src/HOL/Decision_Procs/mir_tac.ML
author wenzelm
Fri Mar 13 19:53:09 2009 +0100 (2009-03-13)
changeset 30509 e19d5b459a61
parent 30439 57c68b3af2ea
child 30939 207ec81543f6
permissions -rw-r--r--
more regular method setup via SIMPLE_METHOD;
hoelzl@30439
     1
(*  Title:      HOL/Decision_Procs/mir_tac.ML
haftmann@23858
     2
    Author:     Amine Chaieb, TU Muenchen
haftmann@23858
     3
*)
haftmann@23858
     4
haftmann@29788
     5
structure Mir_Tac =
chaieb@23264
     6
struct
chaieb@23264
     7
chaieb@23264
     8
val trace = ref false;
chaieb@23264
     9
fun trace_msg s = if !trace then tracing s else ();
chaieb@23264
    10
chaieb@23264
    11
val mir_ss = 
chaieb@23264
    12
let val ths = map thm ["real_of_int_inject", "real_of_int_less_iff", "real_of_int_le_iff"]
chaieb@23264
    13
in @{simpset} delsimps ths addsimps (map (fn th => th RS sym) ths)
chaieb@23264
    14
end;
chaieb@23264
    15
chaieb@23264
    16
val nT = HOLogic.natT;
chaieb@23264
    17
  val nat_arith = map thm ["add_nat_number_of", "diff_nat_number_of", 
chaieb@23264
    18
                       "mult_nat_number_of", "eq_nat_number_of", "less_nat_number_of"];
chaieb@23264
    19
chaieb@23264
    20
  val comp_arith = (map thm ["Let_def", "if_False", "if_True", "add_0", 
chaieb@23264
    21
                 "add_Suc", "add_number_of_left", "mult_number_of_left", 
chaieb@23264
    22
                 "Suc_eq_add_numeral_1"])@
chaieb@23264
    23
                 (map (fn s => thm s RS sym) ["numeral_1_eq_1", "numeral_0_eq_0"])
haftmann@25481
    24
                 @ @{thms arith_simps} @ nat_arith @ @{thms rel_simps} 
chaieb@23264
    25
  val ths = [@{thm "mult_numeral_1"}, @{thm "mult_numeral_1_right"}, 
chaieb@23264
    26
             @{thm "real_of_nat_number_of"},
chaieb@23264
    27
             @{thm "real_of_nat_Suc"}, @{thm "real_of_nat_one"}, @{thm "real_of_one"},
chaieb@23264
    28
             @{thm "real_of_int_zero"}, @{thm "real_of_nat_zero"},
chaieb@23264
    29
             @{thm "Ring_and_Field.divide_zero"}, 
chaieb@23264
    30
             @{thm "divide_divide_eq_left"}, @{thm "times_divide_eq_right"}, 
chaieb@23264
    31
             @{thm "times_divide_eq_left"}, @{thm "divide_divide_eq_right"},
chaieb@23264
    32
             @{thm "diff_def"}, @{thm "minus_divide_left"}]
chaieb@23264
    33
val comp_ths = ths @ comp_arith @ simp_thms 
chaieb@23264
    34
chaieb@23264
    35
chaieb@23264
    36
val zdvd_int = @{thm "zdvd_int"};
chaieb@23264
    37
val zdiff_int_split = @{thm "zdiff_int_split"};
chaieb@23264
    38
val all_nat = @{thm "all_nat"};
chaieb@23264
    39
val ex_nat = @{thm "ex_nat"};
chaieb@23264
    40
val number_of1 = @{thm "number_of1"};
chaieb@23264
    41
val number_of2 = @{thm "number_of2"};
chaieb@23264
    42
val split_zdiv = @{thm "split_zdiv"};
chaieb@23264
    43
val split_zmod = @{thm "split_zmod"};
chaieb@23264
    44
val mod_div_equality' = @{thm "mod_div_equality'"};
chaieb@23264
    45
val split_div' = @{thm "split_div'"};
chaieb@23264
    46
val Suc_plus1 = @{thm "Suc_plus1"};
chaieb@23264
    47
val imp_le_cong = @{thm "imp_le_cong"};
chaieb@23264
    48
val conj_le_cong = @{thm "conj_le_cong"};
nipkow@30224
    49
val mod_add_eq = @{thm "mod_add_eq"} RS sym;
nipkow@30034
    50
val mod_add_left_eq = @{thm "mod_add_left_eq"} RS sym;
nipkow@30034
    51
val mod_add_right_eq = @{thm "mod_add_right_eq"} RS sym;
chaieb@23264
    52
val nat_div_add_eq = @{thm "div_add1_eq"} RS sym;
chaieb@23264
    53
val int_div_add_eq = @{thm "zdiv_zadd1_eq"} RS sym;
chaieb@23264
    54
val ZDIVISION_BY_ZERO_MOD = @{thm "DIVISION_BY_ZERO"} RS conjunct2;
chaieb@23264
    55
val ZDIVISION_BY_ZERO_DIV = @{thm "DIVISION_BY_ZERO"} RS conjunct1;
chaieb@23264
    56
haftmann@27456
    57
fun prepare_for_mir thy q fm = 
chaieb@23264
    58
  let
chaieb@23264
    59
    val ps = Logic.strip_params fm
chaieb@23264
    60
    val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
chaieb@23264
    61
    val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
chaieb@23264
    62
    fun mk_all ((s, T), (P,n)) =
chaieb@23264
    63
      if 0 mem loose_bnos P then
chaieb@23264
    64
        (HOLogic.all_const T $ Abs (s, T, P), n)
chaieb@23264
    65
      else (incr_boundvars ~1 P, n-1)
chaieb@23264
    66
    fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
chaieb@23264
    67
      val rhs = hs
chaieb@23264
    68
(*    val (rhs,irhs) = List.partition (relevant (rev ps)) hs *)
chaieb@23264
    69
    val np = length ps
chaieb@23264
    70
    val (fm',np) =  foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
chaieb@23264
    71
      (foldr HOLogic.mk_imp c rhs, np) ps
chaieb@23264
    72
    val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
wenzelm@29265
    73
      (OldTerm.term_frees fm' @ OldTerm.term_vars fm');
chaieb@23264
    74
    val fm2 = foldr mk_all2 fm' vs
chaieb@23264
    75
  in (fm2, np + length vs, length rhs) end;
chaieb@23264
    76
chaieb@23264
    77
(*Object quantifier to meta --*)
chaieb@23264
    78
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
chaieb@23264
    79
chaieb@23264
    80
(* object implication to meta---*)
chaieb@23264
    81
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
chaieb@23264
    82
chaieb@23264
    83
chaieb@23264
    84
fun mir_tac ctxt q i = 
wenzelm@23590
    85
    (ObjectLogic.atomize_prems_tac i)
wenzelm@28290
    86
        THEN (simp_tac (HOL_basic_ss addsimps [@{thm "abs_ge_zero"}] addsimps simp_thms) i)
wenzelm@28290
    87
        THEN (REPEAT_DETERM (split_tac [@{thm "split_min"}, @{thm "split_max"},@{thm "abs_split"}] i))
wenzelm@28290
    88
        THEN (fn st =>
chaieb@23264
    89
  let
chaieb@23264
    90
    val g = List.nth (prems_of st, i - 1)
haftmann@27456
    91
    val thy = ProofContext.theory_of ctxt
chaieb@23264
    92
    (* Transform the term*)
haftmann@27456
    93
    val (t,np,nh) = prepare_for_mir thy q g
chaieb@23264
    94
    (* Some simpsets for dealing with mod div abs and nat*)
chaieb@23264
    95
    val mod_div_simpset = HOL_basic_ss 
nipkow@30224
    96
                        addsimps [refl, mod_add_eq, 
wenzelm@28290
    97
                                  @{thm "mod_self"}, @{thm "zmod_self"},
wenzelm@28290
    98
                                  @{thm "zdiv_zero"},@{thm "zmod_zero"},@{thm "div_0"}, @{thm "mod_0"},
nipkow@30031
    99
                                  @{thm "div_by_1"}, @{thm "mod_by_1"}, @{thm "div_1"}, @{thm "mod_1"},
wenzelm@28290
   100
                                  @{thm "Suc_plus1"}]
wenzelm@28290
   101
                        addsimps @{thms add_ac}
wenzelm@28290
   102
                        addsimprocs [cancel_div_mod_proc]
chaieb@23264
   103
    val simpset0 = HOL_basic_ss
chaieb@23264
   104
      addsimps [mod_div_equality', Suc_plus1]
chaieb@23318
   105
      addsimps comp_ths
chaieb@23264
   106
      addsplits [@{thm "split_zdiv"}, @{thm "split_zmod"}, @{thm "split_div'"}, @{thm "split_min"}, @{thm "split_max"}]
chaieb@23264
   107
    (* Simp rules for changing (n::int) to int n *)
chaieb@23264
   108
    val simpset1 = HOL_basic_ss
chaieb@23381
   109
      addsimps [@{thm "nat_number_of_def"}, @{thm "zdvd_int"}] @ map (fn r => r RS sym)
chaieb@23381
   110
        [@{thm "int_int_eq"}, @{thm "zle_int"}, @{thm "zless_int"}, @{thm "zadd_int"}, 
chaieb@23381
   111
         @{thm "zmult_int"}]
chaieb@23381
   112
      addsplits [@{thm "zdiff_int_split"}]
chaieb@23264
   113
    (*simp rules for elimination of int n*)
chaieb@23264
   114
chaieb@23264
   115
    val simpset2 = HOL_basic_ss
chaieb@23381
   116
      addsimps [@{thm "nat_0_le"}, @{thm "all_nat"}, @{thm "ex_nat"}, @{thm "number_of1"}, 
chaieb@23381
   117
                @{thm "number_of2"}, @{thm "int_0"}, @{thm "int_1"}]
chaieb@23381
   118
      addcongs [@{thm "conj_le_cong"}, @{thm "imp_le_cong"}]
chaieb@23264
   119
    (* simp rules for elimination of abs *)
haftmann@27456
   120
    val ct = cterm_of thy (HOLogic.mk_Trueprop t)
chaieb@23264
   121
    (* Theorem for the nat --> int transformation *)
chaieb@23264
   122
    val pre_thm = Seq.hd (EVERY
chaieb@23264
   123
      [simp_tac mod_div_simpset 1, simp_tac simpset0 1,
chaieb@23264
   124
       TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1), TRY (simp_tac mir_ss 1)]
chaieb@23264
   125
      (trivial ct))
chaieb@23264
   126
    fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
chaieb@23264
   127
    (* The result of the quantifier elimination *)
chaieb@23264
   128
    val (th, tac) = case (prop_of pre_thm) of
chaieb@23264
   129
        Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
wenzelm@28290
   130
    let val pth =
chaieb@23264
   131
          (* If quick_and_dirty then run without proof generation as oracle*)
wenzelm@28290
   132
             if !quick_and_dirty
wenzelm@28290
   133
             then mirfr_oracle (false, cterm_of thy (Pattern.eta_long [] t1))
wenzelm@28290
   134
             else mirfr_oracle (true, cterm_of thy (Pattern.eta_long [] t1))
chaieb@23264
   135
    in 
chaieb@23264
   136
          (trace_msg ("calling procedure with term:\n" ^
wenzelm@26939
   137
             Syntax.string_of_term ctxt t1);
chaieb@23264
   138
           ((pth RS iffD2) RS pre_thm,
chaieb@23264
   139
            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
chaieb@23264
   140
    end
chaieb@23264
   141
      | _ => (pre_thm, assm_tac i)
chaieb@23264
   142
  in (rtac (((mp_step nh) o (spec_step np)) th) i 
chaieb@23264
   143
      THEN tac) st
haftmann@27456
   144
  end handle Subscript => no_tac st);
chaieb@23264
   145
chaieb@23264
   146
fun mir_args meth =
chaieb@23264
   147
 let val parse_flag = 
chaieb@23264
   148
         Args.$$$ "no_quantify" >> (K (K false));
chaieb@23264
   149
 in
chaieb@23264
   150
   Method.simple_args 
chaieb@23264
   151
  (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
chaieb@23264
   152
    curry (Library.foldl op |>) true)
wenzelm@30509
   153
    (fn q => fn ctxt => meth ctxt q)
chaieb@23264
   154
  end;
chaieb@23264
   155
wenzelm@30509
   156
fun mir_method ctxt q = SIMPLE_METHOD' (mir_tac ctxt q);
chaieb@23264
   157
chaieb@23264
   158
val setup =
chaieb@23264
   159
  Method.add_method ("mir",
chaieb@23264
   160
     mir_args mir_method,
chaieb@23264
   161
     "decision procedure for MIR arithmetic");
chaieb@23264
   162
chaieb@23264
   163
wenzelm@23590
   164
end