
    74
val conj_exD1 = thm "meson_conj_exD1";
paulson@15579
    75
val conj_exD2 = thm "meson_conj_exD2";
paulson@15579
    76
val disj_exD = thm "meson_disj_exD";
paulson@15579
    77
val disj_exD1 = thm "meson_disj_exD1";
paulson@15579
    78
val disj_exD2 = thm "meson_disj_exD2";
paulson@15579
    79
val disj_assoc = thm "meson_disj_assoc";
paulson@15579
    80
val disj_comm = thm "meson_disj_comm";
paulson@15579
    81
val disj_FalseD1 = thm "meson_disj_FalseD1";
paulson@15579
    82
val disj_FalseD2 = thm "meson_disj_FalseD2";
paulson@9840
    83
paulson@9840
    84
paulson@15579
    85
(**** Operators for forward proof ****)
paulson@15579
    86
paulson@20417
    87
paulson@20417
    88
(** First-order Resolution **)
paulson@20417
    89
paulson@20417
    90
fun typ_pair_of (ix, (sort,ty)) = (TVar (ix,sort), ty);
paulson@20417
    91
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
    92
paulson@20417
    93
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
    94
fun first_order_resolve thA thB =
wenzelm@32262
    95
  (case
wenzelm@32262
    96
    try (fn () =>
wenzelm@32262
    97
      let val thy = theory_of_thm thA
wenzelm@32262
    98
          val tmA = concl_of thA
wenzelm@32262
    99
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37398
   100
          val tenv =
blanchet@37398
   101
            Pattern.first_order_match thy
blanchet@37398
   102
                (pairself Envir.beta_eta_contract (tmB, tmA))
blanchet@37398
   103
                (Vartab.empty, Vartab.empty) |> snd
wenzelm@32262
   104
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32262
   105
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32262
   106
    SOME th => th
blanchet@37398
   107
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   108
wenzelm@24300
   109
fun flexflex_first_order th =
paulson@23440
   110
  case (tpairs_of th) of
paulson@23440
   111
      [] => th
paulson@23440
   112
    | pairs =>
wenzelm@24300
   113
        let val thy = theory_of_thm th
wenzelm@32032
   114
            val (tyenv, tenv) =
wenzelm@32032
   115
              fold (Pattern.first_order_match thy) pairs (Vartab.empty, Vartab.empty)
wenzelm@24300
   116
            val t_pairs = map term_pair_of (Vartab.dest tenv)
wenzelm@24300
   117
            val th' = Thm.instantiate ([], map (pairself (cterm_of thy)) t_pairs) th
wenzelm@24300
   118
        in  th'  end
wenzelm@24300
   119
        handle THM _ => th;
paulson@23440
   120
paulson@24937
   121
(*Forward proof while preserving bound variables names*)
paulson@24937
   122
fun rename_bvs_RS th rl =
paulson@24937
   123
  let val th' = th RS rl
paulson@24937
   124
  in  Thm.rename_boundvars (concl_of th') (concl_of th) th' end;
paulson@24937
   125
paulson@24937
   126
(*raises exception if no rules apply*)
wenzelm@24300
   127
fun tryres (th, rls) =
paulson@18141
   128
  let fun tryall [] = raise THM("tryres", 0, th::rls)
paulson@24937
   129
        | tryall (rl::rls) = (rename_bvs_RS th rl handle THM _ => tryall rls)
paulson@18141
   130
  in  tryall rls  end;
wenzelm@24300
   131
paulson@21050
   132
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   133
  e.g. from conj_forward, should have the form
paulson@21050
   134
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   135
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32262
   136
fun forward_res ctxt nf st =
paulson@21050
   137
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   138
        | forward_tacf prems =
wenzelm@32091
   139
            error (cat_lines
wenzelm@32091
   140
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32262
   141
                Display.string_of_thm ctxt st ::
wenzelm@32262
   142
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   143
  in
wenzelm@32231
   144
    case Seq.pull (ALLGOALS (OldGoals.METAHYPS forward_tacf) st)
paulson@21050
   145
    of SOME(th,_) => th
paulson@21050
   146
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   147
  end;
paulson@15579
   148
paulson@20134
   149
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   150
fun has_conns bs =
paulson@20134
   151
  let fun has (Const(a,_)) = false
paulson@20134
   152
        | has (Const("Trueprop",_) $ p) = has p
paulson@20134
   153
        | has (Const("Not",_) $ p) = has p
paulson@20134
   154
        | has (Const("op |",_) $ p $ q) = member (op =) bs "op |" orelse has p orelse has q
paulson@20134
   155
        | has (Const("op &",_) $ p $ q) = member (op =) bs "op &" orelse has p orelse has q
paulson@20134
   156
        | has (Const("All",_) $ Abs(_,_,p)) = member (op =) bs "All" orelse has p
paulson@20134
   157
        | has (Const("Ex",_) $ Abs(_,_,p)) = member (op =) bs "Ex" orelse has p
wenzelm@24300
   158
        | has _ = false
paulson@15579
   159
  in  has  end;
wenzelm@24300
   160
paulson@9840
   161
paulson@15579
   162
(**** Clause handling ****)
paulson@9840
   163
paulson@15579
   164
fun literals (Const("Trueprop",_) $ P) = literals P
paulson@15579
   165
  | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
paulson@15579
   166
  | literals (Const("Not",_) $ P) = [(false,P)]
paulson@15579
   167
  | literals P = [(true,P)];
paulson@9840
   168
paulson@15579
   169
(*number of literals in a term*)
paulson@15579
   170
val nliterals = length o literals;
paulson@9840
   171
paulson@18389
   172
paulson@18389
   173
(*** Tautology Checking ***)
paulson@18389
   174
wenzelm@24300
   175
fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) =
paulson@18389
   176
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
paulson@18389
   177
  | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   178
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   179
paulson@18389
   180
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   181
paulson@18389
   182
(*Literals like X=X are tautologous*)
paulson@18389
   183
fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
paulson@18389
   184
  | taut_poslit (Const("True",_)) = true
paulson@18389
   185
  | taut_poslit _ = false;
paulson@18389
   186
paulson@18389
   187
fun is_taut th =
paulson@18389
   188
  let val (poslits,neglits) = signed_lits th
paulson@18389
   189
  in  exists taut_poslit poslits
paulson@18389
   190
      orelse
wenzelm@20073
   191
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   192
  end
wenzelm@24300
   193
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   194
paulson@18389
   195
paulson@18389
   196
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   197
paulson@18389
   198
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   199
  injectivity equivalences*)
wenzelm@24300
   200
paulson@18389
   201
val not_refl_disj_D = thm"meson_not_refl_disj_D";
paulson@18389
   202
paulson@20119
   203
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   204
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   205
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   206
  | eliminable _ = false;
paulson@20119
   207
paulson@18389
   208
fun refl_clause_aux 0 th = th
paulson@18389
   209
  | refl_clause_aux n th =
paulson@18389
   210
       case HOLogic.dest_Trueprop (concl_of th) of
wenzelm@24300
   211
          (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) =>
paulson@18389
   212
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
wenzelm@24300
   213
        | (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) =>
wenzelm@24300
   214
            if eliminable(t,u)
wenzelm@24300
   215
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   216
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
wenzelm@24300
   217
        | (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   218
        | _ => (*not a disjunction*) th;
paulson@18389
   219
wenzelm@24300
   220
fun notequal_lits_count (Const ("op |", _) $ P $ Q) =
paulson@18389
   221
      notequal_lits_count P + notequal_lits_count Q
paulson@18389
   222
  | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
paulson@18389
   223
  | notequal_lits_count _ = 0;
paulson@18389
   224
paulson@18389
   225
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   226
fun refl_clause th =
paulson@18389
   227
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   228
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   229
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   230
paulson@18389
   231
paulson@24937
   232
(*** Removal of duplicate literals ***)
paulson@24937
   233
paulson@24937
   234
(*Forward proof, passing extra assumptions as theorems to the tactic*)
wenzelm@32262
   235
fun forward_res2 ctxt nf hyps st =
paulson@24937
   236
  case Seq.pull
paulson@24937
   237
        (REPEAT
wenzelm@32231
   238
         (OldGoals.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   239
         st)
paulson@24937
   240
  of SOME(th,_) => th
paulson@24937
   241
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   242
paulson@24937
   243
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   244
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32262
   245
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   246
    handle THM _ => tryres(th,rls)
wenzelm@32262
   247
    handle THM _ => tryres(forward_res2 ctxt (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   248
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   249
    handle THM _ => th;
paulson@24937
   250
paulson@24937
   251
(*Remove duplicate literals, if there are any*)
wenzelm@32262
   252
fun nodups ctxt th =
paulson@24937
   253
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32262
   254
    then nodups_aux ctxt [] th
paulson@24937
   255
    else th;
paulson@24937
   256
paulson@24937
   257
paulson@18389
   258
(*** The basic CNF transformation ***)
paulson@18389
   259
paulson@26562
   260
fun too_many_clauses ctxto t = 
paulson@26562
   261
 let
paulson@26562
   262
  val max_cl = case ctxto of SOME ctxt => Config.get ctxt max_clauses
paulson@26562
   263
                           | NONE => max_clauses_default
paulson@26562
   264
  
paulson@26562
   265
  fun sum x y = if x < max_cl andalso y < max_cl then x+y else max_cl;
paulson@26562
   266
  fun prod x y = if x < max_cl andalso y < max_cl then x*y else max_cl;
paulson@26562
   267
  
paulson@26562
   268
  (*Estimate the number of clauses in order to detect infeasible theorems*)
paulson@26562
   269
  fun signed_nclauses b (Const("Trueprop",_) $ t) = signed_nclauses b t
paulson@26562
   270
    | signed_nclauses b (Const("Not",_) $ t) = signed_nclauses (not b) t
paulson@26562
   271
    | signed_nclauses b (Const("op &",_) $ t $ u) =
wenzelm@32960
   272
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   273
             else prod (signed_nclauses b t) (signed_nclauses b u)
paulson@26562
   274
    | signed_nclauses b (Const("op |",_) $ t $ u) =
wenzelm@32960
   275
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   276
             else sum (signed_nclauses b t) (signed_nclauses b u)
paulson@26562
   277
    | signed_nclauses b (Const("op -->",_) $ t $ u) =
wenzelm@32960
   278
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32960
   279
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
paulson@26562
   280
    | signed_nclauses b (Const("op =", Type ("fun", [T, _])) $ t $ u) =
wenzelm@32960
   281
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32960
   282
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32960
   283
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32960
   284
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32960
   285
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32960
   286
        else 1
paulson@26562
   287
    | signed_nclauses b (Const("Ex", _) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   288
    | signed_nclauses b (Const("All",_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   289
    | signed_nclauses _ _ = 1; (* literal *)
paulson@26562
   290
 in 
paulson@26562
   291
  signed_nclauses true t >= max_cl
paulson@26562
   292
 end;
paulson@19894
   293
paulson@15579
   294
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   295
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   296
local  
paulson@24937
   297
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   298
  val spec_varT = #T (Thm.rep_cterm spec_var);
paulson@24937
   299
  fun name_of (Const ("All", _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   300
in  
paulson@24937
   301
  fun freeze_spec th ctxt =
paulson@24937
   302
    let
paulson@24937
   303
      val cert = Thm.cterm_of (ProofContext.theory_of ctxt);
paulson@24937
   304
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   305
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   306
    in (th RS spec', ctxt') end
paulson@24937
   307
end;
paulson@9840
   308
paulson@15998
   309
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   310
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   311
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   312
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   313
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   314
wenzelm@24300
   315
(*Any need to extend this list with
wenzelm@26424
   316
  "HOL.type_class","HOL.eq_class","Pure.term"?*)
wenzelm@24300
   317
val has_meta_conn =
paulson@29684
   318
    exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   319
wenzelm@24300
   320
fun apply_skolem_ths (th, rls) =
blanchet@37398
   321
  let
blanchet@37398
   322
    fun tryall [] = raise THM ("apply_skolem_ths", 0, th::rls)
blanchet@37398
   323
      | tryall (rl :: rls) =
blanchet@37398
   324
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37398
   325
  in tryall rls end
paulson@22515
   326
paulson@15998
   327
(*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
paulson@15998
   328
  Strips universal quantifiers and breaks up conjunctions.
paulson@15998
   329
  Eliminates existential quantifiers using skoths: Skolemization theorems.*)
paulson@24937
   330
fun cnf skoths ctxt (th,ths) =
wenzelm@33222
   331
  let val ctxtr = Unsynchronized.ref ctxt   (* FIXME ??? *)
paulson@24937
   332
      fun cnf_aux (th,ths) =
wenzelm@24300
   333
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
wenzelm@24300
   334
        else if not (has_conns ["All","Ex","op &"] (prop_of th))
wenzelm@32262
   335
        then nodups ctxt th :: ths (*no work to do, terminate*)
wenzelm@24300
   336
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
wenzelm@24300
   337
            Const ("op &", _) => (*conjunction*)
wenzelm@24300
   338
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
wenzelm@24300
   339
          | Const ("All", _) => (*universal quantifier*)
paulson@24937
   340
                let val (th',ctxt') = freeze_spec th (!ctxtr)
paulson@24937
   341
                in  ctxtr := ctxt'; cnf_aux (th', ths) end
wenzelm@24300
   342
          | Const ("Ex", _) =>
wenzelm@24300
   343
              (*existential quantifier: Insert Skolem functions*)
wenzelm@24300
   344
              cnf_aux (apply_skolem_ths (th,skoths), ths)
wenzelm@24300
   345
          | Const ("op |", _) =>
wenzelm@24300
   346
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   347
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   348
              let val tac =
wenzelm@32262
   349
                  OldGoals.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@32231
   350
                   (fn st' => st' |> OldGoals.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   351
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
wenzelm@32262
   352
          | _ => nodups ctxt th :: ths  (*no work to do*)
paulson@19154
   353
      and cnf_nil th = cnf_aux (th,[])
paulson@24937
   354
      val cls = 
wenzelm@32960
   355
            if too_many_clauses (SOME ctxt) (concl_of th)
wenzelm@32960
   356
            then (trace_msg (fn () => "cnf is ignoring: " ^ Display.string_of_thm ctxt th); ths)
wenzelm@32960
   357
            else cnf_aux (th,ths)
paulson@24937
   358
  in  (cls, !ctxtr)  end;
paulson@22515
   359
paulson@24937
   360
fun make_cnf skoths th ctxt = cnf skoths ctxt (th, []);
paulson@20417
   361
paulson@20417
   362
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   363
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   364
paulson@9840
   365
paulson@15579
   366
(**** Generation of contrapositives ****)
paulson@9840
   367
wenzelm@24300
   368
fun is_left (Const ("Trueprop", _) $
paulson@21102
   369
               (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _)) = true
paulson@21102
   370
  | is_left _ = false;
wenzelm@24300
   371
paulson@15579
   372
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   373
fun assoc_right th =
paulson@21102
   374
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   375
  else th;
paulson@9840
   376
paulson@15579
   377
(*Must check for negative literal first!*)
paulson@15579
   378
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   379
paulson@15579
   380
(*For ordinary resolution. *)
paulson@15579
   381
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   382
paulson@15579
   383
(*Create a goal or support clause, conclusing False*)
paulson@15579
   384
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   385
    make_goal (tryres(th, clause_rules))
paulson@15579
   386
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   387
paulson@15579
   388
(*Sort clauses by number of literals*)
paulson@15579
   389
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   390
paulson@18389
   391
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   392
paulson@15581
   393
(*True if the given type contains bool anywhere*)
paulson@15581
   394
fun has_bool (Type("bool",_)) = true
paulson@15581
   395
  | has_bool (Type(_, Ts)) = exists has_bool Ts
paulson@15581
   396
  | has_bool _ = false;
wenzelm@24300
   397
wenzelm@24300
   398
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   399
  since this code expects to be called on a clause form.*)
wenzelm@19875
   400
val is_conn = member (op =)
wenzelm@24300
   401
    ["Trueprop", "op &", "op |", "op -->", "Not",
haftmann@37388
   402
     "All", "Ex", @{const_name Ball}, @{const_name Bex}];
paulson@15613
   403
wenzelm@24300
   404
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   405
  of any argument contains bool.*)
wenzelm@24300
   406
val has_bool_arg_const =
paulson@15613
   407
    exists_Const
paulson@15613
   408
      (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
paulson@22381
   409
wenzelm@24300
   410
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@34974
   411
  one, 1, at a function type in theory SetsAndFunctions.*)
wenzelm@24300
   412
fun higher_inst_const thy (c,T) =
paulson@22381
   413
  case binder_types T of
paulson@22381
   414
      [] => false (*not a function type, OK*)
paulson@22381
   415
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   416
paulson@24742
   417
(*Returns false if any Vars in the theorem mention type bool.
paulson@21102
   418
  Also rejects functions whose arguments are Booleans or other functions.*)
paulson@22381
   419
fun is_fol_term thy t =
paulson@22381
   420
    Term.is_first_order ["all","All","Ex"] t andalso
wenzelm@29267
   421
    not (exists_subterm (fn Var (_, T) => has_bool T | _ => false) t  orelse
wenzelm@24300
   422
         has_bool_arg_const t  orelse
wenzelm@24300
   423
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   424
         has_meta_conn t);
paulson@19204
   425
paulson@21102
   426
fun rigid t = not (is_Var (head_of t));
paulson@21102
   427
paulson@21102
   428
fun ok4horn (Const ("Trueprop",_) $ (Const ("op |", _) $ t $ _)) = rigid t
paulson@21102
   429
  | ok4horn (Const ("Trueprop",_) $ t) = rigid t
paulson@21102
   430
  | ok4horn _ = false;
paulson@21102
   431
paulson@15579
   432
(*Create a meta-level Horn clause*)
wenzelm@24300
   433
fun make_horn crules th =
wenzelm@24300
   434
  if ok4horn (concl_of th)
paulson@21102
   435
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   436
  else th;
paulson@9840
   437
paulson@16563
   438
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   439
  is a HOL disjunction.*)
wenzelm@33339
   440
fun add_contras crules th hcs =
paulson@15579
   441
  let fun rots (0,th) = hcs
wenzelm@24300
   442
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   443
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   444
  in case nliterals(prop_of th) of
wenzelm@24300
   445
        1 => th::hcs
paulson@15579
   446
      | n => rots(n, assoc_right th)
paulson@15579
   447
  end;
paulson@9840
   448
paulson@15579
   449
(*Use "theorem naming" to label the clauses*)
paulson@15579
   450
fun name_thms label =
wenzelm@33339
   451
    let fun name1 th (k, ths) =
wenzelm@27865
   452
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33339
   453
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   454
paulson@16563
   455
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   456
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   457
wenzelm@33317
   458
val neg_clauses = filter is_negative;
paulson@9840
   459
paulson@9840
   460
paulson@15579
   461
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   462
paulson@15579
   463
fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
wenzelm@24300
   464
           As) = rhyps(phi, A::As)
paulson@15579
   465
  | rhyps (_, As) = As;
paulson@9840
   466
paulson@15579
   467
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   468
paulson@15579
   469
(*The stringtree detects repeated assumptions.*)
wenzelm@33245
   470
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   471
paulson@15579
   472
(*detects repetitions in a list of terms*)
paulson@15579
   473
fun has_reps [] = false
paulson@15579
   474
  | has_reps [_] = false
paulson@15579
   475
  | has_reps [t,u] = (t aconv u)
wenzelm@33245
   476
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   477
paulson@15579
   478
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   479
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   480
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   481
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   482
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   483
paulson@18508
   484
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   485
paulson@15579
   486
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   487
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   488
fun check_tac st =
paulson@15579
   489
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   490
  then  Seq.empty  else  Seq.single st;
paulson@9840
   491
paulson@9840
   492
paulson@15579
   493
(* net_resolve_tac actually made it slower... *)
paulson@15579
   494
fun prolog_step_tac horns i =
paulson@15579
   495
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   496
    TRYALL_eq_assume_tac;
paulson@9840
   497
paulson@9840
   498
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33339
   499
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   500
wenzelm@33339
   501
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   502
paulson@9840
   503
paulson@9840
   504
(*Negation Normal Form*)
paulson@9840
   505
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   506
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   507
paulson@21102
   508
fun ok4nnf (Const ("Trueprop",_) $ (Const ("Not", _) $ t)) = rigid t
paulson@21102
   509
  | ok4nnf (Const ("Trueprop",_) $ t) = rigid t
paulson@21102
   510
  | ok4nnf _ = false;
paulson@21102
   511
wenzelm@32262
   512
fun make_nnf1 ctxt th =
wenzelm@24300
   513
  if ok4nnf (concl_of th)
wenzelm@32262
   514
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   515
    handle THM ("tryres", _, _) =>
wenzelm@32262
   516
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   517
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   518
    handle THM ("tryres", _, _) => th
paulson@21102
   519
  else th;
paulson@9840
   520
wenzelm@24300
   521
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   522
  nnf_ss also includes the one-point simprocs,
paulson@18405
   523
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   524
val nnf_simps =
wenzelm@35410
   525
  [@{thm simp_implies_def}, @{thm Ex1_def}, @{thm Ball_def},@{thm  Bex_def}, @{thm if_True},
wenzelm@35410
   526
    @{thm if_False}, @{thm if_cancel}, @{thm if_eq_cancel}, @{thm cases_simp}];
paulson@19894
   527
val nnf_extra_simps =
wenzelm@35410
   528
  @{thms split_ifs} @ @{thms ex_simps} @ @{thms all_simps} @ @{thms simp_thms};
paulson@18405
   529
paulson@18405
   530
val nnf_ss =
wenzelm@24300
   531
  HOL_basic_ss addsimps nnf_extra_simps
wenzelm@24040
   532
    addsimprocs [defALL_regroup,defEX_regroup, @{simproc neq}, @{simproc let_simp}];
paulson@15872
   533
wenzelm@32262
   534
fun make_nnf ctxt th = case prems_of th of
paulson@21050
   535
    [] => th |> rewrite_rule (map safe_mk_meta_eq nnf_simps)
wenzelm@24300
   536
             |> simplify nnf_ss
wenzelm@32262
   537
             |> make_nnf1 ctxt
paulson@21050
   538
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   539
paulson@15965
   540
(*Pull existential quantifiers to front. This accomplishes Skolemization for
paulson@15965
   541
  clauses that arise from a subgoal.*)
wenzelm@32262
   542
fun skolemize1 ctxt th =
paulson@20134
   543
  if not (has_conns ["Ex"] (prop_of th)) then th
wenzelm@32262
   544
  else (skolemize1 ctxt (tryres(th, [choice, conj_exD1, conj_exD2,
quigley@15679
   545
                              disj_exD, disj_exD1, disj_exD2])))
paulson@28174
   546
    handle THM ("tryres", _, _) =>
wenzelm@32262
   547
        skolemize1 ctxt (forward_res ctxt (skolemize1 ctxt)
wenzelm@9869
   548
                   (tryres (th, [conj_forward, disj_forward, all_forward])))
paulson@28174
   549
    handle THM ("tryres", _, _) => 
wenzelm@32262
   550
        forward_res ctxt (skolemize1 ctxt) (rename_bvs_RS th ex_forward);
paulson@29684
   551
wenzelm@32262
   552
fun skolemize ctxt th = skolemize1 ctxt (make_nnf ctxt th);
paulson@9840
   553
wenzelm@32262
   554
fun skolemize_nnf_list _ [] = []
wenzelm@32262
   555
  | skolemize_nnf_list ctxt (th::ths) =
wenzelm@32262
   556
      skolemize ctxt th :: skolemize_nnf_list ctxt ths
paulson@25710
   557
      handle THM _ => (*RS can fail if Unify.search_bound is too small*)
wenzelm@32955
   558
       (trace_msg (fn () => "Failed to Skolemize " ^ Display.string_of_thm ctxt th);
wenzelm@32262
   559
        skolemize_nnf_list ctxt ths);
paulson@25694
   560
wenzelm@33339
   561
fun add_clauses th cls =
wenzelm@36603
   562
  let val ctxt0 = Variable.global_thm_context th
wenzelm@33339
   563
      val (cnfs, ctxt) = make_cnf [] th ctxt0
paulson@24937
   564
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   565
paulson@9840
   566
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   567
  The resulting clauses are HOL disjunctions.*)
blanchet@35869
   568
fun make_clauses_unsorted ths = fold_rev add_clauses ths [];
blanchet@35869
   569
val make_clauses = sort_clauses o make_clauses_unsorted;
quigley@15773
   570
paulson@16563
   571
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   572
fun make_horns ths =
paulson@9840
   573
    name_thms "Horn#"
wenzelm@33339
   574
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   575
paulson@9840
   576
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   577
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   578
wenzelm@9869
   579
fun best_prolog_tac sizef horns =
paulson@9840
   580
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   581
wenzelm@9869
   582
fun depth_prolog_tac horns =
paulson@9840
   583
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   584
paulson@9840
   585
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   586
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   587
wenzelm@32262
   588
fun skolemize_prems_tac ctxt prems =
wenzelm@32262
   589
    cut_facts_tac (skolemize_nnf_list ctxt prems) THEN'
paulson@9840
   590
    REPEAT o (etac exE);
paulson@9840
   591
paulson@22546
   592
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   593
  Function mkcl converts theorems to clauses.*)
wenzelm@32262
   594
fun MESON mkcl cltac ctxt i st =
paulson@16588
   595
  SELECT_GOAL
wenzelm@35625
   596
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   597
            rtac ccontr 1,
wenzelm@32283
   598
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
wenzelm@32262
   599
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32283
   600
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   601
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   602
paulson@9840
   603
(** Best-first search versions **)
paulson@9840
   604
paulson@16563
   605
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   606
fun best_meson_tac sizef =
wenzelm@24300
   607
  MESON make_clauses
paulson@22546
   608
    (fn cls =>
paulson@9840
   609
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   610
                         (has_fewer_prems 1, sizef)
paulson@9840
   611
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   612
paulson@9840
   613
(*First, breaks the goal into independent units*)
wenzelm@32262
   614
fun safe_best_meson_tac ctxt =
wenzelm@32262
   615
     SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN
wenzelm@32262
   616
                  TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   617
paulson@9840
   618
(** Depth-first search version **)
paulson@9840
   619
paulson@9840
   620
val depth_meson_tac =
paulson@22546
   621
  MESON make_clauses
paulson@22546
   622
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)]);
paulson@9840
   623
paulson@9840
   624
paulson@9840
   625
(** Iterative deepening version **)
paulson@9840
   626
paulson@9840
   627
(*This version does only one inference per call;
paulson@9840
   628
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   629
fun prolog_step_tac' horns =
paulson@9840
   630
    let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
paulson@9840
   631
            take_prefix Thm.no_prems horns
paulson@9840
   632
        val nrtac = net_resolve_tac horns
paulson@9840
   633
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   634
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   635
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   636
    end;
paulson@9840
   637
wenzelm@9869
   638
fun iter_deepen_prolog_tac horns =
paulson@9840
   639
    ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   640
wenzelm@32262
   641
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON make_clauses
wenzelm@32091
   642
  (fn cls =>
wenzelm@32091
   643
    (case (gocls (cls @ ths)) of
wenzelm@32091
   644
      [] => no_tac  (*no goal clauses*)
wenzelm@32091
   645
    | goes =>
wenzelm@32091
   646
        let
wenzelm@32091
   647
          val horns = make_horns (cls @ ths)
wenzelm@32955
   648
          val _ = trace_msg (fn () =>
wenzelm@32091
   649
            cat_lines ("meson method called:" ::
wenzelm@32262
   650
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32262
   651
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@32091
   652
        in THEN_ITER_DEEPEN (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns) end));
paulson@9840
   653
wenzelm@32262
   654
fun meson_tac ctxt ths =
wenzelm@32262
   655
  SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   656
wenzelm@9869
   657
paulson@14813
   658
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   659
wenzelm@24300
   660
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   661
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   662
paulson@14744
   663
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   664
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   665
  prevents a double negation.*)
wenzelm@27239
   666
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   667
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   668
wenzelm@24300
   669
fun negated_asm_of_head th =
paulson@14744
   670
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   671
paulson@26066
   672
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   673
fun make_meta_clause th =
wenzelm@33832
   674
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   675
  in  
wenzelm@35845
   676
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   677
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   678
  end;
wenzelm@24300
   679
paulson@14744
   680
fun make_meta_clauses ths =
paulson@14744
   681
    name_thms "MClause#"
wenzelm@22360
   682
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   683
paulson@14744
   684
(*Permute a rule's premises to move the i-th premise to the last position.*)
paulson@14744
   685
fun make_last i th =
wenzelm@24300
   686
  let val n = nprems_of th
wenzelm@24300
   687
  in  if 1 <= i andalso i <= n
paulson@14744
   688
      then Thm.permute_prems (i-1) 1 th
paulson@15118
   689
      else raise THM("select_literal", i, [th])
paulson@14744
   690
  end;
paulson@14744
   691
paulson@14744
   692
(*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
paulson@14744
   693
  double-negations.*)
wenzelm@35410
   694
val negate_head = rewrite_rule [@{thm atomize_not}, not_not RS eq_reflection];
paulson@14744
   695
paulson@14744
   696
(*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
paulson@14744
   697
fun select_literal i cl = negate_head (make_last i cl);
paulson@14744
   698
paulson@18508
   699
paulson@14813
   700
(*Top-level Skolemization. Allows part of the conversion to clauses to be
wenzelm@24300
   701
  expressed as a tactic (or Isar method).  Each assumption of the selected
paulson@14813
   702
  goal is converted to NNF and then its existential quantifiers are pulled
wenzelm@24300
   703
  to the front. Finally, all existential quantifiers are eliminated,
paulson@14813
   704
  leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
paulson@14813
   705
  might generate many subgoals.*)
mengj@18194
   706
wenzelm@32262
   707
fun skolemize_tac ctxt = SUBGOAL (fn (goal, i) =>
wenzelm@32262
   708
  let val ts = Logic.strip_assums_hyp goal
wenzelm@24300
   709
  in
wenzelm@32262
   710
    EVERY'
wenzelm@32262
   711
     [OldGoals.METAHYPS (fn hyps =>
wenzelm@32262
   712
        (cut_facts_tac (skolemize_nnf_list ctxt hyps) 1
wenzelm@32262
   713
          THEN REPEAT (etac exE 1))),
wenzelm@32262
   714
      REPEAT_DETERM_N (length ts) o (etac thin_rl)] i
wenzelm@32262
   715
  end);
mengj@18194
   716
paulson@9840
   717
end;